
"- -

!;;ij":-"»~
. . -- -

. .
- . .. -. .., ..

~ - ~ '. - - - ~ ." t;- ..'.. - . /1 C,;.~ 8: - ~~1t" I Gz..-b - . ~l Oz <;({ , . -

PROCEEDINGS
of the

" ~ ..

SEVENTH INTERNATIONAL
JOINT CO NFEREN CE
ON
ARTIFI CIAL
INTELLIGENCE -

IJCAI.81
24 - 28 August 1981
University of British Columbia
Vancouver, B.C., Canada

Sponsored by
The International Joint Conferences on
Artificial Intelligence

Co-sponsored by
The Canadian Society for
Computational Studies of Intelligence

.- The American Association for
~ Artificial Intelligence

VOLUME I
:.

- =-- - -~- ~ ~-- --:-

. '

Copyrlght@1981 International Joint Conference on Artificial Intelligence

IJCAI-81

Sponsored by: International Joint Conferences on Artificial intelligence
Canadian Society for Computational Studies of Intelligence
American Association for Artificial Intelligence

Enquiries for purchases of copies of this book should be made to:

William Kaufmann, Inc.
95 First Street

Los Altos, California 94022

, r

Edited by Ann Drinan

ISBN 0-86576-059-4
Printed in the United States of America

- - - -.~,

USING ACTIVE CONNECTION GRAPHS

FOR
REASONING WITH RECURSIVE RULES

Donald P. McKay and Stuart C. Shapiro

Department of Computer Science

State University of New York at Buffalo

Amherst, New York 14226

Abstract measure taken to avoid the problem of circular
definitions and equivalences in one system was to

Recursive rules, such as "Your parents' use "a depth first expansion policy and to limit
ancestors are your ancestors", although very useful the total depth of the expansion" [2]. This is
for theorem proving, natural language essentially the same solution proposed by Black [1]
understanding, question-answering and information and by Simmons and Chester [22].
retrieval systems, present problems for many such
systems, either causing infinite loops or requiring Not too surprisingly, recursive rules cause
that arbitrarily many copies of them be made. problems for many programming languages developed
SNIP, the SNePS Inference Package, can use for artificial intelligence (AI) research. AI
recursive rules without either of these problems. languages, such as M1croPLANNER [23], FUZZY [11],

A recursive rule causes a cycle to be built in an and PROLOG [15], have differing approaches to a
active connection &raDh. Each pass of data through basic problem: there exist well formed statements
the cycle results in another answer. Cycling stops in the language which cause infinite loops in the
as soon as either the desired answer is produced, language interpreter when some theorem, procedure
no more answers can be produced or resource bounds or clause is used. Using the terminology from
are exceeded. M1croPLANNER, these languages are sensitive to the

order of assertion, or equivalently the order of
retrieval of theorems, and to the application of a

This work was supported in part by the National theorem as a sub goal of itself. Both interact to
Science Foundation under grants MCS78-02274 and make a collection of theorems incomplete, i.e.
MCS80-o6314. statements which are logically implied by its data

base of assertions and theorans are not derivable
because the system gets into an infinite loop.

1. IntroduC!tion
A typical example would be the ANCESTOR

Recursive rules, such as "Your parents' example mentioned previously. In a M1croPLANNER
ancestors are your ancestors", occur naturally in like syntax, such a statanent can be represented as
inference systems used for theoran proving, the consequent theoran:
question-answering, natural language understanding (CONSEQUENT (ANCESTOR 71 7Y) (Z)
and information retrieval. Transitive relations, (GOAL (ANCESTOR $1 ?Z»(GOAL (ANCESTOR $Z
e.g. ¥(x,y,z) [ANCESTOR(x,y) & ANCESTOR(y,z) -> $Y»)
ANCESTOR(x,z)] , inheritance rules, e.g. The use of this theoran for solving some goal
¥(x,y,p)[ISA(x,y) & HAS(y,p) -> HAS(x,p)], circular introduces a problan. If there is no other way in
definitions, e.g. "a limb is a leg or arm" and "a which to deduce instances of ANCESTOR, either by
leg is a limb", and equivalences, e.g. ¥(x,y,z) finding assertions in the data base or through
[RECEIVE(x,y,z) <=> PTRANS(z,y,z,x)], are all application of some other rule, or if the order of
occurrences of recursive rules. Yet, recursive application of theorems picks this theoran first
rules present problems for systan implementors. regardless of any other available theorems then the
Inference systems which use a "naive chaining" above theorem reuses itself without making any
algorithm can go into an infinite loop, like a progress towards finding a solution, i.e. use of
left-to-right top-down parser given a left the theorem causes the interpreter to enter an
recursive grammar [6, 11, 15,23]. Some systems infinite loop.
fail to use a recursive rule more than once, i.e.
are incomplete [8, 20]. Other systems build tree M1croPLANNER provides a primitive, THUNIQUE,
like data structures containing branches the length which can be used to check whether a theoran has
of which depend on the number of times the previously been entered with the current bindings
recursive rule is to be applied [4, 21]. Since and does solve the infinite regress problem for
some of these build the structure before using it, recursive theorems. However, the user must
the correct length of these branches is explicitly include the appropriate statement, so !

problematic. Some systems eliminate recursive the possibility exists that the user may not in
rules by deriving and adding to the data base all fact notice that a theoran will be used
implications of the recursive rules in a special recursively. This could happen when circular:

;
pass before normal inference is done [16]. Another definitions or equivalences are inadvertently

!!
;

368 :

, i
,

I

introduced into a collection of theorems. FUZZY
suffers from a similar problem and compounds it by
not providing an operator equivalent to THUNIQUE. 2. Predicate CnnnA~tinn GrAnh~
Two points should be noted. First, apparently the
developers of FUZZY did not need to represent Others have described Dredi~Atp ~nnnActi~
recursive procedures (LeFaivre, personal iraghs [4, 8, 10] or clause interconnectivity
communication) and second, THUNIQUE can be graphs [21] which have been used in resolution
simulated in FUZZY. Pure PROLOG also does not theorem proving systems and question answering
explicitly contain a THUNIQUE primitive -- using systems.
recursive rules properly is a problem with the i
procedural semantics of some implementations of Our view of predicate connection graphs I'
PROLOG, but it is not a problem of the declarative depends on a match algorithm which retrieves all
semantics. Some implementations of PROLOG include formulas unifiable with a given formula. The
an equivalent primitive. Since a primary mode of details of the algorithm appear elsewhere [17].
definition is recursive definition by listing Here, we relate it to the unification algorithm
clauses, this is a potential source of problems for [3]. A match function is given as input a formula
users of PROLOG. S, called the source, which it uses to find all

formulas unifiable with S. The result of the match
SNIP [12, 18, 19] was designed to use rules is a list of triples, <T,~,~>, where T is a

stored in a fully indexed data base. When a retrieved formula called the tariet, and ~ and ~
question is asked, the system retrieves relevant are substitutions called the tar2et binding and
rules and builds an active connection grADh which source binding respectively. Essentially ~ and ~
attempts to derive the answer from the rules and are factored versions of the most general unifier
other information stored in the data base. Since a (mgu) of Sand T, and might have been computed (but
semantic network is used to represent all are really not) in the following way. [Note: This
declarative information available in the system, we description is accurate for first order predicate
differ from the basic assumption of several data calculus without function symbols. Inclusion of
base question-answering systems [5, 14, 16] by not function symbols adds a complication which is not
making a distinction between -extensional- and treated in this paper, but is in a forthcoming
-intensional- data bases, (i.e. non-rules and paper.] Let Bs be the substitution {t,/vj' ...,
rules are stored in the same data base), nor do we t Iv } where V1' ..., v are all the vhriaDles inn n ndistinguish -base- from -defined- relations. S, and if vi occurs in T, t is a variable used
Specific instances of ANCESTOR may be stored as nowhere else, but if vi does nat occur in T, t is
well as rules defining ANCESTOR. In addition, the vi (the pair v Iv is not normally allow~d in
inference system described here does not restrict substitutions sin~e it is superfluous, but it will
the left hand side of rules to contain only one make our algorithms easier to describe). Let ~ be
literal which is a derived relation [5], does not the substitution {vj/V1' ..., vk/vk}' where v ,
need to recognize cycles in a graph [5, 9, 14] and ..., vk are all tfie variables In T. Note thAt
does not require that there be at least one exit T~=T and that T~ and SBs have no variables in
from a cycle [14]. caimon. Now let Q be the mgu of T~ and S~ such

that for each pair v Iv in Q where v is a
The active connection graph may be viewed as variable, v, occurs i~ f. Finally, ~=~~Q and

an AND/OR problem reduction graph in which the root ~=~\Q, where A\h denotes the aDDlicAtion of ~ to A
node represents the original question and rules are -- the substitution derived from A by replacing
problem reduction operators. Partly influenced by each term t in A by t~. For example, if S=P(x,a,y)
Kaplan's producer-consumer model [7], the system is and T=P(b,y,x), where a and b are constants and x
designed so that if a node representing some and yare variables, then .R.,={u/x, v/y}, Bor={x/x,
problem is about to create a node for a subproblem y/y}, Q={b/u, aly, xlv}, ~=fb/x, x/y} and 1={x/x,
and there is another node already representing that aly}. Note that S~=T~=P(b,a,x), the variables in
subproblem or some more general instance of it, the the variable position of the substitution pairs of
parent node can reuse the extant node and avoid ~ are all and only the variables in S, the
solving the same problem again. In addition, if variables of ~ are all and only the variables in T,
the extant node is a more specific instance of the all terms in ~ came from T, and the non-variables
proposed subproblem then the results produced by in ~ came from S. It is important to note that
the extant node are immediately made available and factoring the mgu in this way looses no
the extant node cancelled. The method employed information.
handles recursive rules with no additional
mechanism and, as will be seen below, the size of A predicate connection graph (pcg) is a
the resulting graph does not depend on the number collection of statements in predicate calculus with
of times a recursive rule will be used. unifiable literals linked together by ~

labelled with the most general unifying
This paper describes how SNIP handles substitution (mgu) of the literals. In systems

recursive rules. Aspects of the system not which use pcg's, the inference algorithms may
relevant to this issue are abbreviated or omitted. impose constraints on which literals may have an
In particular, neither the details of the match edge between them. For example, systems which use
routine which retrieves formulas unifiable with a resolution as the only rule of inference [4, 10,
given formula [17], the representation of logical 21] require that the predicate calculus statements
connectives and formulas in SNePS [18] nor the be represented in clause form and that only

implementation of SNIP is fully described. complementary literals be joined by an edge, i.e.

369

I

-

a literal L is linked to a literal -L. In a system analogy, a rule instance can be considered a
which does not represent statements in clause form, producer of instances of its consequents and a
e.g. [8], and which uses the standard connectives consumer of instances of its antecedents.
of predicate calculus, the edges usually link an Furthermore, the acg contains instances of the
instance of a literal in the antecedent of some rules in the pcg, the edges in the acg point in the
statement with a unifiable instance of the same opposite direction to the corresponding edges in
literal in the consequent of some other statement. the pcg and the bindings play an active role (see
In such a system which uses both backward chaining below). The target binding filters the flow of
and forward chaining, an edge between P(x) and P(y) instances of literals. The source binding
asserts that to show P(x) use the statement in translates between variable contexts.
which P(y) appears and that if P(y) for some Y is
ever deduced then the result can be used to further Suppose a consequent reasoning system has been
satisfy the statement in which P(x) appears. asked to deduce all instances of Q using the pcg of

Figure 1. It can use R1 and R2 to deduce instances
The match operation specifies a pcg of a of Q if appropriate instances of P can be deduced.

slightly different form. Instead of labelling the Thus, rules R3-R5 can be used. A full acg for this
edge with the mgu, a directed edge linking a source scenario is presented in Figure 2. Rectangles
node (S) to a target node (T) labelled with the enclose formulas. The partitions contain literals
target binding (~) and the source binding (~ is instances. Antecedents appear on the left of the
used. Figure 1 shows a pcg consisting of five double line, consequents to the right. The
rules, labelled R1 through R5. While the rules rectangle at the top of Figure 2 represents the
considered in the remainder of this paper are of request to deduce all instances of Q and as such
the form A &...& A -> C where j L 1 and all has an empty consequent part. In this example,
variables lre unive~sallY quantifed (i.e. Horn each acg rule labelled A is an instance of the pcg
clauses), SNIP is not so limited (see [19]). The rule labelled R. Thes~ labels are arbitrary and
edges are labelled with the pair (~,~) where ~ is the reader Shauld not infer anything about the
the target binding and ~ is the source binding. construction of the acg based on the labels alone.
The source node is the literal at the tail of the The remainder of this section expands this simple
edge and the target node is at the head of the notion of active connection graphs using the acg of
edge. For example, the edge labelled "a" in Figure Figure 2 as an example.
1 has P(a,y,x) as the source literal and P(x,y,z)
as the target literal. SNIP does not explicitly Target bindings and source bindings operate on
store the pcg but uses the match function described the bindings flowing through the acg. A target
above to compute the edges on demand. The binding is a filter which only lets through those
remainder of this paper is concerned with pcg's of bindings which have the binding of the filter as a
this last form. subset. For example, in the active connection

graph of Figure 2, if G2 produced the bindings
{a/x, b/y, c/zJ and {a/x, diy, e/zJ, only {a/x,

3. Active Connection GraDhs b/y, c/zJ would be allowed to pass through the
filter <a/x, b/y> to A2. The source binding is

An active connection 2raDh (acg) is a used to switch variable contexts. A2 contains only
connection graph in which edges link literals and the variable u while G2 produces bindings with the
are labelled with a target binding and source
binding. These graphs are active because instances
of literals flow from one formula to another
formula via the edges. Using the producer-consumer -..,-"-"

I Q(ql,q2) II

~~R'(I [xlql.f/q2] [a/ql.ulq2]
8 ..f) -> P(a,f,') L L

~ :~./' \"} ;(;:;:~("f)i ~:~II Q(a,u)1
(~---;:::~---7-':~::::::'~ -,-III P(',f,a) -> Q(',7> k 12: P(a,b,u) -> Q(a,u) L- I \~::~::::, /;:::::~t [xl u]

O,~~\l/:/ b AO: <a/.I,b/f>

A(.,u) -> P(.,U,y) ." / ~!:::::::::::: 1 ,,'[xI.,ulf,Y/.] " ~"f/f'xI'~a/"O/f(Y/I]

ISI :'~-L-\ ~__L_- ~__I
C(o,y) -> P(a,o,Y) : I A(.,u) II P(.,U,y) I , I 8(',7> II r(O,f,') I I C(o,y) II P(a,o,Y) I,-- - \--- -, '-- '-

o. (la/., f/f, xii), If/f, xl.) .. (la/., Wu, Y/Y), (Y/u) b'-, .'-,b. (If/f, xI.I, la/., f/f, xla) b. (lulu), la/., b/u, lIlY) " ",
a. ((b/f, v.), (xlu) 1. (ly/yl, la/., o/f, y/.) III P(;'f") -> 0<.,7> 121 pia b u) -> Q()d. «(ulul, Ib/f, uI.) J. (la/., o/f, VII, Ia/Y) , , a,u

O' (lxI., ulu, Y/Y), Iv., ulf, y/l) k. (la/., b/f, 1/1), Ii/u) .. (lulu), la/., b/f, u/l)
t. (Iv., f/f, a/i), lvI, flu, I/y) 1. (lulu), la/., b/f, utilI b. (lxI., f/f, 1/.), (xl., f/f, a/.})

Pipra 1 P1auro 2
Pal 11O1aa tar.ot b1nd1..o and aaurae b1Dd1aaa. Full ACa to dodu.. 10lteo..o or Q.

370

--- -c-~ "'---"-'-~. - ~~-- - ~~

variables x, y and z, so in order for G2 to send to G1. There are no goal pointers created because
bindings to A2, the variable z must be mapped to Q(q1,q2) does not match any literal in an
the variable u. Continuing with the example above, antecedent of a rule. Continuing to expand the acg
since the binding fa/x, b/y, c/zJ passed through using the antecedents of A1 and A2 requires picking
the filter it next encounters the switch [z/u]. one of them to expand first. Whichever order is
The switch uses the binding application operation picked, the same acg is constructed.
defined in Section 2 to generate a new binding. In
this case, {z/uJ \ fa/x, b/y, c/zJ yields {cluj, Suppose A1 is picked for expansion. First,
which is an appropriate binding in the context of the literal P(x,y,z) is checked for a goal pointer.
A2. There are none, so a new goal node is built for

P(x,y,z). The result of the match are the tuples
To deduce all instances of Q requires back <P(a,b,u), {u/uJ, {a/x, b/y, u/zJ>,

chaining through the pcg until only ground literals <P(x,u,v), {xix, u/u, v/vJ, {xix, u/y, v/zJ>,
are found or all possible rules are tried. <P(a,y,x), {y/y, xix}, fa/x, fly, xlzJ>,

Initially, a request is created which contains a <P(a,c,v), {v/vJ, fa/x, c/y, v/zJ> and
literal. In Figure 2, Q(q1,q2) is that request. <P(x,y,z), {xix, y/y, z/zJ, {xix, fly, z!zJ>.
The next step is to create a ~oal nnde for the P(a,b,u) is an antecedent of R2, so P(a,b,u) gets a
literal. The goal node matches its literal with goal pointer to the goal node for P(x,y,z). Also,
the pcg to find all literals which unify with it. P(x,y,z) is given a goal pointer to its own goal
If there are ground instances then the source node. We draw a goal pointer as a dashed line
bindings of those matches are answers and the goal labelled with the target binding and source binding
node produces them immediately. Other matches can of the match. Figure 3 shows the acg and part of
be literals which are antecedents or consequents of the pcg with goal pointers after this step. The
rules in the pcg. For every literal in the remaining target literals are each consequents of
consequent of some rule, a new rule instance is some rule and the rules are added to the acg as
added to the acg using the target bindings, and the before. Next, a goal node is to be created for
instance is connected through a switch containing P(a,b,u) of A2. But the pcg literal P(a,b,u) in R2
the source binding to the goal node. The same has a goal pointer. Thus, some instance of the old
process of creating goal nodes is applied to each goal literal, P(x,y,z), unifies with the literal
of the antecedents of the new rule instances which nas the goal pointer but the binding of the
created in the previous step. This process is current acg rule instance is not necessarily
repeated until either no more rules apply or only compatible with the binding of the old goal
ground instances are found. However, a new goal literal.
node need not be created if an existing one will
suffice. The remainder of this section describes In the current example, the old target binding
how to find adequate extant goal nodes without from the goal pointer is identical to the binding

doing extra matching and how to use results associated with A2. However, G2 is not identical
previously generated by a goal node. to the proposed goal for P(a,b,u). Rule instance

A2 is interested in a subset of all instances of
Suppose a goal node is about to be created for P(x,y,z), namely those instances which have a/x and

some literal in a rule instance of an acg. Which b/y. It is important to note that G2 will produce

other literals are likely to have goal nodes which all that the proposed goal node for P(a,b,u) would

should be checked? Namely, those other literals in produce and more. Also, above G2 all instances are
the pcg unifiable with the literal which are in the in terms of the variables of R1. Instead of
antecedent of some rule of the pcg and which have creating a new goal node for P(a,b,u) and the edges
already had goal nodes created for them. Thus, associated with it, G2 is reused. The results from
when a new goal node performs its match as G2 must be filtered by <a/x, b/y> and variable
described above, the matched antecedent literals contexts switched by [z/u]. The filter is computed

are marked with a pointer to the newly created goal from the application of the current binding to the

node. These pointers, which link antecedent pcg old Source binding. This assures that the filter
literals to goal nodes in the acg, are called ~
Doint..,.". Just like pcg edges, each goal pointer
is marked with a target binding and source binding.
When a new goal node is about to be created, if its ~~;Ii
literal has no goal pointer then no existing goal ~ node will be useful. If it does, it is Possible ~

that one of the goal nodes pointed to could be used [X/QI"/Q2{' 1&1Q1'WQ2J
instead of the proposed goal node.

I \11 12Let's consider as an example the process of -~~--- ---
buildin g the acg of Fi gur e 2 U i th f 'P(x",x) II O(x.,) I IP(a,b,..) II O(a,..)1S ng e pcg 0 ---~~-- -~-
Figure 1. Recall that the request was for all ~
instances of Q. A goal node is created for ,~~~"~
Q(q1,q2) and a match performed. The results of the b: a ~~~~~~,~
match of Q(q1,q2) are the tuples <Q(a,u), {u/uJ, I1IP(X:"x)->0(x,,) I2IP(...,b,")->O(a,..)

{a/q1, u/q2J> and <Q(x,y), {x/x,y/yJ, {x/q1,
y/q2}>. Both Q(a,u) and Q(x,y) are consequents of a. ((w..), I&lx, b/" wx»)
rules, so rule instances are created for them in b. ((X/x, ,1" X/.), (X/x, ,1" &I.»
the acg connected through the appropriate switches '1su..a3

loti" ..~t1oo vapb v1tb .oal paLata...

371

,

contains variables which the old goal node nodes are indexed on antecedent literals using goal
produces. The switch is obtained by considering pointers.
the binding pairs of the old .source binding for
which the term is a variable as a "variable map".
Discarding those binding pairs for which the term 4.R~~ursive rul~s ~ause cycles

is a constant and inverting the remaining pairs
yields the appropriate binding for the switch. For A set of recursive rules is of the form At
example, discarding pairs with constant terms and &...& A -> B, B &...& Bk -> ... -> C, with C

then inverting la/x, b/y, u/z} yields {z/u}. unifiabie with at least one of the antecedents, A1
Figure 2 shows the acg after the filter and switch say. In an acg, this means that the goal node for
have been built. C can be used instead of creating a new goal node

for A. As an example, consider the pcg of Figure
If A2 were expanded before A1 then a goal node 4 whi6h contains the recursive ANCESTOR rule. The

would have been created for it and goal pointers two rules represent the predicate calculus
established from the antecedents of R1 and R2 to statements V(x,y,z)[ANCESTOR(x,y) & ANCESTOR(y,z)
the goal node. To obtain the same acg requires -> ANCESTOR(x,z)] and V(x,y)[PARENT(x,y) ->
that the goal node created for P(a,b,u) in A2 be ANCESTOR(x,y)]. The remainder of the entries
superseded by the goal node eventually created for represent the ground literals PARENT(Bill, John),
P(x,y,z). When a goal node is superseded, it is PARENT(John, Mary), ANCESTOR(Bill, Bob),
erased from the acg and all the consumers of the ANCESTOR(John, Mary) and ANCESTOR(Hary, Sarah).
superseded goal nodes become consumers of the new, Since the ground literals are never a source node
more general goal node with an appropriate filter in a match, the edges from the ground literals to
and switch between the superseding node and the old literals in rules are omitted.

consumers.
Consider a request, ANCESTOR(q1 ,q2), for all

We stated above that rule instances in the acg instances of the ANCESTOR relation. Inference
consume instances of antecedents and produce proceeds by creating a goal node for the request,
instances of consequents but have totally ignored creating rule instances for all rules in the pcg
what constitutes such an instance. There are which have the literal as a consequent and creating
basically two alternatives. An instance of a a goal pointer for each literal in the antecedent
literal can be either a separate literal or a of some rule. Figure 5 shows the acg at this
reference to a literal and a binding which when point. Here, instances which are produced are
applied to the literal would yield an instance of shown in terms of the variables of the goal literal

it. We prefer the second alternative because the
inference algorithms need not produce extra
literals and because the match operation mentioned
above returns such information. Furthermore,
information about literals is superfluous in
communication between rule instances in the acg
because the literals are known to unify (that's why
there is an edge in the pcg) and therefore, only
bindings need be communicated along the edges of
the active connection graph.

Finally, we mentioned above that the acg
contains rule instances but the previous examples
use the pcg rules directly. In general, rule
instances in the acg are pairs -- a rule from the

pcg and an associated binding. The rule instances
in the examples all have an identity binding, i.e.a binding in which each variable of a binding pair T a,1' CESTO 1,a -> a,a

is bound to itself. The binding is used to ~~~restrict the rule instances to generating just . f & b

those literal instances which are requested. In

other words, it is used as an internal fil ter in P.IDlT(a,1) -> AXCISTOR(a,r)

the rule instances in order to keep the inference ~~more focussed. 0

In summary, an acg contains instances of rules P.IDlT(B1l1,.lobo)

which are linked to each other through filters,switches and goal nodes. The separation of the p

target and source bindings allow rule instances to PAlDT(.lobo,Herr)

work in their own variable environment, relying on a. (Iva,vol, Iva.vr» 1 . (II. IBUl/a,Bob/r»
the source binding of the pcg to enable switching ,. (Iva,11r), (va"lol) J. (II. (.loho/a.Mar11r»

f O' (Iva,vo). (v1,vol) k. (II, (Her1Ia,Sarab/r»)
0 variable contexts and on the target bindings to d . IIJ/J.s/o). IJ/a,vol) 1. (II. IHerJ/J.Sarab/ol)
allow more general producers to be used by less a. (Iva,J/r), Iva.J/J) . . (II. (.loboIJ,HerJ/o)1

t. (Iva,J/JI. Iva,J/J}1 O' (II, (Bill/J.Bob/o)
general consumers. The goal nodes are the & . (IJ/J.vol, IJ/o,s/JI) o. (II, IBUl/a..lobo/JI)
production site of instances of literals and so are ,. (Iva,J/JI, IvJ,J/o) p. ((). (.loho/a,Mar1IJ))

useful to more than one consumer. Finally, goal naur.'
_pl. data bu. for Seot10D ..

372

i

cC", .., ~ - -~

next to the goal nodes which collect them. When A new consumer is added to G1 through a switch of
such an instance is produced, it flows through the [y/q1, z/q2] and the three instances stored by G1
acg until either it encounters the top level are produced for this new consumer. Since A1 has
request or it is consumed by a goal node which has now received the bindings {John/x, Mary/y} for one
previously produced it. Thus, the bindings antecedent and and {Mary/y, Sarah/z} for the other,
{Bill/q1, Bob/q2}, {Johnlq1, Mary/q2} and {Mary/q1, it can produce {John/x, Sarah/z} and pass it to G1.
Sarah/q2}, representing the ground literals Again, G1 produces {John/q1, Sarah/q2} to all
ANCESTOR(Bill, Bob), ANCESTOR(John, Mary) and consumers because it has not produced it before.
ANCESTOR(Mary, Sarah) respectively, are stored by Now, A1 cannot produce any further instances.
G1 and consumed by the top level request. Picking
one rule instance, A.1 or A.2, to expand first has no Finally, a goal node is created for
significant impact because if A2were expanded PARENT(x,y), call it G2. Since there are no goal
first then any results derived from A2 would be pointers for PARENT(x,y), a match is performed
stored in the goal node just as these are. The resulting in the ground instances of {Bill/x,
order of the creation of the goal nodes in A1 is John/y} and {John/x, Mary/y}. Figure 6 shows the
insignificant for this example because both reuse acg after G2 has matched these instances. These
G1. are stored by G2 and produced to all consumers. A2

now has its antecedent satisfied in the bindings
Consider ANCESTOR(x,y) as the first goal above. Since these instances are next passed to G1

literal. ANCESTOR(x,y) has the goal pointer ({x/x, and {Bill/q1, John/q2} has not been produced
y/y}, {x/q1, y/q2}), and the binding associated before, it is produced to the top level request and
with it in A1 is {x/x, y/y}. Thus, the goal the other consumers. After passing through the
pointer's old target binding is identical to the switches, the appropriate binding arrives in A1
rule instance binding and G1 can be used. This is which produces ANCESTOR(Bill, Mary). Again, G1 has
accomplished by giving G1 another consumer, the not produced {Bill/q1, Mary/q2} previously, so it
ANCESTOR(x,y) antecedent, connected through the passes it on to all consumers. A1 in turn produces
switch [q1/x, q2/y]. The bindings from G1 are {Bill/x, Sarah/z} to G1. Since G1 has not
produced for this new consumer but further previously produced {Bill/q1, Sarah/q2}, it
processing by A1 is not possible because the other produces this binding to all consumers. Now, no
antecedent of A1 has not yet consumed any instances further results can be produced by A1 and since
of ANCESTOR(y,z). there are no other rules left to expand, inference

terminates.
Goal nodes act as data Qo11e~tors [13, 19]. A

data collector stores all literals it has consumed This example demonstrates that recursive rules
and never produces a literal it has previously can be productively used in an acg and not cause an
produced. When an old goal node is given an infinite loop. The reason no infinite loop is
additional consumer, all literals previously encountered is that no further results could be
produced are immediately available to the new produced and that the acg contains a cycle as
consumer. Also, the new consumer receives any new opposed to continually trying to use the recursive
literals produced by the goal node. The fact that ANCESTOR rule. This example also demonstrates the
data collectors never produce the same literal accessing of data stored by a goal node previous to
twice protects SNIP from getting into an infinite adding a new consumer. This is a property of the
loop by prohibiting the passing of the same literal goal node acting as a data collector. Finally,
around a cycle in the acg. this example suggests how rule instances produce

bindings, waiting until sufficient instances have
Next, consider trying to create a goal node been consumed in the appropriate binding. SNIP

for ANCESTOR(y,z). Again, G1 is found using the
goal pointer and as before the old target binding

and the binding of the rule instance are identical. I ANCESTOR(ql,q2) II

-- J ANClSTORCql,q2) II 01 ((Bill/q1,Bob/q2). (Jobn/ql,

-- / ~'/q2)' (Marllql.s.,.ah/q2I,

(Jobn/ql. Sarah/q2))

_~ ~1 ((Bill/ql.Bob/q2I, (JohO/ql. (z/q1"/q2]

--;':-' 7 Marllq2)(Marllql.Sarah/q2IJ L_- ", 12 (z/q1,&lq2]
" .." - -- - -1- ":",, (z/q1"/q2] I PARaTCx,l1 IIANClSTOR(x.l) I

,' , '12 . I (z/q1.&lq2] -.-
f --- I - 1 A1 I . I PUDTCx,l) I I UCESTORC',I) I , " --~-- - J OcasTORC.,,) I UClSTOR(I,') II OCESTORC.,.) ,

' \ - 1 --- " , b A1 «(Bill/x,BoO/I) «(8i1111.Bob/o)
\" - (,IObO/X.MarIIII (JObO/I,Mar,lol' " I UClSTO.(',I) I ANCESTORC".) I J ANCISTORC...) I (Hai7/..Sarah/ll. \ (MarIII,Sarah/.) ,
'. ',-:- --~ (John/x,aarah/111 (JobO/I,Sarab/.lf. -.

OCESTOR(',I) 'UCISTORC".) -> OCESTORCx..) (q1/..q2/1] (ql/l,q2/.].. «(z/x, III). (z/ql, ,/q21)
b. (i,l" &10), (,/q1, &lq2)

PI8U". 5 PI8U". 6
Partlal.OC to.. ..oqu..t ot ANClSTOBCql,q2). ACO afte.. o tloD ot &oal Dod. to.. 'ABUT(x,,).

373

I

;~~ ~

th logica l connectives so that other connection graphs. .slAQH, Vol 22(.4), October,allows 0 er
h for rule instances to produce instances of 1975, 572-595.

~~e~e~onsequents are required (see [18]). Note, 11. LeFaivre, R. FUZZY Reference Manual. Computer
hi kind of structure is built for indirectly Science Department, Rutgers University, 1977.

;ec~rsive rules as well as the directly recursive 12. Martins, J.P., McKay, D.P. and Shapiro, S.C.
rule in the above example, the resulting active Bi-directional inference. Department of
connection graph is a directed ~aDh and neither a Computer Science, Technical Report 174,
tree nor a directed acyclic graph, and once it is SUNY/Buffalo, March, 1981.
built its size is constant. 13. McKay, D.P. and Shapiro, S.C. MULTI- A LISP

based multiprocessing system. Proc. 1Q80 LISP
5.~lmmarv Conference, Stanford University, 1980.

14. Naqvi, S.A. and Henschen, L.J. Performing
In SNIP, recursive rules cause cycles to be inferences over recursive data bases. ~

built in an active connection graph. The key ~, Stanford University, 1980.
features of active connection graphs which allow 15. Pereira, L.M., Coelho, H. and Pereira, F.
recursive rules to be handled are: 1) goal nodes User's guide to DECsystem 10 PROLOG
are data collectors; 2) data collectors never (Provisional Version). Divisao de Informatica,
produce the same answer more than once; 3) the Lab. Nac. de Engenharia Civil, Lisbon,
data collector may report to more than one Portugal, 1978.
consumer; 4) a new consumer may be assigned to a 16. Reiter, R. On structuring a first order data
data collector at any time -- it will immediately base. Proc. Second Nationa1 Cnnferenc~,
be given all previously collected data; 5) Canadian Society for Computational Studies of
variable contexts are localized, switches change Intelligence, 1978, 90-99.
contexts dynamically as data flows around the 17. Shapiro, S.C. Representing and locating
graph; 6) filters allow more general producers to deduction rules in a semantic network. SIGART
be used by less general consumers; 7) goal nodes Newsletter, No 63, June, 1977, 14-18.
are indexed on antecedent literals which were 18. Shapiro, S.C. The SNePS semantic network
matched by the goal literal. processing system. In Associative N~twnrks,

Findler, N.V. (ed.), Academic Press, 1979,
179-203.

19. Shapiro, S.C. and McKay, D.P. Inference with
References recursive rules. Proc. NCAI, Stanford

University, 1980.
1. Black, F. A deductive question-answering 20. Shortliffe, E.H. ComDuter Based MAdi~a1

system. In Semantic Informatinn Prn~A~~ing, Consultations: MYCTN. American Elsevier, New
Minsky, M. (ed.), MIT Press, Cambridge, 1968. York, 1976.

2. Bobrow, D.G., Winograd, T. et al. Experience 21. Sickel, S. A search technique for clause
with KRL-O one cycle of a knowledge interconnectivity graphs. IEEE Tran~action~ on
representation language. Proc. IJCAI-77, 1977, ComDuters Vol. C-2~, 8, August, 1976,823-835.
213-222. 22. Simmons, R.F. and Chester, D. Inference in

3. Chang, C.-L. and Lee, R.C.-T. SYmbolic Logic quantified semantic networks. Proc. IJCAI-77 ,

and Mechanical Thenrem Proying, Academic 1977, 267-273.
Press, New York, 1973. 23. Sussman, G.J., Winograd, T. and Charniak, E.

4. Chang, C.-L. and Slagle, J.R. Using rewriting Micro-Planner Reference Manual. AI Memo No.
rules for connection graphs to prove theorems. 203A, MIT AI Laboratory, December, 1971.
Artificial T"tAlliKpn~A, Vol. 12(2), August,

1979, 159-180.
5. Chang, C.-L. On evaluation of queries

containing derived relations in a relational
data base. In Formal Bases for Data Base~,
Gallaire, H., Minker, J. and Nicolas, J.
(eds.), Plenum, New York, 1980.

6. Fikes, R.E. and Hendrix G.G. The deduction
component. In Understandin~ Snnken LanKJ"'gA,
Walker, D. (ed.), Elsevier North-Holland,

,'.c,'; 1978, 355-374.
~~. 7. Kaplan, R.M. A multi-processing approach toI " natural language understanding. Proc. NCC,

AFIPS Press, Montvale, NJ, 1973, 435-440.
8. Klahr, P. Planning techniques for rule

selection in deductive question-answering. In
. Pattern DjrectAd T"ferAn~A S~"tAn", Waterman,

[~~~~ D.A. and Hayes-Roth, R. (eds.), Academic
".c- Press, 1978, 223-239.

9. Kellogg, C. and Travis, L. Reasoning with data
in a deductively augmented data management
system. To appear in Advances in Data Ba"A
Theory - Volume 1, Gallaire and Minker (eds.).

10. Kowalski, R. A proof procedure using

374

I -

I

