
MULTI - A LISP Based Multiprocessing System

Donald P. McKay and Stuart C. Shapiro

Department of Computer Science
SUNY/Buffalo

4226 Ridge Lea, Amherst, New York. 14226

Abstract

A package of LISP functions, collectively
called MULTI, which extends LISP 1.5 to
multiprogremming is presented. MULTI defines the
notion of a process within a LISP implementation
using function invocation as the only control
primitive. A process is an executable entity
consisting of a process template and a set of
register values. The process template defines the
operations the process carries out. Process
environments are saved in what can be viewed as
function call instances, i.e. LISP forms which
have the name of a process template in functional
position and the register values following it. The
flexibility of this simple conceptualization of
processes is demonstrated by several examples which
use MULTI to implement recursion, backtracking,
generators, agendas and AND/OR graph searching.
The implementation of MULTI does not assume that
the host LISP system provides any data or control
environment saving mechanisms such as FUNARG or
INTERLISP's spaghetti stack. Thus, MULTI is
portable to other LISP systems.

is OR, could be proved by trying to show each of
the P.'s in "parallel" and terminating the proofs
of al~ the other disJuncts as soon as any one is
proved. This "chronological" approach to
disjunction is similar to the OR of Friedman and
Wise[9] and the EITHER of Baker and Hewitt[2] which
returns true as soon as any disJunct evaluates to
true.

This paper presents a general overview of
MULTI and gives several examples. The examples are
intended to show the flexibility of the system and
to demonstrate the utility of the notion of a
process in programming. We are not proposing MULTI
as a progr~mmlng language but rather explaining in
detail a system that we have been using for several
years. Our current implementation of MULTI has
been influenced by practicality, i.e. how to
interface with ALISP [16] and how to write, debug
and maintain programs which use MULTI. Debugging
facilities available to a MULTI user in ALISP are
detailed in a separate report [21].

2. General DescriDtion of MULTI

This material is based on work supported in part by
the National Science Foundation under Grant No
MCS78-02274.

I. Introduction

The motivations of this paper are twofold.
First, it describes a package of functions which
enables a LISP program to define and use processes.
Vaguely, a process is an instance of a function
invocation (see Section 2). In general, the
ability to manipulate processes yields various
control structures such as recursion, backtracking,
coroutines and generators. The package described
here is transportable (with minor modification) to
other LISP systems because it relies on function
invocation as the only control structure primitive.
In fact, we have implemented MULTI in LISP 1.6124],
UTLISP[10], and ALISP[16]. A second motivation is
the desire to have a flexible control structure
available for use in artificial intelligence
programs. Here, our primary objective was to
provide a facility for use in writing a deduction
system for the SNePS semantic network processing
systam[26]. For example, the formula (PI v P_ v
... v Pn), where the Pi are propositions and ~v"

MULTI is a LISP based multiprocessing system
designed for use as the control structure of a
deduction system [29]. Strictly speaking, MULTI
adds multiprogramming capabilities to LISP 1.5 [20]
and Standard LISP[18]. MULTI consists of a simple
evaluator, system primitives~ a scheduler, and a
debugging facility. The evaluator continually
executes processes from a process queue until the
queue becomes empty. System primitives include
functions for creating processes, for scheduling
processes to be executed, and for manipulating
local variables or registers. The scheduler
inserts a process into the process queue.
Debugging facilities include a trace package and a
break facility.

Conceptually, a MULTI process is similar to a
"computational frame" [32] which consists of an
"action", a "datum" or argument(s), "bindings", and
a "continuation". The action specifies some task
to be performed. The bindings define an
environment in which local identifiers are given
values. The continuation is a reference to another
computational frame where processing is to continue
upon completion of the action. Other sources of
influence include the "activation record" concept
of ALGOL [23] and the class concept of SIMULA [6].
An activation record generally contains local data,
parameters, return point, temporary storage, and

29

code to be executed. In SIMULA, classes are
procedures which can have several instances active
simultaneously. In a sense, classes are the
obvious extension of ALGOL procedures. Instances
of a particular class are called "objects". Once
an object is created it remains in existence until
all references to it have been severed. With the
concept of classes, SIMULA includes control
primitives which allow coroutine activity. MULTI
treats processes like objects and the basic
structure of a process is akin to a computational
frame or activation record. Kupiers [17] states
that SIMULA also influenced the design of so called
"actor languages", ACTORS [12,13] and SMALLTALK
[1 5] .

A distinction is made between the definition
of a MULTI process and a particular instance of a
process. The term "process template" will be used
to refer to the definition of a type of a process.
A process template includes several local registers
(variables) among which must be a NAME: and a
CLINK: register. The NAME: refers to an action, a
LISP function to be executed. The CLINK: specifies
the continuation, another process, to which the
process will return control. Also, the CLINK:
serves as a communication link to another process.
The remaining registers comprise the local
environment. The term "process" refers to an
instance of a process template with suitable values
stored in its registers. A process is an
executable entity; a process template is not
executable. A similar distinction is made in
SIMULA between objects and classes. In MULTI, each
process is assigned a unique identifier whose NAME:
identifies its process template. The identifier's
LISP value is an ordered llst of the values of its
registers.

A process is not eligible for activation until
it is placed in the process queue. Any process may
create as many other subprocesses as it wishes,
specifying for each subprocess any other process
the parent process "knows" about as a continuation.
A process remains in the system until no references
to it exist, when it becomes eligible for LISP
garbage collection.

The LISP function MULTIP implements the basic
MULTI execution cycle which consists of selecting a
process from the process queue and running it.
Since the process queue is assumed to be ordered,
MULTI always selects the first process on the
queue. To execute the selected process, the
process template is applied to the value of the
process' identifier. MULTIP continues selecting
and executing processes until the process queue is
empty.

A MULTI process is a non-interruptable
computation. This assumption makes a process
similar to a procedure in that every execution of a
process must run to completion and if a process is
reactivated then it must be restarted from the
beginning of its code. The reason for the
completion assumption is to allow arbitrary LISP
functions as process templates without writing a
special process template interpreter or rewriting
the LISP interpreter.

In general, a coroutine is a procedure which
is suspendable in the midst of its execution.
Thus, coroutines seem to violate the completion
assumption. In MULTI, there are a number of ways
to specify a coroutine with multiple parts. The
simplest method is to create a new process which
has as its NAME: the process template which
implements the next part of the coroutine and to
make the continuation of the current process the
continuation of the new process. For example,
Figure la shows a process PI, which is the current
process and Which is NAME:d A, and its CLINK:, P2.
The arrows between processes in this diagram (and
in subsequent diagrams) represent CLINK:s. Suppose
PI is a multipart coroutine and the NAME: of the
next part is B. Suppose further that PI creates a
new process, P4, which PI makes the current
process. By making P4's CLINK: a B process, P3,
P1's continuation can be scheduled when P4
terminates. The resulting control set is shown in
Figure lb. When the continuation of a coroutlne
has the same registers, an equivalent effect can be
obtained by reNAME:ing the current process. This
results in the control set shown in Figure Ic. In
the remainder of the paper we use the term
continuation to refer both to the value of a
process' CLINK: and to the NAME: of the next
process template in a coroutine. In the current
example, P2 is the continuation of PI and B is the
continuation of A.

Finally, another implementation of coroutines
is to include a state register (distinct from the
NAME: register) which a process uses to select code
to execute. Fikes [7] implemented coroutines for
use in a modelling system in just this way.
However, the implementation relied on FUNARG to
save local enviro~ents, i.e. values of registers.

3. MULTI Primitives

Before discussing some example uses of MULTI
we give a detailed presentation of the MULTI
primitives. DP is a function which defines a
process template. It is analogous to DE in most
LISPs. Figure 2a gives an example definition of a
MULTI analogue of LISP's PLUS. The effect of the
call to DP is to define MPLUS as a process template
with registers At, A2, and ANS (besides NAME: and
CLINK: which DP adds). The process template
consists of a corresponding LISP function MPLUS
shown in Figure 2b. Note that NAME: and CLINK:
have been added to the argument llst and that an

P2 p?
I I I I

current ---~ ~ current

(a) (b)

current~ ~I~

~-~l P~'~ I
(c)

Figure I
An implementation of coroutlnes using continuations.

30

e x t r a fo rm h a s b e e n a d d e d t o t h e f u n c t i o n
d e f i n i t i o n . The e x t r a fo rm i n t h e LAMBDA
expression version of the process template recovers
the possibly changed register values when the
process terminates (see below).

MULTI's evaluation loop is the LISP function
MULTIP, a function of one argument, which is a list
of process identifiers. This llst is bound to
MULTIP's process queue, EVNTS. Each execution
cycle consists of removing the first process frum
EVNTS, making it the value of the variable CURNT:,
and applying the process template to the value of
the process identifier. Since a process template
is a LISP function with register names as lembda
variables, and the value of a process identifier is
an ordered list of register values, the effect is
that during execution, a process can use its
register names to refer to their values, and CURNT:
to refer to itself. MULTIP terminates when, at the
beginning of a cycle, EVNTS is NIL. This can occur
because no new processes are scheduled by the last
ones executed, or because some process
intentionally sets EVNTS to NIL. In the MPLUS
example above, if "P;" is the identifier of an
MPLUS process, (MULTIP (LIST 'PI)) would cause PI
to execute.

The functions REGFETCH and REGSTORE allow
access to registers of a given process. REGFETCH,
a function of two arguments, a process identifier
and a register name, returns the current value of
the specified register. REGSTORE takes a third
parameter and changes the value of the specified
register. In MPLUS, (SETQ ANS (PLUS AI A2)) could
be replaced by (REGSTORE CURNT: 'ANS (PLUS
(REGFETCH CURNT: 'AI)(REGFETCH CURNT: 'AS))).

The function NEW creates a new instance of a
process template. For the present example, (NEW
'MPLUS NIL 1 3 NIL) creates a new MPLUS process
with a null CLINK:, addends I and 3, and a null
ANS. NEW returns the unique identifier of the new
process .

INITIATE invokes the scheduler to place its
argument, which is a process identifier, on the
process queue. It does this by calling the
function SCHEDULE. SCHEDULE may be defined by the
MULTI user to implement various scheduling
regimens. Figure 3 shows the default SCHEDULE,
which results in a flrst-ln-first-out regimen.
Section 4.2 presents an example which redefines
SCHEDULE.

(DP MPLUS (At A2 ANS)
(SETQ ANS (PLUS AI AS)))

(a)

(LAM~DA (NA~: CLINK: AI A2 ANS)
(SETQ ANS (PLUS AI AS))
(SET CURNT: (LIST NAME: CLINK: AI A2 ANS)))

(b)

Figure 2
(a) Definition of process template; (b) resulting LAMBDA expression.

4.

We now present a series of examples which
demonstrate MULTI's ability to implement control
structures of general utility.

4.1 Backtraekln~ and Coroutines - The n oueens
ancblm

Our first example implements a solution to the
n queens problem -- find a way to place n queens on
an n by n chessboard so that none is attacking any
other, i.e. so that no two are on the same row,
column or diagonal. Our solution is roughly based
on Wlrth's [33]. The first two process templates,
QUEENS and FAIL, implement a coroutlne whose first
part begins the solution and whose continuation is
executed only if no solution exists. The two
process templates are shown in Figure 4. (See [25]
for definition of PRIN3.) Note that QUEENS
specifies its continuation by reNAME:ing itself.
Three other process templates implement a coroutine
in three parts -- START places a queen on its row,
STEP moves its queen to the next non-attacked
square, REPORT is executed only when the problem
has been solved and reports where its queen is
placed. The register COLS records the columns
already attacked by some queen. PDIAGS and MDIAGS
record the attacked diagonals. These process
templates appear in Figure 5. (See [16], [25] or
[34] for the definition of REPEAT; it is similar
to PROG in that its first argument is a list of
local variables.)

Backtracking is implemented in the coroutine
by expecting success and propagating failure. When
a STEP process places a queen on a column, it
prepares for success by making its continuation a
REPORT process. When a STEP process fails, i.e.
COL becomes 0, it propagates failure to its CLINK:
by changing its CLINK:'s NAME: to STEP, which
resumes looking for a new column on which to place
its queen.

Evaluation of (MULTIP (LIST (NEW 'QUEENS NIL
8))) results in the output:

PUT A QUEEN ON ROW I AND COLUMN 5
PUT A QUEEN ON ROW 2 AND COLUMN 7
PUT A QUEEN ON ROW 3 AND COLUMN 2
PUT A QUEEN ON ROW 4 AND COLUMN 6
PUT A QUEEN ON ROW 5 AND COLUMN 3

(DE SCHEDULE (PROCESS QUEUE)
(COND
((NULL QUEUE) (LIST PROCESS))
(T (CONS (CAR QUEUR)(SCHEDULE PROCESS (CDR QUEUE))))))

(DP

Figure 3
Definition of default scheduler.

QUEENS (N)
(INITIATE (NEW 'START CURNT: N N (ADDI N) ;Create and schedule

NIL NIL NIL)) ;initial START process.
(SETQ NA~: 'FAIL)) ;Make continuation a FAIL process.

(DP FAIL (N)
(PRIN3 "THE" *N "QUEEN PROBLEM IS IMPOSSIBLE" <>))

Figure
The process templates QUEENS and FAIL.

31

PUT A QUEEN ON ROW 6 AND COLUMN I
PUT A QUEEN ON ROW 7 AND COLUMN 4
PUT A QUEEN ON ROW 8 AND COLUMN 8.

Figure 6 shows a snapshot of the processes when a
STEP process is working on row 3. The N register
of the STEP and REPORT processes are not shown.
The evaluation of (MULTIP (LIST (NEW 'QUEENS NIL
2))) produces the response:

THE 2 QUEENS PROBLEM IS IMPOSSIBLE.

4.2 A~endas - Sieve of Eratosthenes

A second example is an implementation of the
Sieve of Eratosthenes algorithm for listing prime
numbers. The basic algorithm is to declare 2 prime
and then mark all multiples of 2 up to some maximum
as not prime. The next step is to advance to the
first number not marked and repeat the declaration
and marking phases for this prime, and so on. The
sieve is easy to implement in a language such as
PASCAL [14] using an array as the primary data
structure. However, such an implementation
requires space proportional to the maximum number
to be tested, i.e. the length of the array. Our
implementation requires only one process per prime,
so the space is proportional to the number of
primes produced.

We use the MULTI process queue and a scheduler
with ordered insertion to generate the primes
between 2 and some maximum N. This implementation
is based on an example program described in a
SIMULA reference manual [30] which uses the
predeflned SIMULATION class. The basic notion is
to use the simulation clock to represent the
integers. Because there is no built in simulation
class in MULTI, we effectively define one by

(DP START (N ROW COL COLE PDIAGS MDIAG3)
(COND ((ZEROP ROW) ;Done if ROW = 0

(INITIATE CLINK:)) ;schedule REPORT process.
(T (SETQ NAB: ~STEP) ;Otherwise make continuation STEP

(INITIATE CURNT:)))) ;and schedule it.

(DP STEP (N ROW COL COLE FDIAGS MDIAGS)
(COND
((REPEAT NIL ;Search for free column.

(SETQ COL (SUBI COL)) ;Initially COL = N÷I.
UNTIL (ZEROP COL)
WHILE (OR (MEMBER COL COLE)

(MEMBER (PLUS ROW COL) PDIAGS)
(MEMBER (DIFF ROW COL) MDIAOS)))

(IF (EQ (REGFETCH CLINK: 'NAME:) 'REPORT)
(REGSTORE CLINK: 'NAME: 'STEP)) ; Propagate failure.

(INITIATE CLINK:)) ;If not found, force another solution.
(T (SETQ NAME: 'REPORT) ;Prepare for success.
(INITIATE ;If found, oreate new START process

(NEW 'START
CURNT: ;with
N
(SUBI ROW) ;next ROW,
(ADDI N) ;irJ.tial COL off board and
(CONS COL COLS) ;current COL and dlago~ala
(CONS (PLUS ROW COL) PDIAGS) ;reserved.
(CONS (DIFF ROW COL) MDIAGS))))))

(DP REPORT (N ROW COL COLE PDIAGS ~IAGS)
(PRIN3 "PUT A QUEEN ON ROW" IROW "AND COLUMN" *COL <>)
(IF (EQ (REGFETCH CLINK: 'NARd:) 'REPORT) ;Report ROW and COLuan

(INITIATE CLINK:))) ;and propagate reporting.

Figure 5
START, STEP and REPORT process templates.

changing the scheduler to use an ordered queue.
The ordering relation is based on the TIME:
register, which every process in this example is
required to have.

The function SCHEDULE, shown in Figure 7,
maintains an ordered list of processes based on the
value of the TIME: register. Note that this
definition of SCHEDULE overrides the default
scheduling function (see Section 3).

The top-level LISP function is PRIMES, shown
in Figure 8. PRIMES lists all primes less than N.
First, it prints that 2 is prime, initializes a
PRIME process to start at TIME: 3 and schedules a
termination process HALT to run at TIME: N. The
three process templates, also in Figure 8, are
PRIME, BLOCK and HALT. PRIME prints that its
number, TIME:, is prime. It then creates a BLOCK
process to prevent multiples of its TIME: being
declared prime. The BLOCK process template creates
a new PRIME process at TIME: + 2 if the TIME: of
the next scheduled process is greater than the
current TIME: + 2. The BLOCK process then
reschedules itself to run at the next odd multiple
of the TIME: of the PRIME process which created it.
Essentially, the BLOCK processes are checking each
odd number in the interval [3, N). The HALT
process terminates the operation by emptying the
process queue. The program can be made slightly
more efficient if the scheduler advances a process'
TIME: register so as to avoid scheduling more than
one process at any given TIME:. Calling the
function PRIMES with an argument of 1000 causes 160
PRIME and BLOCK processes to be created each of
which uses approximately 6 words of storage. The
ordered list of processes in the queue "at a TIME:
of 11" is ((PRIME nil 11) (BLOCK nil 15 6) (BLOCK
nil 15 10) (BLOCK nil 21 14) (HALT nil 1000)).

Others have described multilevel agendas
[4,5], i.e. an ordered list of priority queues.
To extend the notion of multilevel agendas, we

FAIL P7~
In= 8 l

R~gRT P~6
row: 8; col: 8;] row: 5:" col: 7;
ools: (); pdlaga: ();I cols: (4 6 8); pdiags:(10 13 16)
mdlags: () mdiaga: (2 1 0~

REPORT ~7 ~ STEP Pso

cola: (8); pdiags: (16); cols: (7 4 6 8)1
mdiags: (0) pdiags: (12 10 13 16);

p785 J mdiags: I-2 2 1 O)

Irow: 6; col: ~1 STEP P81
REPORT

cola: (6 8); ~iags: (13 16); row: 3; col: O; I
mdiags: (I 01 cola: (5 7 ~ 6 8)"

i pdiags: (9 12 10 ~3 16);
mdiags: I-I ~2 2 1 0)

Figure 6
Snapshot of processes just after P81 changes P80 's NAME:.

(DE SCHEDULE (PROCESS QUEUE)
(COND
((NULL QUEUE) (LIST PR~ESS))
((GREATERP (REGFET~ PR~ESS 'TIME:)

(REGFETCH (CAR QUEUE) 'TIME:))
(CONS (CAR QUEUE) (SCHEDULE PR~ESS (CDR QUEUE))))

(T (CONS PROCESS QUEUE))))

Figure 7
Scheduler for Sieve of Erastosthenes example.

32

define a ~ to be a type of MULTI process
which has as the value of one of its registers a
process queue. When a monitor is the CURNT:
process, its process queue is the MULTI process
queue. A monitor can perform any action on its
process queue. Thus, a monitor can detect that its
process queue is empty. The monitor itself is also
a repository for processes. For example, all of
the processes of a monitor can be suspended by
suspending the monitor. Also, a monitor can appear
on other monitors! queues giving a system the
ability to have a scheduling mechanism with no a
priori fixed number of queues. In this way,
monitors can be used to create arbitrarily nested
queue structures -- directed graphs of queues or
trees of queues, as well as multilevel agendas.
Monitors are the topic of further research. We are
currently focusing on applications to the SNePS
[26,29] deduction system. In particular, monitors
will be used to implement connectives which require
deductions based on "lack of knowledge", to
recognize completed subproofs, to suspend and
resume processing without resorting to searches to
find relevant processes and to provide a mechanism
for resource limited processing.

4.3 f~manaZnna

This example demonstrates the use of MULTI to
provide a "generator" facility. A generator is a
function which produces results one at a time,
suspending itself so that it can later resume
execution where it left off. Such a package is
available in INTERLISP [31] where its
implementation depends on the spaghetti stack [3].
In LISP implementations which do not have a unified
data structure for saving data and control
environments, such a generator package is generally
not available. This section presents several
functions which use the notion of a MULTI process
to extend such LISP systems.

There are several MULTI implementation
alternatives for generators. The most primitive
method involves writing MULTI process templates
which behave as generators. A more sophisticated
approach is to define generators as an abstract

(DE PRIMES (N)
(PRIN3 2) ;2 is prime.
(MULTIP (LIST (NEW 'PRIME NIL 3 3) ;Call MULTI evaluator

;with initial prime of 3
(NEw 'HALT NIL N)))

;and HALT at TIME: N.
(PRIN3 <> <>))

(DP PRIME (TIME:)
(PRIN3 * TIME:) ;PRIME'e TIME: is prime.
(INITIATE (NEW 'BLOCK NIL TIME: (TIMES 2 TIME:)));Create and

;schedule BLOCK process for
;odd multiples of TIME:.

)

(DP BLOCK (TIME: MP:)
(IF (GREATERP (DIFF (REGFETCH (CAR EVNTS) 'TIME:) TIME:)

2) ;If next process' TIME: > current TIME:÷2
(INITIATE (NEW 'PRIME NIL (PLUS 2 TIME:))));then TIME:+2

;is prime.
(SETQ TI~: (PLUS TIME: MP:));Is any case, BLOCK next odd
(INITIATE CURNT:) ;multiple of correspondlng prime.
)

(DP HALT (TIME:)
(SETQ EVNTS NIL)) ;Make MULTI queue NIL to quit.

Figure 8
Process templates for Sieve of Erastosthenes.

data type which allows nearly the same syntax as
INTERLISP.

First, consider what a process template which
behaved as a generator would look like. It would
take some input, apply some function to that input
and produce a series of outputs, one per
invocation. For example, the function LEAVES which
returns the leaves of a tree when written in
generator form, see Figure 9, "recursively" calls
itself until a leaf is found. The leaf is then
stored in the output register LEAF:. The answer
produced by the generator can be accessed by using
REGFETCH on the LEAF: register.

The function PRINT-LEAVES, see Figure 10, uses
the LEAVES generator presented above to print the
leaves of a tree. Figure 11 shows the structure
built by the initial LEAVES process just after
process LI has found a leaf given the argument to
PRINT-LEAVES is '((A B C) D E). The LEAVES
processes are labelled for reference in order of
creation. Note that this implementation requires a
reference be kept t 9 the original process'
identifier so that the generator can later be
resumed.

Three functions, GENERATOR, GENERATE and
PRODUCE, are provided in INTERLISP which define
generators. GENERATOR is a function which creates
a control structure for a given generator function.
(GENERATOR (LISTGEN '(A B C))) creates a spaghetti
stack entry to treat the function LISTGEN as a
generator. GENERATOR returns the unique internal
identifier of the function instance which is the
generator. No further action is taken. The
function GENERATE takes as its argument a generator

(DP LEAVES (TREE: LEAF:)
(REPEAT NIL

UNTIL (ATOM TREE:)
(IF (CDR TREE:)

(SETQ CLINK: (NEW 'LEAVES
CLINK:
(CDR TREE:)
'UNBOUND)))

(SETQ TREE: (CAR TREE:)))
(SETQ LEAF: TREE:))

Figure 9
Simple form of LEAVES generator.

(DE PRINT-LEAVES (TREE)
(IF TREE
(REPEAT (G)

(SETQ O (NEW 'LEAVES NIL TREE 'UNBOUND))
BEGIN (MULTIF (LIST G))

(PRINT (REGFETCH G 'LEAF:))
WHILE (REUFETCH G 'CLINK:)

(SETQ G (REGFETCH G 'CLINK:)))))

Fig*re 10
PRINT-LEAVES uses LEAVES as a generator.

/3<
E CO'NiL i- E NIL 1 !

, i J

LEAV&CA LEAVES: LEAVFE~ L2

h . . _ , l ~ (E c); I k.-.~, ~ree: (D E); I
" ~ leaf : UNBOUND !

Figure 11
The LEAVES processes when LI finds a leaf.

33

identifier and runs the specified generator until
the first call of the function PRODUCE. PRODUCE
takes a single argument which it returns as the
value of the generator. For example, the INTERLiSP
generator version of a function which returns the
top level elements of its argument one at a time
could be defined as in Figure 12.

Our implementation defines generators as an
abstract data type. The function DG defines a
generator. In the process of defining a generator,
the process template for the generator is stored
under the %G% property of the generator name.
Reoursive calls to a generator are handled by
defining a function associated with the name of the
generator which creates a new generator process.
For the LISTGEN example, the DG form in Figure 13a
defines a process template which it stores under
the %G% property of LISTGEN (see Figure 13b). DG
also defines the LISP function shown in Figure 13c.
(ALISP does not make the distinction between an
atom's function value and LISP value. The
plaoament of the process template on the property
list is one way of avoiding this feature of ALISP.)
The function GENERATOR creates a generator instance
and returns a process queue of one element. The
call (GENERATOR (LISTGEN '(A B C))) results in the
MULTI process queue (PI) where PI is a process with
a NAME: of LISTGEN. GENERATE takes a LISP atom
whose v a l u e is a process queue as input and runs
the processes in the queue until the function
PRODUCE is called. In this example, the MULTI
execution loop is redefined in GENERATE. Thus,
GENERATE takes the place of MULTIP. The reasons
for this are to implement recursion by treating the
MULTI process queue as a stack and to store the
process template definition on the property list of
the name of the process. The argument of PRODUCE
is returned as the value of GENERATE and the
generator variable, the argument of GENERATE, is
updated to reflect the change in the process queue.
For example, if the LISP atom G was assigned the
result of the above call to GENERATOR then
(GENERATE G) would return A with the generator
variable G reassigned the new MULTI process queue.

This set of functions is minimally sufficient

(LISTGEN (L)
(iF L THEN (PRODUCE (CAR L))

(LISTG~ (CDR L))))

Figure 12
INTERLISP generator LISTGEN.

(DG LISTGEN (L)
(iF L (PRODUCE (CAR L)) (LISTGEN (CDR L))))

(a)

LISTGEN
FLIST
(SO% (LAMBDA (NA/~: CL~NK: L)

(iF L (PRODUCE (CAR L))
(LISTGEN (CDR L)))

(SET CURNT: (LIST NAME: CLINK: L))))

(b)

(LAMBDA %ARfiS~
(INITIATE (APPLY NEW (APPEND (LIST 'LISTGEN NIL) %ARGS%))))

(a)

Figure 13
(a)LISTGEN generator, (b)process template (c)and LISTGEN LISP function.

to define generators but one would want to add
other functions to the data type. For example, a
function EDITG for editing the definition of a
generator without all the extra registers and forms
would be useful.

As a final example of generators, consider the
"same fringe" problem -- test the equality of the
fringes (leaves) of two trees. Almost all
purported solutions avoid the naive LISP solution
which flattens the two trees and uses the EQUAL
function. Although there is some disagreement over
what kinds of solutions are admissable [1,19], it
is clear that the most popular approach is to make
a left to right scan of the leaves of the trees
terminating with failure on the first pair of
leaves which disagree [1,8,11,19]. We discuss this
problem not to justify generators or processes but
to show a very simple solution using the MULTI
generator abstract data type. Figure 14 displays
the FRINGE generator and the LISP function
SAME-FRINGE. Our FRINGE generator is similar in
spirit to an example FRINGE generator of
Hewitt's[12]. Note that a generator terminates
when the generator variable (queue) becomes NIL
(empty).

4.4 AND/OR Graph Processing

A simple application of AND/OR graph searching
is a rewriting problem [22]. The problem is to
take an initial data base and apply productions
until a resultant data base consists only of
terminal symbols. Productions are rewrite rules
which replace an occurrence of their left hand side
with the symbols of their right hand side. Some
sample productions which are later used in an
example are:

C->DL
C-> Bm
B->mm

Z->BBm
where "m" is terminal. Figure 15 shows a simple
AND/OR graph. AND nodes are those nodes which have
a bar across their outgoing arcs, e.g. the node
labelled A in Figure 15 is an AND node. OR nodes
are those nodes which are not AND nodes, e.g. B is
an OR node. In the rewrite example, the AND nodes
represent partial data bases and the OR nodes
represent the application of a single production.
What is interesting about this decomposition is
that an OR node is satisfied when any one of its
descendents is satisfied and an AND node is
satisfied when all of its descendents are

(DG FRINGE (TREE)
(COND
((ATOM TREE) NIL)
((ATOM (CAR TREE)) (PRGDUCE (CAR TREE))

(FRINGE (CDR TREE)))
(T (FRINGE (CAR TREE)) (FRINGE (CDR TREE)))))

(DE SAME-FRINGE (TREE O~ERTREE)
(REPEAT (GI G2)

(SETQ GI (GENERATOR (FRINGE TREE))
G2 (GENERATOR (FRINGE O~HERTREE)))

BEGIN
WHILE (EQ (GENERATE GI) (GENERATE G2))
UNTIL (AND (NULL GI) (NULL G2))))

Figure 14
Generator implementation of SAME-FRINGE.

34

satisfied. Thus, the termination condition for an
OR node is the same as the termination condition of
the chronological disjunction operators mentioned
in Section I.

In addition, we need the notion of a ~tg
[27,28]. The purpose of a data collector

is to avoid redundant computation. A data
collector is a process which maintains a list of
messages it has received and a set of bosses which
are interested in sharing the results of the data
collector's computation. Given that it is possible
to identify that some data collector process is
already working on a particular "problem", it is
trivial to obtain the current set of results from
the data collector and place another process in the
llst of bosses of the data collector. In the
rewrite example, a "problem" is the application of
a production and the productions are indexed by the
symbol which is their left hand side. More
sophisticated pattern matching is required for
problem descriptions which are more complex
[28,29].

The solution presented here uses three
coroutines. The first coroutine has two parts -
START and END (see Figure 16). START creates a
MAPSTRING process with the same data base as passed
to START and changes its NAME: to END. The END
process template performs some action, here
printing the resultant data base, and clears the
MULTI process queue.

A second coroutine decomposes a data base so
that productions can be applied to each part of the
data base independently. The MAPSTRING process
template (see Figure 17) tries to apply productions
to each symbol in its DATABASE:. MAPSTRING eould
create a new APPLY-PRODUCTIONS process for each
symbol in its DATABASE: but this approach
propagates many redundant APPLY-PRODUCTIONS
processes. Since the left hand side of a
production is an atomic symbol and only one
solution is required, one APPLY-PRODUCTIONS process
is sufficient for any symbol. The function NEW-OLD
(also in Figure 17) checks for the existence of an
APPLY-PRODUCTIONS process for a given symbol. If
such a process exists and a solution has already
been discovered then the solution is immediately
sent to the MAPSTRING process attempting to create
the APPLY-PRODUCTIONS process. Also, the current
process is added to the BOSSES: of the existing
APPLY-PRODUCTIONS process and no new

Figure 15
An example AND/OR graph.

(DP START (DATABASE: MESSAGE:)
(INITIATE (NEW 'MAPSTRING CURNT: DATABASE: NIL))
(SETQ NAN: 'END))

(Dr END (DATABASE: MESSAGE:)
(PRINT MESSAGE:)
(SETQ EVNTS NIL))

Figure ~6
START a n d END process templates.

APPLY-PRODUCTIONS process is created. If no
APPLY-PRODUCTIONS process exists for the symbol
then a new one is created and indexed by its
symbol. MAPSTRING-C (see Figure 17), the
continuation of MAPSTRING, waits for the results of
all production applications before sending its
result to its CLINK:.

Messages are always passed using the function
SEND. SENDing a message to a process always
results in the message being queued to the process'
MESSAGE: register and the process being scheduled
at the front of the process queue.

The process template APPLY-PRODUCTIONS (see
Figure 18) is the first part of a coroutine which
applies all productions whose left hand side is the
same as its symbol. If an APPLY-PRODUCTIONS'
symbol is terminal then no production is sought.
If no productions have the symbol as a left hand
side no further action will be taken. For every
applicable production a new MAPSTRING process is
created with its DATABASE: initialized to the right
hand side of the production. APPLY-PRODUCTIONS-C
(see Figure 18), the continuation of
APPLY-PRODUCTIONS, passes any new MESSAGE: that it
receives and keeps the list of messages it has
received in its MESSAGE: register. The BOSSES:
register is a list of all those processes which
require the results of applying a production with a
given left hand side. The APPLY-PRODUCTIONS and

(DP MAPSTP/-HG (DATABASE: MESSAGE:)
(MAPC DATABASE: (LAMBDA (C) ;For each symbol in data base

(NEW-OLD 'APPLY-PRODUCTIONS CURNT : C)))
;create a process to try productions.

(SETQ NAME: 'MAPSTRING-C)
)

/-

(Dr MAPSTRING-C (DATABASE: MESSAGE:)
(MAPC MESSAGE:

(LARBDA (C-S) ;For each element of message substitute
(SETQ DATABASE: (SUBST (CDR C-S)

(CAR C-S)
DATABASE:))))

(IF (NO-ATOM DATABASE:) ;Done when no toplevel abams in
(SEND (APPLY APPEND* DATABASE:) CLINK:)) ;data base.

(SETQ MESSAGE: NIL)
)

(DE NEW-OLD (NAME CLINK SYMBOL)
(COND
((GET SYMBOL NAME) ;Get previous process id if any.
(REGSTORE (GET SYMBOL NAME) ;Place CURNT: process into bosses

'BOSSES: ;of data collector.
(CONS CLINK (REGFETCH (GET SYMBOL NAME) ' BOSSES:)))

(SEND (CAR (REOFETCH (GET SYMBOL NAME) 'MESSAGE:)) CLINK))
;Send any result of data collector to CURNT: process.

(T (INITIATE (PUTPROP SYMBOL ;Otherwise, create and index
NAME ;a new process.

)))
(NEW NAME CLINK SYMBOL NIL (LIST CLINK))))

Figure 17
MAPSTRINO and MAPSTFLING-C process templates.

(Dr APPLY-PRODUCTIONS (SYMBOL: MESSAGE: BOSSES:)
(COND
((TERMINALP SYMEOL:) ;If symbol is terminal then return it

(SEND (LIST SYMBOL: SYMBOL:) BOSSES:));as producing itself.
(T (MARC (RI~T-HAND-SIDES SYMBOL:) ;Otherwise, for each

(LAMBDA (MS) ;production create a new MAPSTRINO process.
(INITIATE (NEW 'MAPSTRING CURNT: F~S NIL))))))

(SETQ NAME: 'APPLY-PRODUCTIONS-C))

(DP APPLY-PRODUCTIONS-C (SYMBOL: MESSAGE: BOSSES:)
(SEND (CONS SYMBOL: (CAR MESSAGE:)) BOSSES:))

Figure 18
APPLY-PRODUCTIONS and APPLY-PNODUCTIONS-C process templates.

35

APPLY-PRODUCTIONS-C process templates act as a data
collector.

To demonstrate data collectors more
concretely, consider the productions presented
above. A snapshot of the processes created by the
call (MULTIP (LIST (NEW ,START NIL '(C B Z) NIL)))
after all productions have found the terminal
symbol "m" appears as Figure 19. Note the arrows
in this diagram represent the BOSSES: of a process
which includes its CLINK:. In the figure only one
APPLY-PRODUCTIONS process for "B" and "m" appear.
The MAPSTRING-C process with a data base of (D L)
will never send any messages.

If a production is directly or indirectly
recusive, data collectors will produce a cycle in
the graph of processes. Data will flow around the
cycle until all solutions are produced. This is
discussed in detail elsewhere [28].

5. fmng/JAai~m

MULTI is a package of LISP functions which
define the notion of a process using function
invocation as the only control structure primitive.
Process environments are saved in what can be
viewed as function call instances, i.e. LISP forms
which have the name of a process template in
functional position and the register values
following it. We have demonstrated the flexibility
of this simple conceptualization of processes by
discussing several examples which use various
control structures such as recursion, backtracking,
generators, ooroutines and AND/OR processing.
Also, this implemetation does not assume that the
host LISP system provides any control or data
environment saving mechanisms such as INTERLISP's
spaghetti stack or FUNARG. Thus, MULTI should be
portable to other LISP implementations modulo some
error conditions and error recovery functions. In
fact, MULTI, as part of the SNePS deduction system
[26], has moved from LISP 1.6 [24] to UTLISP [10]
and then to ALISP [16]. The LISP source for MULTI
and the other functions discussed here are
presented in [21].

Ldb: ~C B z)~

MAPSTRING-C
Idb: (C B Z)]

/ \

APPLY-PRODUCTIONS-C
I symbol: • J

Figure 19
Snapshot of rewrite processes.

References

I. Anderson, B. The samefringe problem. SIGART
K~al~/_~:, No. 60, November, 1976, 4.

2. Baker, H.G. and Hewitt, C. The incremental
garbage collection of processes. Proc. of the
Svmcosium On Artificial Intelli~enee and
Pro~mmln~ Lan~u~ee. SIGART Newsletter, No.
64, August, 1977, 55-59-

3- Bobrow, D. G. and Wegbreit, B. A model and
stack implementation of multiple environments.
CACM 16(10), October, 1973, 591-603.

4. Bobrow, D.G. and Winograd, T. An overview of
KRL, a knowledge representation language.
CQgnitive Science 1, I (January 1977), 3-46.

5. Bobrow, D.G. and Winograd, T. Experience with
KRL-0, one cycle of a knowledge representation
language. Proc. Fifth International Joint
Conference on Artificial Intelligenee, Dept.
of Computer Science, Carnegie-Mellon
University, Pittsburgh, 1977, 213-222.

6. Dahl, O.-J. and Hoare, C. A. R. Hierarchical
program structures. In Structured Programmin~
(Dahl, O.-J.; DiJkstra, E.W.; Hoare C.A.R.),
Academic Press, 1972, 175-200.

7. Fikes, R.E. Deductive retrieval mechanisms for
state description models.
International Joint Conference on Artificial
~2~llig~Agg, MIT AI Laboratory, Cambridge,
MA, 1975, 99-I06.

8. Finin, T. and Hurter, P. Different fringe for
different folk. SIGART Newsletter, No. 60,
November, 1976, 4-5.

9. Friedman, D.P. and Wise, D.S. Applicative
multiprogramming. Technical Report No. 72,
Computer Science Dept., Indiana University,
Bloomington, IN, 1977.

10. Greenwalt, E.M., Slocum, J. and Amsler, R.A.
U. T. LISP Documentation. Computation Center,
University of Texas at Austin, May, 1975.

11. Greussay, P. An iterative LISP solution to the
samefringe problem. SIGART Newsletter, No. 59,
August, 1976, 14.

12. Hewitt, C.E. Viewing control structures as
patterns of passing messages.
~ V o l . 8(3), 1977, 323-364.

13. Hewitt, C.E. and Smith, B. Towards a
programming apprentice. IEEE Transactions on
Software En~ineerin~ SE-I(1), March, 1975,
26-45.

14. Jensen, K. and Wirth, N. PASCAL User Manual
A~_2aP_qr_~. Lecture Notes in Computer Science
Vol. 18, Goos, G. and Hartmanis, J. eds.,
Springer-Verlag, New York, 1974.

15. Kay, A. SMALLTALK, a communication medium for
children of all ages, Xerox Palo Alto Research
Center, Palo Alto, CA, 1974.

16. Konolige, K. ALISP U@er's Manual. University
of Massachusetts Computing Center, Graduate
Research Center, Amherst, MA, 1975.

17. Kupiers, B~J. A frame for frames: representing
knowledge for recognition. In ~r2~%~A~A~i~
and Understanding. Bobrow, D.G. and Collins, ~
A.(eds.), Academic Press, 1975, 151-184.

18. Marti, J.B., et al. Standard LISP Report.
SIGPLAN No$iees 14(I0), October, 1979 44-68.
Also appeared as Technical Report No. 101,
Computer Science Dept., University of Utah,
Salt Lake City, UT, January, 1978.

19. McCarthy, J. Another samefringe. SIGART

36

N~gg~_~gz, No. 61, February, 1977, 4.
20. McCarthy, J., et al. LISP I.~ Proarnmmer's

~ . The M.I.T. Press. Massachusetts
Institute of Technology, Cambridge,
Massachussets, 1965.

21. McKay, D.P. and Shapiro, S.C. MULTI - A LISP
base multiprocessing system. Technical Report,
Department of Computer Science, SUNY/Buffalo,
1980.

22. Nilsson, N.J. Principles of Artificial
~ . Tioga Publishing Co., Palo Alto,
California. 1980.

23. Pratt, T. W. Programming Languages: Design and
~ . Prentice-Hall Englewood
Cliffs, N.J.. 1975.

24. Quam, L.H. L~___I~. Stanford Artificial
Intelligence Laboratory, Stanford University,
September, 1969.

25. Shapiro, S.C. Techniaues of Artificial
~ . D. Van Nostrand Company, New
York, 1979.

26. Shapiro, S.C. The SNePS semantic network
processing system. In Associative Networks:
The RePresentation and Use of Knowledge by
f ~ , Findler, N.V., ed., Academic Press,
New York. 1979, 179-203.

27. Shapiro, S.C. Compiling deduction rules from a
semantic neetwork into a set of processes.
Workshop on Automatic Deduction, MIT,
Cambridge, MA. August 17-19, 1977.

28. Shapiro, S.C. and McKay, D.P. Inference with
recursive rules. Pron. First Annual National
Conference on Artificial Intelligence, AAAI,
Stanford University, 1980.

29. Shapiro, S.C. and McKay, D.P. The
representation and use of deduction rules in a
semantic network, forthcoming.

30. SIMULA Version I Reference Manual. Control
Data Corporation, publication number 60234800
Rev A, St. Paul, Minnesota, E-I.

31. Teitelman, W., et al. INTERLISP Reference
Manual. Xerox Palo Alto Res. Ctr., Palo Alto,
Calif., 1974.

32. Wand, M. The frame model of computation.
Technical Report No. 20, Computer Science
Dept., Indiana University, Bloomington, IN.
December, 1974.

33. Wirth, N. Program development by stepwise
refinement. CACM 14, 221-227.

34. Wise, D.S., Friedman, D.P., Shapiro, S.C. and
Wand, M. Boolean-valued loops. ~L_L~,
431-451.

37

