Natural Language
Parsing Systems

Edited by Leonard Bolc

With Contributions by

J.G.Carbonell K. W.Church W.Dilger T.W.Finin
P.J.Hayes W.A.Martin J.G.Neal R.S.Patil
J.Pitrat A.Sdgvall Hein S.C.Shapiro

S.L.Small M.Stone Palmer M. Thiel

With 151 Figures

Springer-Verlag

Berlin Heidelberg New York
London Paris Tokyo

§a§.m Editor

Leonard Bolc
Institute of Informatics, Warsaw University,
PKiN, pok. 850, PL-00-901 Warsaw, Poland

ISBN 3-540-17537-7 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-17537-7 Springer-Verlag New York Berlin Heidelberg

Library of Congress Cataloging-in-Pub'ication Data

Natural language parsing systems. (Symbolic computation. Antificial intelligence) Includes
bibliographies and index. 1.Parsing (Computer grammar) 1. Bolc, Leonard, 1934- .

1I. Carbonell, Jaime G. (Jaime Guillermo) 111. Series. P98.N34 1987 415 87-12856

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data
banks. Duplication of this publication or parts thereof is only permitted under the provi-
sions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985,
and a copyright fee must always be paid. Violations fall under the prosecution act of the
German Copyright Law.

The use of registered names, trademarks, etc. in 1his publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

©Springer-Verlag Berlin Heidelbery 1987
Prinled in Germany
Typesetting, printing, and bookbinding: Appl, Wemding

S e



Knowledge-Based Parsing

J.G.Neal and S.C.Shapiro

Abstract. An extremely significant feature of any natural language (NL) is that it
is its own metalanguage. One can use an NL to talk about the NL itself. One can
use an NL to tutor a non-native speaker, or other poor language user, in the use of
the same NL. We have been exploring methods of knowledge representation and
NL understanding (NLU) which would allow an artificial intelligence (AI) system
to play the role of poor language user in this setting. The Al system would have to
understand NL utterances about how the NL is used, and improve its NLU abili-
ties accuraing to this instruction. It would be an NLU system for which the
domain being discussed in NL is the NL itself.

Our NLU system is implemented in the form of a general rule-based inference
system which reasons according to the rules of its knowledge base. These rules
comprise the system's knowledge of language understanding in the same way that
the rules of any rule-based system comprise that system’s knowledge of its domain
of application. Our system uses the same knowledge base for both linguistic and
other knowledge since we feel that there is no clear boundary line separating syn-
tactic, semantic, and world knowledge.

We are exploring the possibility of an NLU system's becoming more facile in its
use of some language by being told how that language is used. We wish this expla-
nation to be given in an increasingly sophisticated subset of the language being
taught. Clearly, the system must start with some language facility, but we are inter-
ested in seeing how small and theory-independent we can make the initial, “ker-
nel” language. This article reports the current state of our work.

1 Introduction
1.1 Overview

An extremely significant feature of any natural language (NL) is that it is its own
metalanguage. One can use an NL to talk about the NL itself. One can use an NL
to tutor a non-native speaker, or other poor language user, in the use of the same
NL. We have been exploring methods of knowledge representation (KR) and NL
understanding (NLU) which would allow an artificial intelligence (AI) system to
play the role of poor language user in this setting. The Al system would have to

understand NL utterances about how the NL is used, and improve its NLU abili-
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.ties according to this instruction. It would be an NLU system for which the
domain being discussed in NL is the NL itself.

Itis essential to our approach to have the system’s parsing and linguistic knowl-
edge be an integral part of its domain knowledge. Acknowledging that what is
meant by “meaning” is controversial (Quine, 1948), we take the meaning or signifi-
cance of a word or phrase to include linguistic knowledge about the word or
phrase. For example, we feel that how a word like “dog” is used in language is a
part of its “meaning”, along with other properties such as the fact that “dog”
denotes a special kind of animal with typical characteristics. The implementation
of our system is based upon the above stated view and therefore the rules and
assertions comprising the system's knowledge of language understanding, includ-
ing syntax, is integrated into the system's knowledge base along with its other task
domain knowledge.

We are exploring the possibility of an NLU system’s becoming more facile in its
use of some language by being taught how that language is used. The teacher
might be a conversation partner who happens to use some phrase the system is not
yet familiar with, or a language theorist who wants to find out if she can explain
her theory completely and clearly enough for the system to use language accord-
ing to it. We wish this explanation to be given in an increasingly sophisticated sub-
set of the language being taught. That is, why not test and make use of the sys-
tem’s language capability by using it to continue the system’s *¢ducation”?
Clearly, the system must start with some language facility, but we are interested in
seeing how small and theory-independent we can make the initial, “kernel” lan-
guage. :

In this chapter, we will discuss our knowledge representation techniques, the
system’s kernel language (KL), and parsing strategy. We will demonstrate how our
system can be instructed in the use of some language defined by the teacher and
how the system’s acquired language can itself be used as its own metalanguage.
The kernel language only incorporates primitive relations such as one token being
a predecessor of another in a string, membership in a lexical or string category,
and constituency. As an example of using the system’s language as its own meta-
language to enhance its language capability, we will demonstrate, starting with
only the KL, how the system can be instructed with regard to the number (i. e., sin-
gular or plural) of some words and then be informed that “If the head-noun of a
noun-phrase X has number Y, then X has number Y”. This newly acquired
knowledge can then be applied by the system to infer that since “glasses” is plural,
s0 is “the old man’s glasses™ when it reads this phrase in a sentence such as “The
old man’s glasses were filled with water”.

Our system is able to understand when strings are mentioned in input utterances
as well as when they are used to communicate with the system. This capability is
demonstrated frequently in this chapter, but particularly in Sect.4 with the classic

sentence from Tarski (1944): “*Snow is white’ is true if and only if snow is white”.

The use of inference and world knowledge is essential for a system to parse sen-
tences such as “John saw the bird without binoculars” and “John saw the bird

without tailfeathers™ from Schubert and Pelletier (1982) or “John saw the man on

the hill with a telescope”. Qur rescarch is based upon the concept of having pars-
ing performed by n neneral reasoning system which has the capahility rf o'
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world knowledge inferences during parsing, since the “parser” is not a separate
isolated component with special sublanguage, representations, or knowledge

base.

1.2 Fundamental Assumptions

Our system incorporates the use-mention distinction (Quine, 1951) for _wam.cwm.n.
Our representations reflect the fact that the meaning of a token or wcn.mon. string is
distinct from the token or string itself. Our system’s knowledge base maintains a
representation for a token or surface string that is amwa:oﬁ. ?.oa.ﬂra ._,an_,n.wnzﬁm:o:
of the interpretation of the input token or string. This distinction is the same as
between a numeral and a number in mathematics. To refer to a word or string
rather than its meaning, the user must use the usual English convention of prefac-
ing the word by a single-quote mark or enclosing the string in quotation marks.
(See Sections 2.2.1 and 2.4.2 for more information.)

A second principle upon which our work is based is that nwmr occurrence of a
given surface string in the input stream is assumed to have a different interpreta-
tion, unless the teacher has entered rules into the system to &Q&.n oﬁra_ﬂ:.wn. For
example, if a name such as “John” has been entered into the lexicon and is used
twice, either in successive utterances or within the same utterance, then the system
interprets each occurrence of the name as referring to a different entity unless the
teacher has instructed the system otherwise. Since an NLU systern must be capa-
ble of handling ambiguities, and, in a situation in which no explicit rules are
known to the system to guide it in determining whether a word or phrase is ambig-
uous, it must have a default procedure to follow, we have chosen to implement the
above principle. Although our approach would seem to overly complicate the ..mn?
work, it is a reasonable default principle since there is some evidence that merging
of nodes is easier than splitting nodes (Maida and Shapiro, 1982).

A third principle wkich is fundamental to our theory is that all possible parses
and interpretations of a surface string are to be determined according to the lan-
guage definition used by the system. We feel that multiple msﬁnﬁ_‘og:oaw. when
justified by the language definition, are warrented since agile human minds ?m.
quently perceive alternative interpretations and, in fact, a great deal of humor is
dependent upon this. . .

Our system does nct currently do morphological analysis. One of the areas in
which we plan to do future research is knowledge-based Bo_.n:o_ommow_.mzw_ww_w.
We plan to develop a system component that would perform Boaro_nm_ow_ m:m_.
ysis and function as a preprocessor or coprocessor with the system discussed in

this article.

1.3 Declarative Knowledge Representationin an Integrated Knowledge Base

Our approach is to represent knowledge in declarative form, to the greatest extent

possible, in the semantic network formalism. This applies to all knowledge mzn:.a.
ing linguistic knowledpe and the rot<s which are applied by the inference machine
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to guide the system’s reasoning, the parsing process being one manifestation of the
system’s reasoning according to the rules of its network knowledge base. It is our
intent that the system's knowledge, including its linguistic knowledge, be available
to the teacher in the same way that domain knowledge is in other Al systems.

Furthermore, the declarative form is a more suitable form for linguistic knowl-
edge in theoretical studies of language. A language definition or description is
inherently declarative, and as Pereira and Warren have pointed out: “The theorists
have concentrated on describing what natural language is, in a clear and elegant
way. In this context, details of how natural language is actually recognized or gen-
erated need not be relevant, and indeed should probably not be allowed to
obscure the language definition™ (1980, p.269, italics in the original). In this
regard, a declarative representation is preferable to a formalism such as an ATN,
in that the ATN is a description of a process for recognizing a language.

Our system uses an integrated knowledge base for both linguistic and other
knowledge as advocated by Pollack and Waltz (1982) and by Dahl (1981). As indi-
cated in Section 1.1, we take the meaning of a word or phrase to include linguistic
knowledge about the word or phrase and its use. Furthermore, we feel that there is
no clear boundary line separating syntactic, semantic, and world knowledge. For
example, it is not clear to what extent the classification of words into lexical cate-
gories depends on meaning, function, or form. Should certain words be classified
as mass nouns because they fit certain distributional frames or have a certain form
(e.g., I used {sand, the sand, a bag of sand, *a sand, *two sands.}) or are the frames
and forms simply a reflection of the property we think of as characterizing the
substances named by mass nouns, namely that the substance is not naturally phys-
ically bounded and that when two amounts of the substance are “put together”
they become one amount? Perhaps certain aspects of syntax cannot or should not
be separated from semantics. Furthermore, the terms “semantic knowledge™ and
“world knowledge” seem only to be used to informally express a measure of the
sophistication or complexity of knowledge.

1.4 System Overview

Our Natural Language System is being developed and implemented using the
SNePS semantic network processing system (Shapiro, 1979a; Shapiro and the
SNePS Group, 1981). The terminology and representations for some of the basic
categories, objects, and relations of this work evolved from a preliminary study
reported in Shapiro and Neal (1982). Figure 1 illustrates an overview of the sys-
tem.

The semantic network formalism has been used by many researchers for knowl-
edge representation (Quillian, 1968, 1969; Rumelhart and Norman, 1973; Sim-
mons, 1973; Woods, 1975; P.Hayes 1977; Schubert, 1976; Hendrix, 1978, 1979;
Schubert et al., 1979; Brachman, 1979). In contrast to other semantic network
implementations, the SNePS system provides a uniform declarative representation
for both rules and assertions in the network (Shapiro, 1971, 1979b). Furthermore,
our system comprises an effort to utilize a common representation for problem-
cnluving and lanouace.camnrehencian infarmation as advacated hv Chamiak
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USER INPUT

UTTERANCE —y —wcrm BASED PARSER

!

NETWORK DATA BASE OF RULES & ASSERTIONS,
PARSING KNOWLEDGE, & WORLD KNOWLEDGE

T

CORE ] USER
[

Fig.1. Overview of the NL system

(1981). Our system is similar to the Prolog-based (Roussel, 35 systems om. War-
ren and Pereira (1982), Dahl (1979, 1981), and McCord (1982) in :._2 it is imple-
mented in a logic-based system in which processing is a form of inference. The
SNePS inference package (Shapiro et al., 1982), however, is not gwo@ on the reso-
lution principle (Robinson, 1965) as is Prolog, buton a Bc_:-v_.oonmw_zm approach
(Kaplan, 1973; McKay and Shapiro, 1980) incorporating a E.w.a.convoo:wcaoq
model. SNePS also provides a facility for “procedural attachment™ in rules to :ma.
dle processing knowledge for which the declarative network representation 1s
unnatural. o

The PSI-KLONE system (Bobrow and Webber, 1980) uses linguistic x:oénamo
represented in a KL-ONE network (Brachman, 19784, 1978b, _3.3 to function as
semantic interpreter for parsed surface strings. The PSI-KLONE interpreter, how-
ever, functions in cooperation with an ATN parser in the RUS framework
(Bobrow, 1978). In contrast, we are implementing an integrated system for syntac-
tic and semantic processing which uses a uniform representation for syntactic and
semantic knowledge. .

The rule-based parser of Figure 1 is essentially the SNePS inference package
which reasons according to the rules of the knowledge base.

The knowledge base consists of CORE knowledge and USER knowledge. The
CORE knowledge is provided by the designers of the system and defines a kernel
language initially acceptable to the system. USER knowledge results from the pro-
cessing of user input utterances.

The function of our NL parser is twofold:

1. derivation of zero or more annotated parse trees for the input surface string;
2. construction of a network representation for the interpretation of the input
utterance from the annotated parse tree and from other relevant knowledge

from the network data base.

The above two functions are not handled by separate processors, but, instead, are
both accomplished by the SNePS inference package as a result of the unv._mou:oz
of CORE and USER rules. The processes of accomplishing the two functions are
interrelated and can cooperate. The interpretation of a surface string will depend
on how it is syntactically parsed and, conversely, the syntactic parse of a surface
wtvinn nan denend on the meanines of related. constitutent, or neighboring strings.
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"The two processes are not carried out in a purely sequential fashion for a given
input utterance, since interpretations can be constructed for parsed constituent
strings before the parsing of the entire utterance is complete.

1.5 Knowledge Representation Techniques

A SNePS semantic network is a directed graph with labeled arcs in which nodes
represent concepts and the arcs represent nonconceptual binary relations between
concepts. It is generally agreed that the nodes of a semantic network represent
intensional concepts (Woods, 1975; Brachman, 1977; Maida and Shapiro, 1982).
A “concept” is something in our domain of interest about which we may want to
store information and which may be the subject of “thought™ and inference. Since
each concept is represented by a node, the relations represented by the arcs of our
system are not conceptual, but structural (Shapiro, 1979 a).

The primary type of arc in a SNePS network is the descending arc and if there is
a path of descending arcs from node N to node M, N is said to dominate M. Two
important types of nodes are molecular and atomic nodes. Molecular nodes are
nodes that dominate other nodes. Atomic nodes are simply not molecular. Atomic
nodes can be constant (representing a unique semantic concept) or variable. Vari-
able nodes are used in SNePS as variables are used in normal predicate logic
notations. Network nodes can also be categorized as in the table in Figure 2.

A propositional molecular node N together with the arcs incident from the node
and the nodes M,,. . ,My immediately dominated by N correspond to a case frame
(Fillmore, 1968; Bruce, 1975) where the arc names correspond to the slot names,
and the nodes M,,. .., My represent the slot fillers. Undominated molecular nodes
in a SNePS network represent propositions believed by the system. Concepts such
as the following are propositional and are represented by molecular nodes: Lex-
eme L is a member of category C; St is a constituent string of S2; lexeme L has
number N (i.e. singular or plural). Simple examples of propositional nodes are
M1 and M2 of Figure 3.

Node M1 represents the proposition that B1 represents the concept expressed
by the word “NOUN" and M2 represents the proposition that the lexeme
“SNOW?” is in the category called “NOUN".

The syntactic objects represented in our network knowledge base include mor-
phemes, surface strings, and nodes of annotated parse trees. Individual mor-
phemes are represented as nodes whose identifiers or print names are the mor-
phemes themselves. The representation of a surface string utilized in this study
consists of a network version of the list structure used by Pereira and Warren
(1980). This representation is also similar to Kay’s charts (1973) in that whenever
alternative analyses are made for a given substring of a sentence, the sentence
structure is enhanced by multiple structures representing these alternative analy-
ses. Retention of the alternatives avoids the reanalyses of previously processed
substrings which occurs in a backtracking system. Our basic representation of a

surface string is illustrated in Figure 4.

Nodes identified by the atoms B0, SNOW, IS, and WHITE are atomic nodes
and represent objects: the empty strino, ~nd tokens “SNOW™ 18" and
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Node Category Type of Concept
Non-dominated (asserted) Asserted proposition which is
molecular node *believed™ by the System
Proposition or structured object which

Dominated molecular node
is a participant in a proposition

Atomic node Object

Fig.2. Table of node categories

PRED PRED PRED
Gox @)X @)X w

qQdoM
ay
QI0M

Fig.4. Basic network representation of a surface string

“WHITE", respectively. Node M4 is molecular and represents the initial string
“SNOW". M5 is also molecular and represents the initial string “SNOW IS", m:.a
similarly for node M6. A node such as M6 that represents an wEnQ would typi-
cally be dominated in our system by some node representing a proposition

about it.
As each word of an input string is read by the system, the network representa-

tion of the string is extended and relevant rules stored in the SNePS network are

triggered.
Interpretations of surface strings are also represented as nodes of our network

knowledge base. The kernel language of the system enables the user to .%::o case
frame structures and to define rules to guide the system in interpreting input utter-

ances.
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1.6 Care Knowledge and the Kernel Language

Our uvmaunr is to provide the teacher (user) with a kernel language in which she
can begin to “explain™ the syntax and semantics of some natural or invented lan-
guage to the system. The present version of our kernel language includes:

a) predefined terms such as L-CAT, the set of the names of lexical classes, and
S-CAT, the set of the names of string classes; S-CAT contains the important

category names ANT-CLAUSE, CQ-CLAUSE, and RULE-STMT, which are .

used to bootstrap into a more sophisticated rule input capability;

b) predefined objects such as (i) initial strings and (ii) bounded strings with begin-
ning and ending token;

¢) predefined relations such as (i) lexeme L is a member of category C; (ii)
bounded string B is a member of category C and this structure is represented
by S; (iii) structure S expresses concept C; (iv) structure S1 is a constituent of
structure S2;

d) predefined functions such as (i) a test to determine whether two network nodes
are identical, (ii) a test to determine whether two bounded surface strings
match, and (iii) a test to determine whether one bounded string precedes
another bounded string.

The KL provides the teacher with a basic language of rewrite rules for the purpose .

of defining syntactic lexical insertions, context free phrase structure rules, and con-
text sensitive rules as well as semantic mappings from string categories to case
frame structures and mappings from string categories to case frame participant or
component slots.

1.7 Metalanguage Conventions and Symbols

In this chapter, we use the notational convention that words written in upper case
letters denote words of KL and we use the metasymbols:

{) denote a non-terminal; if the angle brackets enclose the name of a category of
the core or a user-defined category, then such usage denotes a variable whose
domain is the category named within the enclosing brackets.

() for grouping.

Enmzn star: when used as a superscript on an item, denotes zero or more of

the items in a finite sequence.

+ i:.ns used as a superscript on an item, denotes one or more of the items in a
finite sequence.

... ellipsis.
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2 Core Knowledge and Representations

2.1 Uniform Representation and Intensional Constructs

We use the semantic network formalism to represent both syntactic and semantic
knowledge in the form of assertions and rules to be applied in inference forma-
tion. We include linguistic knowledge in the network knowledge base and use the
network formalism as a uniform “language” with which to represent all types of
knowledge. Thus we model surface strings and syntactic properties and categories
as intensions (Woods, 1975 Brachman, 1977; Maida and Shapiro, 1982), con-

cepts, or objects of thought.

2.2 Predefined Categories, Objects, Relations, Functions

2.2.1 Predefined Categories

We are investigating the capability of an NLU system becoming more adept in the
use of some language by being instructed in the use of the language. The system
must start with some language facility, but we are striving to make the core knowl-
edge base as small and theory-independent as possible.

Included among the core primitives are certain predefined categories. Since we
are designing a language capability that is as theory-independent as possible and
not a robust parser for a predetermined language such as English, some of these
categories are initially empty, while others have very few members. All the catego-
ries are to be utilized by the teacher, either directly or indirectly, and the member-
ship of the categories expanded by the teacher as the definition of her target lan-
guage takes shape.

The most basic of these categories are L-CAT, S-CAT, and VARIABLE. L-CAT
consists of the names of lexical classes or classes of terms. L-CAT initially con-
tains the predefined terms L-CAT, S-CAT, VARIABLE, PUNCTUATION, and
FUNCTION-NAMES. Names that the teacher would add to L-CAT might
include, for example, NOUN, VERB, and PREPOSITION.

The purpose of VARIABLE is to contain all the identifiers that the teacher will
use as variables in her processing rules when stated as input to the system. The
VARIABLE category is initially empty.

The category PUNCTUATION initially contains the punctuation marks period,
single-quote, and double-quote.

The class FUNCTION-NAMES contains the names of the functions that the
teacher has available to be used in a form of procedural attachment to the declar-
ative rules of the network knowledge base. FUNCTION-NAMES initially con-
tains the names of the tests discussed in Section 2.2.4: IDENTITY-TEST,
STRING-MATCH-TEST, and PRECEDES-TEST.

S-CAT is defined to be the set of all the names of string categories. S-CAT ini-
tially contains the names of the predefined string categories UTTERANCE, P-
RULE, CASE-FRAME-DEFINITION, CASE-SLOT-DEFINITION, LITERAL,

LITERAL-STRING, UNIQUE-MEANING-CAT, VAR-APPOSITION-PHR,
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MAIN-APPOS-PHR, VAR-NAME, ANT-CLAUSE, CQ-CLAUSE, and RULE-
STMT. The string categories P-RULE, CASE-FRAME-DEFINITION, CASE-
SLOT-DEFINITION, LITERAL, LITERAL-STRING, and VAR-NAME each

have predefined syntax. For the remaining string categories except UTTER-
ANCE, the definition of the syntax is left to the teacher, VAR-APPOSITION-

PHR and RULE-STMT having restrictions discussed later in this article. The class

UTTERANCE contains all input surface strings.

The predefined string category P-RULE includes all strings that qualify as pro-
duction or syntactic rewrite rules as discussed in Section 2.5.2. These rewrite rules
are part of the kernel language understood by the system.

The kernel language includes semantic rewrite rules to enable -the teacher to
define case frames and associations between case frames and particular string
categories for use in the interpretation of input utterances. CASE-FRAME-DEFI-
NITION and CASE-SLOT-DEFINITION are string categories that contain the
‘wo types of semantic rewrite rules. The capability associated with the CASE-
FRAME-DEFINITION and CASE-SLOT-DEFINITION classes is discussed in
Section 2.5.3.

LITERAL is the category of strings consisting of a single-quote mark followed
by a lexeme. LITERAL-STRING is the category of strings that consist of a pair of
louble-quote marks enclosing a surface string.

VAR-APPOSITION-PHR, MAIN-APPOS-PHR, and VAR-NAME are string
:ategories that enable a variable to be used as an appositive so as to establish the
rariable as the identifier for the MAIN-APPOS-PHRase which it is adjacent to.
“or example, after input of appropriate user-defined rules to the system, the string
‘a noun-phrase X" (from the sentence “If the head-noun of a noun-phrase X has
wmber Y then X has number Y") could be parsed as a VAR-APPOSITION-PHR
vith “a noun-phrase” as the MAIN-APPOS-PHR and “X" the VAR-NAME so
hat in parsing the stated rule, X is remembered by the system as an identifier for
he unknown noun-phrase refered to in the phrase and is thus capable of being
eferred to again later as in the given rule example. Since no referencing mecha-
lisms are built into our system to enable the teacher to refer to previously men-
ioned concepts, the above string categories assist the teacher in establishing rules
o determine the referencing process according to her own theory. The use of this
apability is illustrated by example in Section 3.

As the teacher proceeds to instruct the system in her language definition, she
/ill need to enter rules that cannot be expressed in the language of rewrite rules.
uch rules would include rules concerning the semantics of utterances. Therefore,
1e core primitives include three initially empty string categories, RULE-STMT,
{NT-CLAUSE, and CQ-CLAUSE to enable the teacher to define the syntax of
eneral conditional rules. These categories are discussed in subsequent sections.

UNIQUE-MEANING-CAT is defined to be the class of all the strings that

ave a unique meaning. That is, if a string is in UNIQUE-MEANING-CAT, it
1ust express the same intension each time it is encountered in an input utterance,

§ stated in Section 1.2, a premise of our theory and NL system is that each time a

iven word or string is “read” by the system, it has a new or different meaning
nless this meaning is determined by rules and/or assertions input bv the
:acher.
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2.2.2 Predefined Objects

The predefined objects essential to our theory and va_an:S:os are the con-
cepts of the Initial String and the Bounded String. These objects and their network

representations are described below.

a) Initial string S consists of the word or symbol W con-
catenated to the initial string Q. Q may be the null string
represented by node BO.

b) Bounded string B represents the surface string cnm.mz.
ning with the last word of initial string S1 and ending
with the last word of initial string S2 where S1 precedes

S2.

2.2.3 Predefined Relations

It is necessary for the NL system to have a set of predefined relations for _So.i_.
edge representation. The current set of these relations and their corresponding

semantic network structures are listed below.

a) Lexeme L is a member of category C; e.g,, node Z._B
of Figure 5 represents the concept that ‘STUDENT is a

NOUN.

b) The bounded string B is in category C and this struc-
ture or parse of the string B is represented by node S
(analogous to a node of an annotated parse tree); e.g.,
node M43 of Figure 5 represents the concept that the
structure represented by B21 represents a parsing of
the bounded string represented by M42 as an INDEF-
NOUN-PHRASE.

¢) Structure or parsed string S expresses concept C; e.g,,
‘node M20 of Figure5 represents the concept that the
string “NOUN" expresses the category of nouns repre-

sented by node B10.
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d) The structure S1 is a constituent of structure S2; e.g.,
node M44 of Figure$ represents the concept that the
literal ‘STUDENT is a constituent of the structure rep-
resented by node B21.

e) The rule structures of SNePS (Shapiro, 1979a).

Figure 5 shows a surface string enhanced by additional structure that would result
from the system's reading and parsing the input string “A STUDENT" after some
syntactic rules had been input by the teacher (e.g., ‘A is an INDEF-DET, 'STU-
DENT is a NOUN, a string consisting of an INDEF-DET followed by a NOUN
is an NOUN-PHRASE).

2.2.4 Predefined Functions

The following functions are essential for the NL system and could not be effi-
cently implemented in the declarative SNePS language.

a) Identity test takes two network nodes as arguments, and returns true if the two
nodes &.¢ identical and returns false otherweise.

b) String-maich test takes two bounded strings in network representation as argu-
ments, and returns true if the sequence of words or symbols in the two strings
are identical, and returns false otherwise.

¢) Precedes test takes two bounded strings in network representation as argu-
ments, and returns true if the first string precedes the second string in the input
stream, and returns false otherweise.

2.3 The Reading Function
I

The system’s reading function “reads” one token (lexeme or punctuation mark) at
a time from the input stream. For each input token, the structure of Figure 6 is
added to the network, where node S represents the previously added initial string,
C represents the lexical category of the token, I represents the newly established
nitial string, and B represents the newly added bounded string.

If the token belongs to any lexical categories, this membership would already be
:epresented in the network in the form of relation (a) of Section 2.2.3 (how such
relations are established in explained in Section 2.4). The lexical categories to
which the input token belongs are found in the network by the reading function
and, for each such category C, a node such as M of Figure 6 is added. If no such
categories exist, then only the initial string and the bounded string are added.

Forward inference may be triggered by the addition of the network of Figure 6

~ : .
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Fig.6. The structure added 10 the
netwark for each input token
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Figure 5, nodes M38 und M41 are added by the reading function and nodes M42,
M43, M44, and M45 are built only if there is a rule in the system that asserts that
an INDEF-DET followed by a NOUN is an INDEF-NOUN-PHRASE.

2.4 The Represeniational Mapping

2.4.1 Introduction

Not all strings of a language form meaningful “chunks”. For example, the sub-
string “a large” from the sentence “A large aggressive dog frightened the girl” is
10t a conceptually coherent constituent of the sentence. Many researchers, e.g.,
Fodor and Garrett (1967), Bever (1970, 1973), and Levelt (1970, 1974), have inves-
igated the relationship between surface constituents and the conceptually coher-
:nt components of an utterance. There seems to be good evidence for surface con-
tituents being the coherent units for comprehension of discourse. How sentential
:onstituents or discourse constituents (moving up to a higher level in the ofganiza-
ion of text) are utilized in the comprehension process is an active field of research
Brown and Yule, 1983).

We let R designate the representational mapping (Allen, 1978) from surface
trings to their interpretations. The domain of R contains the categories of strings
hat form conceptually coherent units, possibly depending on linguistic or other
oontexts. The domain of R initially contains predefined categories L-CAT, S-CAT,
TARIABLE, LITERAL, LITERAL-STRING, VAR-APPOSITION-PHR, RULE-
TMT, P-RULE, CASE-FRAME-DEFINITION, and CASE-SLOT-DEFINI-
"ION. They are discussed in the following sections.

We provide the teacher of the system with the facility for determining what the
onceptually coherent constituents will be, in addition to the core, and for
1structing the system in their use.

.4.2 Base Cases

he categories L-CAT, S-CAT, VARIABLE, LITERAL, and LITERAL-STRING
re the base cases for the representational mapping. The most basic subclass of the
omain of R is L-CAT, the class of identifiers for the lexical categories of the sys-
:m, including both system identifiers and user-defined identifiers. The class L-
‘AT contains the predefined identifiers L-CAT, S-CAT, and VARIABLE. The
:presentational mapping applied to any identifier in L-CAT maps to a ccnstant
ase node. In Figure 6, the interpretations of the identifiers L-CAT and S-CAT are
:presented by nodes B1 and B2 respectively. Similarly, if the system is informed
1at 'NOUN is an L-CAT, then its interpretation is represented by a base node (B4
f Fig.7). The information that 'GOOSE is a NOUN and that '"NOUN-PHRASE
in S-CAT is also represented in Figure 7.

A member of VARIABLE maps to a corresponding network variable node.

ince the interpretation of a user variable must be local to the rule in which it is

sed, the representational mapping applied to the class VARIABLE is handled in
special manner as explained in Section 3.
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Fig.7. Representation of some basic lexical knowledge

R

CLITERALY  ===a=>  (Xword®

Fig.8. The representational mapping applied D

“10 a LITERAL ' ¢word>

R
CLITERAL~STRING> seecemeERnceoe)

* SNOW IS WHITE *

Fig.9. Representational mapping applied 10 a LITERAL-STRING

The representational mapping applied to a LITERAL (defined in Section 2.2.1
as the single-quote mark followed by a word) maps to the node whose identifier is
the word itsell, as illustrated in Figure 8.

The representational mapping applied to a LITERAL-STRING (a string
enclosed by double-quote marks) maps to the bounded string representing the
siring enclosed by the quote marks. Figure 9 illustrates the representational map-
ping anplied to the literal string “SNOW 1S WHITE".
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R
{RULE~STMT> EEETEEZSESEESEERES)

s
&

{ANT-CLAUSE> <CQ-CLAUSE> R]<ANT-CLAUSE>] R(<CQ-CLAUSE>]
Fig.10. Representational mapping applied 10 a RULE-STMT

2.4.3 Propositions and Structured Objects

Some string categories contained in the domain of R are mapped to non-atomic
1etwork (case frame) structures representing propositions or structured objects by
e representational mapping. The system has just two predefined string catego-
des, namely P-RULE and RULE-STMT, whose members’ interpretations are rep-
-esented as non-atomic structures by the representational mapping. P-RULEs
1ave a predetermined syntax and are translated into SNePS network rules using

he predefined structures. RULE-STMT is defined as the class of strings that are ’

nterpreted by the system as general rules. This class is initially empty and the syn-
:ax is to be determined by the teacher. A RULE-STMT must have an ANT-
CLAUSE and a CQ-CLAUSE as constituents. The structure resulting from the
application of the representational mapping R to a RULE-STMT is illustrated in
Figure 10.

The ANT-CLAUSE category is defined as the class of strings that can be used
in antecedent position in rules input by the teacher. Similarly, the CQ-CLAUSE
category is defined as the class of strings that can be used in consequent position
in rules input by the teacher. Both of these classes are initially empty and the syn-
tax of RULE-STMTs, ANT-CLAUSEs, and CQ-CLAUSE:s is to be determined by
the teacher. An example is discussed in Section 3.

The teacher can add new string categories, whose interpretations are to be rep-
resented by non-atomic network structures, to the domain of R and specify the
semantics of these string categories by using the semantic rewrite rule capability
discussed jn Sect.2.5.3.

2.4.4 Participants in Propositions or Relations; Components of Structured Objects

In the previous section, the category of natural language phrases that assert rela-
;jons between concepts or objects was discussed briefly. This type of phrase maps
.0 the top node of a molecular representational structure.

Many phrases of natural language refer to individual concepts or objects that
are participants in relations or propositions or that are components of structured
abjects. This type of phrase would map to a slot of one or more network case
frame structures. The system has no predefined string categories which map to
“participant” slots. The syntax for creating new categories of this type and their

associated semantics is discussed in Section 2.5.3.
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2.5 Kernel Language )

2.5.1 Predefined Terms

y indicated, we are attempting to provide a facility with EZn.: a per-
son can define a target language and yet keep the core as small and unbiased as
possible. It is essential to provide the person (teacher) with a kernel language with
which to start building up her language definition. .go kernel language :.AC of
our system consists of predefined terms, syntactic rewrite rules, and semantic rew-
rite rules. The predefined terms of the system arc the names of the categores dis-

ocmmna in Section 2.2.1.

As previousl

2.5.2 Syntactic Rewrite Rules

The kernel language includes linguistic rewrite rules to enable the teacher to
instruct the system in the basic syntax of her target language.

a) Lexical Entry: The KL includes syntactic production E_om. of the form (L-CAT)
— (LITERAL) where (L-CAT) represents the name of w._ox,ow_ category .5”& has
already been defined. A LITERAL was defined in mn.o:oz 2.2.1 as consisting &
the single-quote followed by a word (the single-quote is part o.,. the KL and indi-
cates that the following word is mentioned rather than used). This form of produc-

tion rule is the means of entering lexical items such as
L-CAT — 'NOUN L-CAT — 'PREPOSITION

L-CAT — 'PROPER-NOUN L-CAT — 'CONIJ
L-CAT — 'DEF-DET L-CAT — 'PROPERTY
L-CAT — 'INDEF-DET S-CAT — 'HEAD-NOUN

L-CAT — 'VERB

L-CAT — 'BE-VERB

L-CAT — 'ADVERB

L-CAT — 'ADJECTIVE
NOUN — '‘GOOSE

NOUN — 'GEESE
PROPER-NOUN — 'GRADY
PROPER-NOUN — 'GLADYS
DEF-DET — 'THE
INDEF-DET —'A

VERB — 'HAS

BE-VERB —'IS

ADVERB — 'THEN

S-CAT — 'STRING
VARIABLE — X
VARIABLE — Y

ADJECTIVE — 'WHITE
ADJECTIVE — 'SINGULAR
ADJECTIVE — 'PLURAL
PREPOSITION — 'OF

CONJ —"'IF

PROPERTY — 'COLOR
PROPERTY — 'NUMBER
UNIQUE-MEANING-CAT —
"ADJECTIVE
UNIQUE-MEANING-CAT —
"PROPERTY
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1) Context Free Rules: The KL includes rules of the form
w.n>d — Amv.. . .Amv_c k> O,

there (S-CAT) represents the name of a string category and for each i, (s); is either
r:,mw}r. the name of a lexical category previously entered as a member of
~CAT as in (a) above, or the name of a string category.

xamples: PROPERTY-CLAUSE - SUBJECT PREDICATE
SUBJECT — NOUN-PHRASE
NOUN-PHRASE — LITERAL
NOUN-PHRASE — VARIABLE
NOUN-PHRASE — PROPER-NOUN
PREDICATE — RELATION-PREDICATE
PREDICATE — BE-PREDICATE
RELATION-PREDICATE - RELATION PREDICATE-ADJ
BE-PREDICATE — BE-VERB PROPERTY-INDICATOR
RELATION — "HAS PROPERTY-INDICATOR
PROPERTY-INDICATOR -+ PROPERTY-CLASS-INDICATOR
PROPERTY-INDICATOR - PROPERTY
PROPERTY-CLASS-INDICATOR — PREDICATE-ADJ
RULE-STMT — 'IF ANT-CLAUSE 'THEN CQ-CLAUSE

Context Sensitive Rules: The KL includes syntactic production rules of the form
(Ish. . {Is}a — (rsh. . .{rs)a, n >0,

here each element (ls), or (rs); is either a LITERAL, the name of a lexical cate-
iy, or the name of a string category; both sides of the rule must have the same
imber of elements and for each element (Is); of the léft side,

if A_mv.m isa .r:,mx»_r or lexical category, then the corresponding element (rs); of
m_..o :m._.: side must be the same as {Is);:
if {Is); is the name of a string category, then the corresponding element {rs); of

the right side can be either a LITERAL, lexical category name, or string cate-
gory name.

iis facility allows the user to enter context sensitive rules, such as:

RELATION PREDICATE-ADJ — RELATION ADJECTIVE
RELATION PREDICATE-ADJ — RELATION VARIABLE
BE-VERB PREDICATE-ADJ — BE-VERB ADJECTIVE

'IF ANT-CLAUSE — 'IF PROPERTY-CLAUSE

"'THEN CQ-CLAUSE — 'THEN PROPERTY-CLAUSE

a.maﬁ rule asserts that in the context of a RELATION, an ADJECTIVE is rec-
nized as a PREDICATE-ADJ, the second asserts that in the context of a

:LATION, a VARIABLE is parsed as a PREDICATE-ADJ, and the third
serts that in the context of a BE-VERB, an ADJECTIVE is parsed as a PREDI-

\TE-ADJ. Similarly, the fourth and fifth rules state that following the word “IF"

“THEN”, a PROPERTY-CLAUSE is parsed as an ANT-CLAUSE or CQ-
LAUSE, respectively.
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2.5.3 Semantic Rewrite Rules

a) Case Frame Definitions: The KL includes language to enable the teacher to
define case frames and instruct the system in their use by using the syntax of a
CASE-FRAME-DEFINITION:

(string-cat) :: (slot-name); {constit-name); . .
(slot-name), (constit-name),

where n> 0. Such a CASE-FRAME-DEFINITION is used by the system as fol-
lows: A string that is identified as being in category (string-cat) is mapped into a
case frame such that for each slot identified by (slot-name);, the slot-filler is the
interpretation of the constituent string identified by (constit-name);. THe constitu-
ent strings need not be immediate constituents of the string in category (string-cat).
The same (constit-name) can be used to specify the filler for more than one slot.
For example, suppose the teacher wants to define a language in which an utter-
ance such as “JOHN BOUGHT A HOUSE", involving the act of purchase, is
interpreted to mean that the person bought the object for himself unless otherwise
stated. To handle the semantics of such a clause, the teacher might want to define
a case frame with AGENT and BENEFICIARY slots which are both filled by the
interpretation of the same constituent of the clause. Our CASE-FRAME-DEFI-
NITION facility provides for this eventuality.

If a string is parsed as a (string-cat) but is missing a constituent specified by the
semantic rewrite rule, then a default representation of the slot-filler corresponding
to the missing constituent is established in the form of an atothic hode about
which the system knows nothing, other than its being a participant in the case
frame. In the context of a RULE-STMT the atomic node will be a variable node
(see Section 1.3), otherwise a constant node. For example, to represent the inter-
pretation of a sentence such as “THE HOUSE WAS PURCHASED YESTER-
DAY" the teacher might want to use the same case frame mentioned in the pre-
ceding paragraph. Since an AGENT and BENEFICIARY are implicitly part of
the act of purchase, but not explicitly mentioned in the sentence, it is reasonable
for the unmentioned participants to be represented in the interpretation of the sen-
tence. The above default representation for the interpretation of a missing constit-
uent provides the teacher with a facility for instructing the system how to interpret

such a sentence.
An alternative syntax for the CASE-FRAME-DEFINITION is

(string-cat): :(constit-name).

The right side of the :: symbol is a degenerate case frame and the definition is
interpreted as meaning that the semantics of the string of category (string-cat) is
the same as that of the constituent string of category (constit-name). For example,

PROPERTY-CLAUSE:: PROPERTY OF SUBJECT
: PROPERTY PROPERTY-INDICATOR
VALUE PREDICATE-ADJ
ANT-CLAUSE  :: PROPERTY-CLAUSE
CQ-CLAUSE 1 PROPERTY-CLAUSE
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SUBJECT :: NOUN-PHRASE
NOUN-PHRASE :: LITERAL
NOUN-PHRASE :: VARIABLE
w%oﬁﬂ.v:z»,mm :: PROPER-NOUN
RTY-INDICATOR :: PROPERTY- ; .
PROPERTY-INDICATOR :: vWOvmww CLASS-INDICATOR
PREDICATE-ADJ :: ADJECTIVE
PREDICATE-ADJ :: VARIABLE

define the semantics of a PROPERTY-CLAUSE to be a case fra i

slots, such that the PROPERTYOF slot is filled by the msﬂmﬂao,»:oﬂwmﬁ” m,ﬂmn
._m.Oq. of the PROPERTY-CLAUSE, the PROPERTY slot is filled by the interpre-
tation of the PROPERTY-INDICATOR constituent of the PROPERTY-
CLAUSE, m:g the VALUE slot is filled by the interpretation of the PREDICATE-
.>O._ constituent. The second and third definitions above indicate that the
interpretation of an ANT-CLAUSE is the same as the interpretation of its PROP-
mw.jx-n_.}Cmm constituent and that the interpretation of a CQ-CLAUSE is the
same as the interpretation of its PROPERTY-CLAUSE constituent, respectively
The next E_a.anmsnm the interpretation of a SUBJECT to be the wma.n as the ::2..
pretation Q. its NOUN-PHRASE constituent. The next three rules define the
interpretation om. a NOUN-PHRASE to be the interpretation of either its
r.:.mW>r mozm:EA...:r its VARIABLE constituent, or its PROPER-NOUN con-
M::ﬂn:f whichever it has. The remaining rules are similarly understood by the sys-

The representational mapping R builds a network structur i

nated by node M of Figure 11 as the interpretation of a vWOvMM%”\.MmMﬂMMB_.

R

<SUBJECT> <PROPERTY- <PREDICATE-ADJ>  R{<SUBJECT>] R{<ADJECTIVE>)
INDICATOR> d

. . R{<PROPERTY>]
Fig.11. Representational mapping applied to a PROPERTY-CLAUSE

N Case ﬁ_.u.an Slot-Filler Definitions: In order to provide a capability for defining
he semantics of a phrase whose interpretation is a slot-filler in a case frame, the

‘ollowing type of semantic rewrite rule is i
Soyine e of sema ¢ is included. The syntax of the CASE-

{(phr-name) > > ([(slot-name); (string-name), . . .
(slot-name), (string-name), })*

..z:.mmo the square brackets are part of the object language and the + and the pa-
entheses are :unaﬁaco.w. The €E.€aov is the name selected by the teacher for

Knowledge-Based Parsing 69

of the symbol > >. The object language symbol + must be used in place of at
least one (string-name), designating the position of the interpretation of the string
(phr-name) in the case frame.

Each set of brackets encloses a case frame definition as described in the previ-
ous section. That is, each slot named (slot-name}); is filled by the interpretation of a
string in category (string-namey;, if a string of category (string-namey); is present as a
(not necessarily immediate) constituent of the string of category (phr-name). The
+ symbol marks the slot whose filler is the interpretation of the {(phr-name) string.
The system represents the interpretation of the (phr-name) string (1) as a variable
atomic node if the semantic rule is used in the context of a RULE-STMT and (2)
as a constant atomic node, otherwise. If a slot-filler constituent is specified in a
semantic rewrite rule, but is missing from the surface string to which the rule is
being applied, a default representation of the slot-filler corresponding to the miss-
ing constituent is established in the form of an atomic node about which the sys-
tem knows nothing, other than its being a participant in the case frame (as in the
previous section for a CASE-FRAME-DEFINITION).

Consider the following example CASE-SLOT-DEFINITION:

PROPERTY-CLASS-INDICATOR > > [MEMBER ADJECTIVE PROP-
ERTY-CLASS +]

According to this rule, a PROPERTY-CLASS-INDICATOR should have an
ADJECTIVE constituent and the interpretation of a string of the PROPERTY-
CLASS-INDICATOR category would be represented by an atomic node which
fills the PROPERTY-CLASS slot of a case frame whose MEMBER slot is filled
by the interpretation of the ADJECTIVE constituent. The mapping from a surface
string to the network representation of its interpretation is illustrated in Figure 12

In order to prepare for the example discussed in Sect.3, the following rule it

input:
INDEF-S-PHRASE > > [BSTR STRING CAT S-CAT STRC+]

According to this rule, the interpretation of a string parsed by the system as ar
INDEF-S-PHRASE would be represented by an atomic node filling the STRC
slot of a case frame whose CAT slot is filled by the interpretation of the S-CA’
constituent of the INDEF-S-PHRASE and whose BSTR slot is filled by the

STRING constituent. This is illustrated in Figure 13.

.
NQ“
P

R
<PROPERTY-CLASS-INDICATOR> sesszces) R{<ADJECTIVE>

<ADJECTIVE>
™. 44  Damcarantatinanal mannine annlied ta a v*ﬂovm—ﬂj.n—l>mm._zo_n>.—.0m~
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R

{INDEF-S~-PHRASE> z=s=ceEscss==s) R(<STRING>]

R{<S~CAT>]

JTRING> <S~CAT>
1.13. Representational mapping applied to an INDEF-S-PHRASE

SUBJECT PREDICATE
|
RELATION-PREDICATE

T~

UN-PHRASE RELATION PREDICATE~ADJ

PROPERTY-INDICATOR

|

ovmw!zocz vmovmwam >Uummau<m
GRADY HAS COLOR WHITE

.14, Parse tree for sample input utterance

|
6 Use in Language Processing W
illustrate the system’s use of the language definition developed via So__ rewrite
es of the preceding sections, we show some sentences of this language which
er to the language itself compared with some that refer to a non-linguistic
main. Thinking affectionately of her pet geese, the teacher informs the system
it “GRADY HAS COLOR WHITE". The system recognizes and builds the
rse tree of Figure 14 for the utterance. We show the more conventional form of
: parse tree, rather than the equivalent network parse tree that the system actu-
y builds in order to simplify the figure.
In the preceding sections, the teacher has entered rewrite rules into the system
define the semantics for certain string classes (e.g., PROPERTY-CLAUSE,
OPERTY-INDICATOR), thereby identifying the conceptually coherent constit-
1ts for the language definition. The system applies these semantic rewrite rules
1 builds the structure of Figure 15 as the interpretation of the utterance. The
ertion that the parsed input utterance expresses the concept represented by
de M75 is also established in the network.
similarly, the system can process the input utterance “*GOOSE HAS NUM-

R SINGULAR", The resulting parse tree is shown in Figure 16.

The representation of the interpretation of the utterance is shown in Figure 17,
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Fig.15. Representation of the interpretation of input utterance

PROPERTY-CLAUSE

\\\\\\\\\\\\\\\IIIIIIIIIIIII

SUBJECT vwmcmn>em
RELATION-PREDICATE

T~

NOUN-PHRASE RELATION PREDICATE-ADJ

vwovmwaJleonn>aow
LITERAL PROPERTY ADJECTIVE

N\ | |

' GOOSE HAS NUMBER SINGULAR

Fig.16. Parse tree for utterance concerning language

EXPRESSION

—REERION, e S5)

Fig.17. Representation of interpretation of utterance

As stated in Section 1.5, the NL system distinguishes between a word or phrase
and its interpretation. The interpretation of a LITERAL is the word following the
quote mark (the word ‘GOOSE, in this case). Thus node M80 represents the prop-
osition that singular number is a property of the word "GOOSE and not of the
concept expressed by the word "GOOSE. On the other hand, the 588385:.&
the word 'GRADY is represented by node B20 of Figure 15, and it is this entity
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that has color white. Comparing these two examples illustrates the knowledge rep-
resentations we have established as well as the capability for handling strings and
their interpretations as domain knowledge, which is fundamental to our theory
and system.

At this stage, the teacher can simplify the language to use with the system for
expressing properties. She does this by inputting the following rewrite rules so that
property class entries can be made.

PROPERTY-CLASS-ENTRY — ADJECTIVE 'IS ‘A PROPERTY

PROPERTY-CLASS-ENTRY :: MEMBER ADJECTIVE
PROPERTY-CLASS PROPERTY

Since the system has previously been informed that *WHITE is an ADJECTIVE
ind 'COLOR is a PROPERTY, the utterance "WHITE IS A COLOR™ would be
-ecognized by the system as a PROPERTY-CLASS-ENTRY. Also since, in Sec-
jon 2.5.3, for the purposes of this example, the teacher entered "ADJECTIVE and
PROPERTY into UNIQUE-MEANING-CAT, the surface strings that are in the
:ategories ADJECTIVE and PROPERTY are each treated as having a unique
nterpretation. Thus different instances of the same string such as "WHITE are
reated by the system as having the same interpretation and it uses just one net-
work structure to represent this interpretation. Therefore, using the above seman-
ic rewrite rule, the system builds the structure of node M85 of Figure 18 to repre-
sent the interpretation of the utterance, finding the nodes B21 and B22 of
Figure 15 to represent the interpretation of "COLOR and "WHITE, respectively.

Similarly, the system can be informed that “PLURAL IS A NUMBER" and it
ouilds a structure similar to that of Figure 18 to represent the assertion that the
concept expressed by 'PLURAL is a member of the property-class NUMBER.

If the utterance “GLADYS IS WHITE" is now input to the system, the utter-
ance is also recognized as a PROPERTY-CLAUSE as shown in Figure 19.

The semantic rewrite rules of the previous section are used by the system to
suild the structure dominated by node M90 as the representation of the interpreta-
;ion of the utterance.

According to the semantic rule for a PROPERTY-CLAUSE, the PROPERTY
;lot in the case frame is filled by the interpretation of the PROPERTY-INDICA-
TOR constituent of the utterance. Referring to the parse tree of Figure 19, the
PROPERTY-INDICATOR consists of the PROPERTY-CLASS-INDICATOR.
The semantic rule

PROPERTY-INDICATOR: : PROPERTY-CLASS-INDICATOR

of the previous section instructs the system to use the interpretation of the PROP-
ERTY-CLASS-INDICATOR as the interpretation of the PROPERTY-INDICA-

TOR. The rule for interpreting a PROPERTY-CLASS-INDICATOR is the:

CASE-SLOT-DEFINITION presented in the previous section:

PROPERTY-CLASS-INDICATOR > > {MEMBER ADJECTIVE PROP-
ERTY-CLASS + ]

This rule instructs the system to interpret the PROPERTY-CLASS-INDICATOR
as the PROPERTY-CLASS slot-filler of the frame whose MEMBER SLOT is
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Fig. 18. Representation of interpretation of utterance

PROPERTY~CLAUSE

\\\\//

SUBJECT PREDICATE
|
BE-PREDICATE

\\/

mwovmmew_?HZUHanox
PROPERTY~CLASS-INDICATOF

NOUN-PHRASE _

b mmmcuowam1>cu
mxomm_-zocz wm.ﬂmxm ADJECTIVE
GLADYS 1S WHITE

Fig.19. Parse tree for input utterance

Fig.20. Representation of interpretation of utterance

filled by WHITE. Node B22 of Figures15 and 18 is found as the representation o
the interpretation of "WHITE, since the members of the class ADJECTIVE havc
been defined by the teacher as having “unique semantics”. Thus, the system uses
node B22 to use as the MEMBER slot-filler for the case frame associated with 2
PROPERTY-CLASS-INDICATOR. Then B21 of Figure 15 is found and used as
the PROPERTY-CLASS slot-filler as shown in Figure 20, since it represents the
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PROPERTY-CLASS that has WHITE as a MEMBER. Node B21 is also the rep-
resentation of the interpretation of the PROPERTY-CLASS-INDICATOR string.
In general, a CASE-SLOT-DEFINITION maps a surface string to a participant in
a relation or proposition. :

In a manner similar to the parsing and interpretation of the utterance
“GLADYS IS WHITE", the system also understands the utterance *“‘GEESE IS
PLURAL”. The system’s language definition is again used as a metalanguage to
expand upon the same language itself.

3 Increasing the System’s Language Capability Through
Its Language Capability

3.1 Motivation

since we treat linguistic knowledge as domain knowledge, the system teacher
user) can add to the knowledge base and instruct the system as to how to process
»r understand ever more sophisticated language.

Just as a person is continually influenced by interaction with his environment,
he data base of our system is modified by each input. The knowledge base is
ncrementally enhanced to form a more sophisticated system.

Since we represent language processing knowledge in the same knowledge base
nd in the same formalism as other domain knowledge, it is possible to make the
ystem’s language processing knowledge the subject of its language processing
nd this is a fundamental aspect of our approach. Thus by instructing the system
1 the domain of linguistics as we would expect to be able to do with another
omain in an interactive NLU system, we can increase the system’s language
apability through its language capability. A user can communicate with our sys-
'm in just one language via one processor without switching “modes” or interact-
1g with supportive processors in special purpose languages.

The rewrite rules of the KL are certainly not sufficient for expressing all the
iles a teacher would need to define a language of her choice. Therefore, one of
1e most important capabilities that the system needs is to understand a more gen-
al form of rule statement. A teacher should be able to bootstrap into a more
owerful rule statement language from the KL. In the next sections, we present an
c<ample from such a bootstrap process.

2 Defining More-General Rule Forms

1e teacher first extends the system’s language definition so that it can begin to

1derstand general “IF-THEN” rules. As stated in Section 2.2.1, RULE-STMT is
predefined category. The syntax of a RULE-STMT is not predefined, but for the

terpretation process, each RULE-STMT must have an ANT-CLAUSE and a
Q-CLAUSE constituent. The ANT-CLAUSE constituent is interpreted as the

1tecedent of the rule and the CQ-CLAUSE constituent as the consequent af the
te. Thus the rewrite rule
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RULE-STMT — 'IF ANT-CLAUSE 'THEN CQ-CLAUSE

defines a syntax for the RULE-STMT. The syntax and semantics of ANT-
CLAUSE and CQ-CLAUSE must also be defined. This was done is Section 2.5
(see Appendix). .

The additional rules that the teacher chooses to input to the system to increase
its capability of understanding linguistic-domain language for this example are
listed below. In order to make use of the system’s ability to use a VARIABLE as
an appositive to another phrase and remember the association of the VARIABLE
to the prase, the teacher inputs: :

DEF-S-PHRASE — DEF-DET S-CAT !
INDEF-S-PHRASE — INDEF-DET S-CAT

MAIN-APPOS-PHR VAR-NAME — INDEF-S-PHRASE VARIABLE
VAR-APPOSITION-PHR — MAIN-APPOS-PHR VAR-NAME

To explain to the system how to parse and interpret language which describes one
phrase being a constituent of another, the teacher inputs:

SUP-STRING-REF — VAR-APPOSITION-PHR
CONSTIT-REF  — DEF-S-PHRASE
CONSTIT-PHRASE— CONSTIT-REF "'OF SUP-STRING-REF
NOUN-PHRASE - CONSTIT-PHRASE
CONSTIT-PHRASE > >[CONSTIT + CONSTITOF SUP-STRING-
REF] :
[BSTR STRING CAT DEF-S-PHRASE STRC +]
SUP-STRING-REF :: VAR-APPOSITION-PHR
MAIN-APPOS-PHR :: INDEF-S-PHRASE
NOUN-PHRASE :: CONSTIT-PHRASE
DEF-S-PHRASE  :: S-CAT

" These rules will be used in the next sections.

3.3 Parsing Strategy

The parsing strategy applied by our NL system is a combined bottom-up, top-
down strategy. As each word of an input string is read by the system, the network
representation of the string is extended as discussed in Section 2.3 and relevant
rules stored in the SNePS network are triggered. All applicable rules are started in
parallel in the form of processes created by our MULTI-processing package
(McKay and Shapiro, 1980). These processes are suspended if not all their anteced-
ents are satisfied and are resumed if more antecedents are satisfied as the reading
of the string proceeds. As parsing proceeds, the annotated parse (tree(s) for an
input utterance is (are) represented in the system’s network knowledge base, Our
system builds and retains network structures corresponding to alternative analyses

of a given input string. Retention of the alternatives avoids the reanalysis of previ-

ously processed surface strings that occurs in a backtracking system.
Processing is controlled by the SNePS Inference Package (Shapiro et al., 1982),

whist easlave hiabiresiaaal iafarance Thic is n form of inference re-ulting fram



6 J.G. Neal and S.C.Shapiro

interaction between forward and backward inference and loosely corresponds to
bi-directional search through a space of inference rules. This technique focuses
attention towards the active parsing processes and prunes the search through the
space of inference rules by ignoring rules which have not been activated. This cuts
down the fan out of pure forward or backward chaining. New rules are activated
only if no active rules are applicable.

Consider the sample input utterance “IF THE HEAD-NOUN OF A NOUN-
PHRASE X HAS NUMBER Y THEN X HAS NUMBER Y". When the first
word is read by the system, it is recognized as matching the word 'IF in the rules

RULE-STMT — 'IF ANT-CLAUSE 'THEN CQ-CLAUSE
'IF ANT-CLAUSE — 'IF PROPERTY-CLAUSE

ind parsing begins in a bottom-up manner. Both rules are triggered in parallel by
he SNePS MULTI package. When originally input, each of the above rules was
nterpreted by the system and stored in the form of a network rule which we para-
shrase as follows (NOTE: In all the paraphrased rules of this section, V; and V;
ire universally quantified variables):

1) If a word of an input string is the word °IF, then
2) if V f-llows the word 'IF and V, is an ANT-CLAUSE, then
3)  if the word 'THEN follows V;, then
4) if V, follows the word "THEN and V, is a CQ-CLAUSE,
then the string consisting of 'IF followed by V,

followed by "THEN followed by V; is a RULE-STMT.
'S) If a word of an input string is the word 'IF, then
'6) if V, follows the word 'IF and V, is a PROPERTY-CLAUSE,

then V, is an ANT-CLAUSE.

‘The numbers in parentheses are rule numbers, not line numbers. Thus, for exam-
ple, nested rule (3) begins with “if the word "THEN" and continues to the period
at the end of the sentence.)

Since the antecedent of rule (1) above is satisfied, the system questions whether
1 string immediately following the word 'IF is an ANT-CLAUSE. When a SNePS
-ule is triggered, a process is created forming the active version of the rule for the
surpose of such activities as data collection and variable binding. Some of these
srocesses act as demons, waiting for instances of their antecedents so that
nstances of their consequents can be deduced. This is the case for the nested rule
2). Since no string follows the word 'IF yet, the process for rule (2) is suspended.

These active processes, with their communication links, form the equivalent of a
nypothesized parse tree with associated expectations. The inference system
gnores ‘unactivated rules as long as there are applicable active rule processes
awaiting data, essentially parsing in a top-down manner in this situation. The
nypothesized parse tree corresponding to the process of rule (2) is illustrated in
Figure 21. The parsing strategy of our system is similar to “left-comer bottom-up
parsing” (Burge, 1975) in that construction of a parse tree begins at the bottom left
corner, processing of a surface string proceeds in a left-to-right manner, and when-
ever an initial segment of a string has been parsed, the system attempts to establish

n annl analucie af tha ctrine Ar cuhetring tharanf In tha fallawine fiouree tha hrao
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RULE~STMT ?

.l.
‘IF ANT-CLAUSE ? VTHEN ? CQ-CLAUSE ?

IF
Fig.21. Hypothesized parse tree
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VTHEN ? CQ-CLAUSE ?

'IF ANT~CLAUSE ? ?

¥r>cmm )

'IF mwOmmﬂ—n<lnr>cmm ?

/

IF
Fig.22. Hypothesized parse tree

ken lines indicate goals or expectations represented by antecedents of nested rules

for which active demons have not yet been created. The question-marks indicate

expectations which have not yet been satisfied, o N .
The antecedent of rule (5) is also satisfied. This is a context sensitive rule which

constrains the parsing process. According to this rule, a vWOvmW._J\-Q\owm is
parsed as an ANT-CLAUSE in the context of the word 'IF. > process is created
forming the active version of rule (6) and this process awaits a PROPERTY-
CLAUSE following the word 'IF. Figure 22 reflects the current state of the system
in terms of its active processes, implicit expectations, and the tokens that it has

consumed.
When the word 'THE is read by the system, the rule

DEF-S-PHRASE — DEF-DET S-CAT

is triggered as parsing continues in a bottom-up manner. This rule is paraphrased

as:
(7) If V, is a DEF-DET, then
(8) if V; follows Vy and V; is an S-CAT,
then the string consisting of V; followed by Vais a
DEF-S-PHRASE.

The antecedent of rule (7) is satisfied and a process is created for nested rule (8) to
await an S-CAT following the DEF-DET. The active processes form another

hvoothesized parse tree shown in Figure 23.
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7ig.23. Hypothesized parse tree
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| _
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ig.24. Hypothesized parse trees

Suppose another rule such as DEF-NOUN-PHRASE — DEF-DET NOUN

ad been entered by the teacher and is pr i
s e e o o present in the network knowledge base.

(9) If V,is a DEF-DET, then

10) if V; follows V, and Vy is a NOUN, then the string
consisting of V, followed by V; is a DEF-NOUN-PHRASE.

his latter rule is also triggered by the system's reading of the word 'THE and the

tocesses created for rules (9) and (10) form another i
rees as illustrated in Figure 24, ) set of hypothesized parse
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The parse trees of Figure 24 dominated by DEF-S-PHRASE? and DEF-
NOUN-PHRASE? represent alternative possibilities for the parse of the string
beginning with the word "TH E. A process such as the process for rule (10) waiting
for a NOUN may remain suspended indefinitely if the expected data is not forth-
coming.

When the next word 'HEAD-NOUN is read, the system recognizes it as an S-
CAT and the process corresponding to rule (8) is resumed since it is waiting for an
S-CAT following the word "THE. Thus the string “THE HEAD-NOUN" is recog-
nized as a DEF-S-PHRASE by application of the teacher's rules. This DEF-S-
PHRASE then triggers the network version of the following rule and the DEF-S-
PHRASE is then recognized as a CONSTIT-REF:

CONSTIT-REF — DEF-S-PHRASE
Recognition of a CONSTIT-REF triggers the rule
CONSTIT-PHRASE — CONSTIT-REF "OF SUP-STRING-REF

whose network representation can be paraphrased as

(11) If Vy is a CONSTIT-REF, then
(12) if the word "OF follows V,, then
(13)  if Vyfollows the word 'OF and V, is a SUP-STRING-REF,
then the string consisting of V, followed by the word
"OF followed by V, is a CONSTIT-PHRASE.

Activation of rule (11) is analogous to bottom-up processing again. A process is
established for rule (12) to await the word 'OF in the input stream.

When the next word 'OF is read by the system, the demon corresponding to rule
(12) is activated and since the antecedent of rule (12) is satisfied, a process is estab-
lished for rule (13) to expect a SUP-STRING-REF following the word "OF. No
other rules are activated by the reading of the word 'OF since an active process

was waiting for this word in the input stream.
The system parses the next string “A NOUN-PHRASE" as an- INDEF-S-

PHRASE by application of the rule
INDEF-S-PHRASE — INDEF-DET S-CAT

This triggers the rule
MAIN-APPOS-PHR VAR-NAME — INDEF-S-PHRASE VARIABLE

which is paraphrased as

(14) If V, is an INDEF-S-PHRASE, then

(15) if V, follows Vy and Vyisa VARIABLE,

(16) thenV,isa MAIN-APPOS-PHR and V, is a VAR-NAME.

Since the antecedent of rule (14) is satisfied, a process is set up for rule (15). When
the next word ‘X is read, it is recognized as a VARIABLE and since the active
process for rule (15) is waiting for a VARIABLE, no unactivated rules are applied.
An example of such an unactivated rule is
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NOUN-PHRASE — VARIABLE

hich we previously input to the system. Thus an alternative parse is blocked by

1e expectation of a V. ..
s pec of a VARIABLE by the process for rule (15). By application of the

VAR-APPOSITION-PHR — MAIN-APPOS-PH
- -PHR VAR-N
SUP-STRING-REF — VAR-APPOSITION-PHR AME

& expected SUP-STRING-REF of rule (13) is satisfied i
d the string “THE
EAD-NOUN OF A NOUN-PHRASE X" is pa o a Ct ¥
. . Q )
o iation of the rule parsed as a CONSTIT-PHRASE.

NOUN-PHRASE — CONSTIT-PHRASE

¢ string is also q.ooows.muoa as a NOUN-PHRASE. Notice that the term NOUN-
wogm: mentioned in the input string and wsed in the application of the above
\w.” mﬂ__ﬂw WM:: in the parsing process the hypothesized parse trees are illustrated
.>w parsing Eooonam using the ruies introduced in this and preceding sections of
is o_..m.van the resulting parse of the entire input statement is shown in Figure 26
le string category identifiers in the tree that are underlined are the cate onom.
a are _no_caom. in the domain of the representational mapping. These wWo the
tegories for which the teacher has defined a rule to determine Sm interpretation
any member of the category (i.e., the underlining identifies the string categories
"M_o:vna by the teacher as the conceptually coherent constituents of the m::o_,-

RULE-STMT ?

——

/I/I.l’l —
ANT-CLAUSE 7 "THEN ? T CGSTLAUSE ?
.:,\\\ ART=CLAUSE 2
| PROPERTY~CLAUSE ?

CONSTIT~PHRASE

T T
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In this section on parsing, we have illustrated the following characteristics of our
system’s strategy:

(1) the parallel processing of applicable rules;

(2) constraint of the parsing process by the use of context sensitive rules;

(3) constraint of the parsing process by the SNePS Inference Package focusing on
active rule processes - the manifestation being the blocking of multiple parses
by previously established expectations;

(4) suspension and resumption of rule processes during the parsing process.

The retention of alternative analyses of a string, which avoids the reanalysis of cer-
tain strings in the case of a backtracking system, was not illustrated by the exam-
ple of this section, but is a characteristic of our system.

Also of importance in this section is the fact that the system is again using its
acquired language definition as a metalanguage to understand another instruction

from the teacher concerning the language itself.

3.4 Interpretation of the Input Rule Statement

During the interpretation process, a VARIABLE of the user's language is trans-
lated into a variable node of the semantic network, The scope of a user VARI-
ABLE is the utterance in which it occurs. The association of a user VARIABLE to
its interpretation is maintained on a list only during translation of the utterance in
which the VARIABLE occurs.

The interpretation of a user VARIABLE is as follows: If a VARIABLE is used
as the VAR-NAME of a VAR-APPOSITION-PHR, discussed briefly in Sec-
tion 2.2.1, then the system uses the interpretation of the MAIN-APPOS-PHR as
the interpretation of the VARIABLE, and stores this association on the variable
association list. Otherwise, the system checks the variable association list for a
corresponding interpretation already established. Otherwise, a new variable node
is created as the interpretation of the user VARIABLE, the new pair once again
being added to the variable association list.

As shown in Figure25, the phrase “A NOUN-PHRASE X" was recognized by
the system as a VAR-APPOSITION-PHR, with “A NOUN-PHRASE" recognized
as the MAIN-APPOS-PHR and "X as the VAR-NAME. Thus the interpretation of

the phrase “A NOUN-PHRASE" is remembered by the system as the interpreta-

tion of 'X. The string “A NOUN-PHRASE” has b

een recognized as an INDEF-S-

noszHelwmm
DEF-S-PHRASE

'OF SUP-STRING-REF

|
VAR-APPOSITION-PHR

PHRASE and thus the semantic rule

DEF-NOUN- S-CAT MAIN-AFPOS-PHR VAR-NAME

PHRASE ?

ol m.w\\_ INDEF-S-PHRASE _
\/ VARIABLE

ﬂ_a NOUN ? INDEF-DET $~CAT _

HEAD-NOUN OF A ZOczmv:w>mm X

35, Hypothesized parse trees

INDEF-S-PHRASE > > [BSTR STRING S-CAT STRC +]

of Section 2.5.3 applies. As discussed in Section 2.5.3, if a constituent is mentioned
in a semantic rule but is missing from the surface string to which the rule applies,
then the system represents the interpretation of the constituent as an atomic node.
Furthermore, this atomic node is a variable node in the context of a RULE-STMT.
Since the slot-filler constituent of category STRING is not present in our example
INDEF-S-PHRASE, an atomic variable node (V2 of Fig.26) is built to represent
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Fig.26. Parse tree for the input rule statement
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the interpretation of the missing STRING constituent. The representation of the
interpretation of the S-CAT constituent “NOUN-PHRASE” is node B2, repre-
senting the category of NOUN-PHRASEs. The STRC slot-filler becomes the
interpretation of the INDEF-S-PHRASE. This slot-filler is also represented by an
atomic variable node (V1 of Fig.26) as explained in Sect.2.5.3. The + symbol in
the rewrite rule marks the participant of the proposition represented by the case
frame whose representation is also the representation of the interpretation of the
INDEF-S-PHRASE. Thus the interpretation of the INDEF-S-PHRASE “A
NOUN-PHRASE" is node V1 of Figure 26. That is, the INDEF-S-PHRASE is
interpreted as a variable node to be instantiated by a structure representing an
analyzed surface string which has an associated bounded-string (see Sect.2.2.3)
and category NOUN-PHRASE. V1 is also the interpretation of user VARIABLE
"X due to the string “A NOUN-PHRASE X" being a VAR-APPOSITION-PHR
and the association of V1 and "X is stored on the variable association list.

The input string “THE HEAD-NOUN OF A NOUN-PHRASE X" was parsed
as a CONSTIT-PHRASE (refer to Fig.26). The rule for interpreting a CONSTIT-
PHRASE was given in Section 3.3 as

CONSTIT-PHRASE > > [CONSTIT + CONSTITOF SUP-STRING-
REF)
[BSTR STRING CAT DEF-S-PHRASE STRC
+]

This rule stipulates that the interpretation of a CONSTIT-PHRASE is a partici-
pant in two case frames as defined in the two sets of brackets and the + symbol
marks the slot-filler that is the interpretation of the CONSTIT-PHRASE, Again an
atomic variable node is built to represent this slot-filler which also represents the
CONSTIT-PHRASE. The SUP-STRING-REF ist the constituent “A NOUN-
PHRASE X" (refer to Fig.26), whose interpretation is represented by node V1 of
Figure27. The structure representing the case frame defined in the second set of
brackets is built in a manner similar to that used in building the structure of Fig-
ure 27 and described above.

The interpretation of the example CONSTIT-PHRASE “THE HEAD-NOUN
OF A NOUN-PHRASE X" is represented by node V3 of Figure 28. The node V1
of Figure 28 ist the same node as V1 of Figure 27.

Assembling the interpretations of the constituents of our RULE-STMT from
Figures 27 and 28 and completing the interpretation of the RULE-STMT as the
system does using the semantic rewrite rules of this article, node M86 of Figure 29
represents the interpretation of the RULE-STMT. All of the variable nodes V1, V2,

Fig.27. Node V1 represents the interpreta-
tion of “A NOUN-PHRASE"

a
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PROPERTYOF

2.29. Node M86 represents the interpretation of the input rule

3, V4, m:u. V5 are universally quantified (refer to Shapiro (1979a) for the network
.vw,..‘moE»:o: of the quantification that is not shown in the figure and for Bwﬂn
;“:_m on the E_w. structures of SNePS). The &ANT and CQ arcs are the SNePS
stem arcs used in the network representation of “&-entailment”™, the entailment

any of a set of consequents by the conjunction of one or more antecedents.
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4 Language Use-Mention Distinction

In order for our system to treat linguistic knowledge as domain knowledge and to
receive instruction in the use of this knowledge, it is essential for the system to dis-
tinguish between use and mention of language (Quine, 1951). We have already
seen examples of this capability in our system. When words are entered into their
appropriate lexical categories as in Section 2.5.2a, they are mentioned. Those lex-
emes that are themselves names of lexical categories are subsequently used to refer
to their corresponding lexical categories. For example, the word 'VERB is men-
tioned when entered into the category L-CAT of lexical category names and
is subsequently used to refer to the category of verbs (see Sect. 2.5.2). The
word 'GOOSE is mentioned in the example sentence of Section 2.6 when specify-
ing that its number is singular, but, in a similar sentence, the word *GRADY is
used. .

As a more sophisticated example combining use and mention, we illustrate our
system's processing of an equivalent version of the classic sentence of Tarski
(1944) *'SNOW IS WHITE’ IS TRUE IF AND ONLY IF SNOW IS WHITE".
We do not treat truth relative to possible worlds. Our semantic network represents
only the belief space of the system, and asserted propositions are those believed by
the system.

We continue to build upon the language definition thus far input to the system
in this article. The additional lexical entries that we input are:

L-CAT — "MASS-NOUN ADJECTIVE — 'TRUE
PROPERTY — 'TRUTH-VALUE ADJECTIVE — 'FALSE
MASS-NOUN — 'SNOW

We explain to the system that

TRUE IS A TRUTH-VALUE
FALSE IS A TRUTH-VALUE

to be parsed and interpreted by the system as PROPERTY-CLASS-ENTRIES as
shown in Section 2.6. Additional syntax rules such as the following are needed:

NOUN-PHRASE — MASS-NOUN
NOUN-PHRASE — LITERAL-STRING

Upon input of the sentence
"If SNOW IS WHITE THEN “SNOW IS WHITE" IS TRUE

the system builds the parse tree shown in Figure 30 for the utterance.

Applying the teacher’s rules, the system builds the network rule of Figure 31 as
the interpretation of the input sentence. Node M92 represents the generic string
«“SNOW IS WHITE” and not just an instance of the string. Node M92 dominates
a pattern that is matched by any instance of the string, with V8 a universally
quantified variable node.

If the system believes that snow is white, then the rule shown in Figure 31 is
used appropriately and if we query the system regarding any instance of the string
“SNOW IS WHITE" it indicates that the string is true.
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RULE-STMT
[F ANT-CLAUSE 'THEN CO-CLAUSE
PROPERTY-CLAUSE PROPERTY~CLAUSE
SUBJECT vmmcwn;am SUBJECT vwmcmn;am
@@Hm BE-PREDICATE
PROPERTY-INDICATOR PROPERTY~INDICATOR
NOUN- PROPERTY-CLASS~- HOUN- PROPERTY-CLASS-
PHRASE INDICATOR PHRASE INDICATOR
BE-VERB BE-VERB
PREDICATE-ADJ PREDICATE~ADJ
MASS- ADJECTIVE LITERAL- ADJECTIVE
NOUN STRING
mLoz IS WHITE THEN "SNOW IS WHITE" IS TRUE

.30. Annotaled parse tree

complete the original bi-conditional statement, the converse statement
IF “SNOW IS WHITE" IS TRUE THEN SNOW IS WHITE

1 also be entered the system and the converse of the rule of Figure 31 is built
) the network as its interpretation.

sSummary

s article has presented our approach to NLU: an approach that focuses on the
ability of a natural langauge to be used as its own metalanguage. It is essential
his approach to have the system's parsing and linguistic knowledge be an inte-
part of its domain knowledge. It is our view that linguistic knowledge about a.
d or phrase is a part of its meaning or significance and, furthermore, there is
lear boundary line separating syntactic, semantic, and world knowledge. For
‘e reasons we represent linguistic knowledge along with other domain knowl-

® in an integrated knowledge base. Furthermore, the linguistic rules of the sys-

) !
§ knowledge base comprise the system's knowledge of language understand-
in the same way that the rules of any rule-based system comprise that svstem’s
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Fig.31. Interpretation of the input utterance “IF SNOW IS WHITE THEN ‘SNOW 1S WHITE'
IS TRUE”

knowledge of its domain of application. Our system also incorporates the use-
mention distinction for language. . S

We are exploring the possibility of a NLU system’s becoming more maon” in its
use of some language by being instructed in the use of the language. We wish this
explanation to be given in an increasingly sophisticated 2.;.&2 of the _mam.cwmo
being taught. The system must start with some language facility, and we are inter-
ested in seeing how small and theory-independent we can make the initial kernel
language. .

In this chapter, we have discussed the core x:oi_mamo and representations of
our system, including the kernel language, which consists of v.noann:na terms, .ma.a
syntactic and semantic rewrite rules with which to coozc‘mn.:..:o a more mon:_m:.
cated language definition. We have demonstrated the mm.vmc__:.« of increasing the
system's language facility by using the very same facility to instruct the system
about language understanding. We built up the system’s capability to the stage at
which it processed the sentence “IF THE HEAD-NOUN OF A zocz.w:m>mm
X HAS NUMBER Y THEN X HAS NUMBER Y”. We presented additional
examples of language being treated as the topic of discourse mno_c&qm the sys-
tem’s parsing and interpretation of the sentence “*SNOW IS WHITE' IS TRUE

IF AND ONLY IF SNOW IS WHITE".
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We discussed the system’s parsing strategy, which is a combined bottom-up,
p-down strategy. Our system’s parser is a general rule-based inference system in
nich applicable rules are activated in parallel in the form of processes or
:mons. The inference system employs bi-directional inference to cut down the
n out of pure forward or backward chaining.
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wpendix  Chronological Summary of Inpui to the System
as Presented in This Chapter

tion  Input
mber

L-CAT—'NOUN
L-CAT — 'PROPER-NOUN
L-CAT —"DEF-DET
L-CAT — 'INDEF-DET
L-CAT —'VERB
L-CAT — 'BE-VERB
L-CAT —'ADVERB
L-CAT — "ADJECTIVE
L-CAT — 'PREPOSITION
L-CAT—'CONJ
L-CAT — "PROPERTY
S-CAT — "HEAD-NOUN
S-CAT —'STRING
"VARIABLE — 'X
VARIABLE — 'Y

NOUN — 'GOOSE

NOUN — 'GEESE

PROPER-NOUN — ‘GRADY
PRAPER-NOUN — 'GLADYS
DEF-DET — “THE

INDEF-DET — ‘A

VERB — 'HAS

BE-VERB — IS

ADVERB — ‘'THEN

ADJECTIVE — "WHITE

ADJECTIVE — 'SINGULAR

ADJECTIVE — "PLURAL

PREPOSITION — 'OF

CONJ —'IF

PROPERTY — 'COLOR

PROPERTY — 'NUMBER
"UNIQUE-MEANING-CAT — "ADJECTIVE
UNIQUE-MEANING-CAT — 'PROPERTY

PRNADERTV./L ATIKE L CHIRIE/T DDENI/CATE

VORIV ONRNNVNOROORORNRDONRNGD NDRNRONNNRDRO NN NN DD
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Section  Input
Number
252 SUBJECT — NOUN-PHRASE
252 NOUN-PHRASE — LITERAL
252 NOUN-PHRASE — VARIABLE
252 NOUN-PHRASE — PROPER-NOUN
252 PREDICATE — RELATION-PREDICATE
252 PREDICATE — BE-PREDICATE
252 RELATION-PREDICATE — RELATION PREDICATE-ADI
252 BE-PREDICATE — BE-VERB PROPERTY-INDICATOR
252 RELATION — '"HAS PROPERTY-INDICATOR
252 PROPERTY-- INDICATOR — PROPERTY-CLASS-INDICATOR
2.5.2 PROPERTY-INDICATOR — PROPERTY
252 PROPERTY-CLASS-INDICATOR — PREDICATE-AD)
252 RULE-STMT — 'IF ANT-CLAUSE 'THEN CQ-CLAUSE
252 RELATION PREDICATE-ADJ — RELATION ADJECTIVE
252 RELATION PREDICATE-ADJ — RELATION VARIABLE
25.2 BE-VERB PREDICATE-ADJ — BE-VERB ADJECTIVE
252 'IF ANT-CLAUSE — 'IF PROPERTY-CLAUSE
252 "THEN CQ-CLAUSE — 'THEN PROPERTY-CLAUSE
253 PROPERTY-CLAUSE :: PROPERTY SUBJECT
PROPERTY PROPERTY-INDICATOR
VALUE PREDICATE-ADJ
253 ANT-CLAUSE :: PROPERTY-CLAUSE
2353 CQ-CLAUSE  :: PROPERTY-CLAUSE
253 SUBJECT :: NOUN-PHRASE
253 NOUN-PHRASE:: LITERAL
253 NOUN-PHRASE:: VARIABLE
2.5.3 NOUN-PHRASE:: PROPER-NOUN
253 PROPERTY-INDICATOR :: PROPERTY-CLASS-INDICATOR
253 PROPERTY-INDICATOR :: PROPERTY
253 PREDICATE-ADJ : ADJECTIVE
253 PREDICATE-ADJ :: VARIABLE
253 PROPERTY-CLASS-INDICATOR > >
{MEMBER ADJECTIVE PROPERTY-CLASS +]
253 INDEF-S-PHRASE > > (BSTR STRING CAT S-CAT STRC +]
2.6 GRADY HAS COLOR WHITE
2.6 *GOOSE HAS NUMBER SINGULAR
2.6 PROPERTY-CLASS-ENTRY — ADJECTIVE 'IS 'A PROPERTY
2.6 PROPERTY-CLASS-ENTRY :: MEMBER ADJECTIVE
PROPERTY-CLASS PROPERTY
26 WHITE IS A COLOR
2.6 PLURAL IS A NUMBER
2.6 GLADYS IS WHITE
2.6 ‘GEESE IS PLURAL
32 DEF-S-PHRASE — DEF-DET S-CAT
32 INDEF-S-PHRASE — INDEF-DET S-CAT
32 MAIN-APPOS-PHR VAR-NAME — INDEF-S-PHRASE VARIABLE
32 VAR-APPOSITION-PHR — MAIN-APPOS-PHR VAR-NAME
32 SUP-STRING-REF — VAR-APPOSITION-PHR
3.2 CONSTIT-REF ~ — DEF-S-PHRASE
3.2 CONSTIT-PHRASE— CONSTIT-REF 'OF SUP-STRING-REF

RIATIN DRIINACE AAMCTIT DUD ACT
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sebtion  Input
Jumber

2 CONSTIT-PHRASE > > [CONSTIT + CONSTITOF SUP-STRING-REF]
{BSTR STRING CAT DEF-5-PHRASE STRC +]

SUP-STRING-REF :: VAR-APPOSITION-PHR

MAIN-APPOS-PHR :: INDEF-S-PHRASE

NOUN-PHRASE CONSTIT-PHRASE

DEF-S-PHRASE  :: S-CAT

IF THE HEAD-NOUN OF A NOUN-PHRASE X HAS NUMBER Y
THEN X HAS NUMBER Y

L-CAT — 'MASS-NOUN
PROPERTY — 'TRUTH-VALUE
MASS-NOUN — 'SNOW
ADJECTIVE — 'TRUE
ADJECTIVE — 'FALSE

TRUE IS A TRUTH-VALUE

FALSE IS A TRUTH-VALUE
NOUN-PHRASE — MASS-NOUN
NOUN-PHRASE — LITERAL-STRING

IF SNOW IS WHITE THEN “SNOW IS WHITE" IS TRUE
IF “SNOW IS WHITE" IS TRUE THEN SNOW IS WHITE
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