
Crystal Cassie: Use of a 3-D Gaming Environment for a Cognitive Agent

John F. Santore and Stuart C. Shapiro
University at Buffalo, The State University of New York

201 Bell Hall Box 602000
Buffalo, NY 14260-2000

{jsantore|shapiro}@cse.buffalo.edu

Abstract

The SNePS research group has built several imple-
mentations of an embodied computational cogni-
tive agent called Cassie, based on the Grounded
Layered Architecture with Integrated Reasoning
(GLAIR). In this document we describe a new im-
plementation, in which Cassie’s body and the world
are simulated in Crystal Space, an environment for
building 3-D games. We describe the implementa-
tion of Cassie in a Crystal Space environment in-
cluding her current suite of actions and her sim-
ulated vision system. Crystal Cassie is a tool for
cognitive modeling and testing cognitive theories.
We briefly discuss our first use of the resulting sim-
ulated cognitive agent and our experiences using an
off-the-shelf 3-D product to build a cognitive agent.

1 Introduction
The SNePS research group has built several implementations
of an embodied computational cognitive agent called Cassie
[Shapiro, 1998; Shapiro et al., 2000; Shapiro and Ismail,
2001], based on the Grounded Layered Architecture with In-
tegrated Reasoning (GLAIR) [Hexmoor et al., 1993; Hex-
moor and Shapiro, 1997; Shapiro and Ismail, 2003]. There
has been one major hardware implementation of Cassie, us-
ing a commercial Nomad robot, and several simulated ver-
sions using various graphical user interfaces for her environ-
ment and to display her behavior to human observers. In
this document, we describe a new implementation, in which
Cassie’s body and the world are simulated in Crystal Space
[Tyberghein et al., 2002], an environment for building 3-D
games. In Section 2 we briefly describe the architecture we
are using. In Section 3, we discuss the implementation of the
architecture and how the pieces of the simulation fit together.
In Section 4 we briefly describe the current first use of this
simulation as a tool for cognitive modeling. And in Section 5
we discuss our experiences using Crystal Space as an off-the-
shelf 3-D gaming environment.

2 The Architecture
The simulation is based on the Grounded Layered Architec-
ture with Integrated Reasoning (GLAIR) [Hexmoor et al.,

1993; Hexmoor and Shapiro, 1997; Shapiro and Ismail,
2003], a three-layer architecture for cognitive robotics and
modeling cognitive agents. It consists of the Knowledge
Level, the Perceptuo-Motor Level, and the Sensory-Actuator
Level.

The Knowledge Level (KL) is the “conscious” level of
the cognitive agent. It is the location of symbols accessi-
ble to reasoning and to natural language interaction, includ-
ing the “abstract-level representations of objects” discussed
in [Coradeschi and Saffiotti, 2001a; Coradeschi and Saffiotti,
2001b; Shapiro and Ismail, 2003]. That is, the KL is the lo-
cation of the concepts that the cognitive agent has, including
its concepts of objects in the world.

The Perceptuo-Motor Level (PML) is the level of the cog-
nitive agent’s physical representation of objects. At this level,
the objects are represented by n-tuples of their physical char-
acteristics such as shape, material, and size, rather than by
their KL concepts. The PML is also the location of the cog-
nitive agent’s well defined skills, including natural language
understanding and generation and the primitive actions of the
KL—those skills which do not require conscious reasoning
from the agent. In practice, the PML is often separated into
three parts [Shapiro, 1998; Shapiro and Ismail, 2003], re-
ferred to as the PMLa, PMLb, and PMLc. Details of the
implementation are to be found in Section 3, below.

The Sensory-Actuator Level (SAL) is where the low level
control of the cognitive agent’s motors and sensors (real or
simulated) is located.

3 The Implementation of a GLAIR-based
Cognitive Agent in a Crystal Space
Environment

3.1 The Four Processes of Crystal Cassie

The Crystal Space version of Cassie (Crystal Cassie) is com-
posed of four separate processes. Two of the processes ex-
plicitly implement parts of the GLAIR architecture, one is
used for natural language interaction with a human user, and
the fourth contains the simulation of the agent’s physical body
and the world itself. The processes are connected using stan-
dard IP sockets. Each of these processes is described in more
detail below. Figure 1 shows the four processes, their socket
connections, and the parts of the GLAIR architecture that



KL
(SNePS)

PMLa
and
PMLb

PMLc

Vision

Action

NL In

NL Out

NLI

NL

SAL

Simulated
Body

Simulated
World

Action

Vision

P1

P2

P3

P4

Keyboard

NLI 
Display

P4
Display

Figure 1: A schematic of the four processes, showing how
they communicate with each other and with the user, and how
the various parts of the GLAIR architecture are distributed
among them.

they implement. The figure also shows the interface between
Crystal Cassie and a human user/interlocutor/observer.

Process P1 implements the KL, and the top two parts of
the PML. It is is written in Allegro Common Lisp. The KL
is identical to the FEVAHR knowledge level described in
[Shapiro and Ismail, 2003] but with different domain knowl-
edge. It is implemented using the SNePS knowledge repre-
sentation and reasoning system [Shapiro and Rapaport, 1987;
Shapiro and Rapaport, 1992; Shapiro and the SNePS Im-
plementation Group, 2002]. Symbols in the KL are im-
plemented as terms in the SNePS logic [Shapiro, 1993;
Shapiro, 2000].

Process P1 also contains parts of the PML. The top sub-
level of the PML (the PMLa) is where the agent’s well-
defined skills (KL primitive acts) are implemented. It is also
the place where natural language understanding and gener-
ation occurs. Natural language interaction is implemented
using a GATN grammar [Shapiro, 1982; Shapiro, 1989].

The second sub-level of the PML (the PMLb) imple-
ments the connection between the PMLa and the rest of the
simulated agent. In previous simulations, [Shapiro, 1998;
Shapiro and Ismail, 2003], the connection was made using
the Lisp foreign function interface. In Crystal Cassie, the
connections are made using socket connections. The PMLb
has four one way connections to the PMLc (described below).
These connections each represent one of the agent’s cognitive
modalities [Shapiro and Ismail, 2003].

The first connection is a one-way natural language (NL)
input connection (a “hearing” modality), over which sen-
tences are sent as strings. These strings are then sent to the
GATN parser at the PMLa level, which translates them into
the SNePS KR language.

The second connection is a one-way NL output connec-
tion (the agent’s “speech” modality) from the PMLb to the
PMLc. Sentences and phrases from the GATN generator are
sent through this connection.

The Action connection (the movement modality) is used to
send action requests from the PMLb to the PMLc/SAL layer.

The Vision connection (the vision modality) is a one-way

Figure 2: The users view of the NLI process during a sample
interaction.

connection from the PMLc to the PMLb, over which is sent
a series of n-tuples with the relevant features of all of the ob-
jects that are currently visible to the agent’s simulated vision
system. See Section 3.4 for more about the simulated vision
system.

The remaining three processes all currently use the Crystal
Space tools [Tyberghein et al., 2002] and are written in C++.

Process P2 implements the PMLc and the SAL. The PMLc
mediates between the PMLb and the SAL. This process con-
trols Cassie’s sensors and actuators and connects all the other
processes to each other. The PMLc has the four socket con-
nections to the PMLb discussed above. The SAL has three
more connections to the remaining processes. Each of these
connections and its function is described below in the para-
graph devoted to the process it is connected to.

The Natural Language Interface (NLI) process (P3) uses
the crystal space console window as a console that the user
uses to type natural language text to the agent. This process
connects to the SAL via a socket connection using the Crys-
tal Space C++ socket wrappers. The NLI sends one sentence
at a time, as a single line, to the SAL, and listens to its net-
work connection for replies. It prints the full text of any text
it receives prepended with the string “Cassie replies:” to its
display. Figure 2 shows the NLI display.

The last process, P4, implements the simulation of Cassie’s
body, and the simulation of the environment that Cassie in-
teracts with. P4 displays what Cassie can see, showing the
results of her interactions with the environment. See Fig-
ures 3 and 6 for views of what P4’s display looks like. The
simulated body connects to the SAL with two socket con-
nections. The Action Connection is a two-way connection.
The simulated robot body receives action requests (requests
to turn motors on or off, forward or backward) from the SAL.
Cassie’s body will then act on those requests. These actions
may or may not produce a change in the world. (e.g. ask-
ing Cassie to move forward when she is up against a table
will not accomplish anything.) In order to better model ac-



Figure 3: The P4 display showing a sample view of what
Cassie can see: a computer lab with two people in it.

tual robots, there is some uncertainty built into the simulated
robot. When the simulated body receives action requests, the
actual distance traveled may or may not be the amount re-
quested by the higher levels. When an action is finished (with
either success or failure) the simulated body sends the SAL a
short “action complete” message over the Action Connection.

The Vision Connection is a one-way socket connection
from the simulated robot body to the SAL. The body sends vi-
sion information in the form of a string consisting of a space-
deliminated 4-tuple of {material, shape, location, size} val-
ues. The SAL translates this simulated sensor data into the
“physical-level representations” [Coradeschi and Saffiotti,
2001a; Coradeschi and Saffiotti, 2001b; Shapiro and Ismail,
2003] appropriate to the PML.

Cassie’s simulated vision system can only see and send vi-
sual information about objects which appear within her first
person perspective of the world. See Figures 3 and 6 for sam-
ples of what Cassie can see. Cassie’s PML only receives fea-
ture tuples for those objects within her visual field, that is,
those shown on P4’s display.

Together, these four processes implement a working cog-
nitive agent based on the GLAIR robotic architecture.

3.2 Crystal Cassie’s Environments.
Crystal Space environments are defined in a Crystal Space
specific XML text file format. The file defines the geometry
of all of the objects in the environment, including the rooms,
and materials associated with those objects.

Objects are first defined by a series of vertices given by
<x, y, z> world-space coordinates; the x, y and z values of the
coordinates are each floating point numbers. These vertices
are then used to define polygons. In Crystal Space, as an
optimization, only one side of a polygon is visible: the visible
side is the one defined by the list of vertices in clockwise
order. Polygons are then grouped together to form objects—
either rooms or objects in the rooms.

In order to be visible, each polygon must also have a mate-
rial associated with it. Materials are images of the visible fea-

Figure 4: The floor plan of the smaller suite of interconnected
rooms.

tures of objects in the world. For example, in Figure 3 “wood”
is a material on the table object. A material is generated from
an image file in a Crystal Space data library . Most standard
image file formats are supported. Crystal Space data libraries
are implemented as zip archives referenced in a Crystal Space
specific configuration file. The height and width of material
images must be some power of two, though the height and
width need not be equal. Crystal Space will then tile the ma-
terial across the associated polygons. The syntax allows ma-
terials to be scaled before being tiled on the polygon, so that
users can create better looking worlds.

Crystal Space calls objects in rooms meshes. Meshes are
prototyped once as a group of vertices, polygons and asso-
ciated materials, and can then be used in any or all rooms
defined in the file. Meshes and rooms can both have “keys”
associated with them. These keys are ignored by the Crys-
tal Space engine, but can be queried by user programs. This
way objects in the world can have customized user data as-
sociated with them. Each object in our environments has two
keys associated with it, one for shape and one for material.
We use these keys in our simulated vision routine discussed
in Section 3.4.

Most commercial game engines have a graphical “world
editor” for users to design their environments. Crystal Space
does not yet have a native world editor, although the Crystal
Space project has supplied several programs to convert envi-
ronment files generated by some commercial world editors to
Crystal Space format. At the time we were designing our en-
vironment, however, these tools did not make use of many of
the Crystal Space features, so we built our environment files
using a text editor.

We did use the automated tools in one instance. The very
complex shapes of the robots and people in the world (See
Figures 3, 6, 7, and 8) were generated from public domain
and freely available Quake II model files. These meshes are
each composed of several hundred triangles. We used Crys-
tal Space conversion tools to convert the Quake II format to
crystal space format and then merged the resulting file into
our environment definition file.



Figure 5: The floor plan of the larger suite of rooms, with a
garage attached at the bottom.

We are currently using two different environments with the
Crystal Cassie simulation. The first is a small suite of four
interconnected rooms whose floor plan can be seen in Fig-
ure 4. The second environment is a much larger suite of
rooms whose floor plan can be seen in Figure 5.

The rooms in the smaller suite contain tables, chairs, drink-
ing glasses, bottles and sometimes robots. The larger suite is
intended to resemble a wing of an academic building. It in-
cludes: two classrooms with chairs, tables and white boards;
a computer lab with chairs, tables, computers, monitors and
keyboards; a lounge with a stove, table and Pepsi machine;
and a second lab with bulletin boards, a table with a large
machine on it, and a filing cabinet. The larger suite is con-
nected to a parking garage with a single car in it. Either suite
can also have people or robots wandering through it. Figure 3
shows a view of the computer lab in the larger suite, con-

taining some chairs, tables, computers and monitors, and two
people. Figure 6 shows a view of a room in the smaller suite,
containing a table with a bottle and several glasses on it, and
two robots roaming about.

3.3 Crystal Cassie’s current suite of actions
Currently, Crystal Cassie has a small repertoire of primitive
acts which she can use to build more complex behavior by
reasoning and planning at the KL. At the most basic, Cassie
can be told to turn left or right, or to go forward or backward.
Essentially, in this way she can be tele-operated through nat-
ural language. Cassie also has a primitive act for looking,
which is used to invoke the simulated vision (see Section 3.4).

Finding an object that is in the current room is also a prim-
itive act. Cassie will look and then turn and then look again,
repeating this sequence until either she finds the object, or
completes a 360 degree rotation. If she cannot find the object
in this room, she must reason at the KL about how to look for
it in another room.

Currently, Cassie’s final primitive act is to go to an ob-
ject. In order to go to an object she has to be looking at it,
which means that she has found it. When going to an object,
Cassie uses the location and size values in the vision 4-tuple
(see Section 3.4) of the PML description of the object. The
location is the object’s center of gravity. The size is the ob-
ject’s largest radius in the <x,z> plane. When Cassie goes
to an object, she plots a straight line course from her current
position to a position close to the object. This new position
is calculated using the location value for the object and the
sum of the size value and a small constant. Cassie will then
move along this straight line until she reaches the new point.
(Obstacle-avoidance is planned for the near future.)

Unlike previous versions of Cassie, following a moving ob-
ject is not a primitive act in Crystal Cassie. In order to follow
a moving object, Cassie must reason through a series of find-
ing and going-to acts.

3.4 Simulated Vision.
Processes P1, P2, and P4 of Crystal Cassie all play parts in
the simulated vision system. Vision information is only sent
by the simulated robot body when it receives a look action
request. Cassie begins the simulation not looking at anything,
and will only consciously look at the world if her reasoning
at the KL triggers an action that requires looking. When she
does the PML act of looking, the request is sent to the SAL,
which asks the robotic body to look at the world and inform
it of the objects that are currently visible.

At the level of the simulated robot body, the objects visi-
ble to Cassie are those also visible to the user viewing P4’s
display. (see Figures 3 & 6) One exception to this is that be-
cause of a peculiarity in how Crystal Space marks things as
visible, Cassie cannot see through doors into adjacent rooms.
This limitation is discussed further below. Cassie has a view-
ing angle of about 60 to 70 degrees in a single direction. The
view is similar to what is visible in most commercial immer-
sive 3-D computer games.

The look act, at the level of the simulated robot body, is
implemented as a P4 method which is called from the Crys-
tal Space libraries via the C++ callback mechanism. When



Figure 6: A view of the smaller environment from the P4
display, showing a room containing a table, on which is a
bottle and several glasses, and two robots.

requested, Crystal Space’s rendering algorithm will call this
method for every object that Crystal Space marks as visible.
This includes both the meshes that are visible, and the visible
rooms: the current room and nearby visible rooms. For each
object, the shape and material keys (see Section 3.2) are ex-
tracted. We are using the key value for material rather than
the name of the actual material for two reasons. The first rea-
son is a limitation of the Crystal Space API in the version
we are using. The name of the material is not available from
the polygon object associated with it. The second reason for
using a material key (should the first issue be resolved) is a
simplification of the simulated vision. Some objects, such as
the glasses, table, and bottles in Figure 6 have a single ma-
terial on all of their polygons. However, other objects, such
as the computer monitors in Figure 3 have multiple different
materials; some polygons have one material and other poly-
gons have another. In order to simplify the simulated vision
algorithm, we chose the material that we felt was most salient
as the material key value. This eliminates the problem of rec-
ognizing an object from different viewing angles.

In addition to the shape and material keys, the vision call-
back also retrieves the object’s current center point in world
coordinates and calculates the radius of the object. These data
points form the 4-tuple {material, shape, location, size} for
the current object. When the callback has finished with all of
the currently visible objects, the 4-tuples of those objects are
sent to the SAL in P2.

The simulated sensor controls in the SAL currently send
the 4-tuples from the vision system unchanged to the PML.

At the PMLa in P1, a vision tuple is “parsed” to see what
kind of thing it is. In the PML there is a data structure con-
taining a list of “alignments” between {material, shape} pairs
and Cassie’s concepts of the categories of things she knows
about (for example, the category of wooden tables). Once
this kind of basic object recognition is done at the PML, the
KL must be invoked to reason about exactly which specific
object Cassie is looking at. The KL uses the location infor-

mation from the 4-tuple to reason about which object Cassie
is looking at. It is impossible to distinguish between many of
the objects in the environment using only their shape and ma-
terial. The glasses in Figure 6 cannot be distinguished with
only shape and material nor can the robots in the same figure.
However, Cassie can reason about the identity of the glass she
is looking at by reasoning about its location.

The Crystal Space team recently released a new version
of the Crystal Space graphics tools. The original callback
method that we used for doing simulated vision was removed
in this new version. The original version used to return a list
of objects visible in the current room only. The replacement
mechanism that we are using now, will return all those objects
marked as “probably visible” by the system. Objects marked
probably visible are all those with at least part of their bound-
ing box within the view frustum of the P4 and either in the
current room or in a nearby room. Unfortunately this can in-
clude objects that are completely occluded by the walls sepa-
rating adjacent rooms. As a simple way of correcting this, we
cull out all meshes that are not in the current room. However
doors and the adjacent rooms themselves are still visible. In
order to see objects in an adjacent room, Cassie will have to
find a doorway and go through it.

4 The First Use of Crystal Cassie.
The first use of Crystal Cassie is as a test-bed for developing
a computational theory of identifying perceptually indistin-
guishable objects [Santore and Shapiro, 2002]. Two objects
are perceptually indistinguishable to a cognitive agent if the
agent cannot find any difference in their appearance by using
its sensors. By identifying perceptually indistinguishable ob-
jects we mean the following: when an agent finds an object
that is perceptually indistinguishable from one it has encoun-
tered before, the agent identifies the object if it successfully
decides whether the object is the same one it encountered pre-
viously, or if it is a new object. If the object has been encoun-
tered before, and the agent has encountered more than one
such object before, the agent should also know which one it
is currently encountering.

We are developing a computational theory of identifying
perceptually indistinguishable objects based on human per-
formance at the task. We have used the same environment
that Cassie operates in to perform a protocol-analysis exper-
iment with 69 subjects on a series of tasks that require them
to identify perceptually indistinguishable objects. The data
from these experiments are currently being analyzed and will
be reported in [Santore et al., Forthcoming].

The tasks performed by the human subjects, which Crystal
Cassie will also have to perform, are counting perceptually in-
distinguishable stationary and moving objects, and following
moving objects. The counting tasks are done in the smaller
suite of rooms. The following tasks are done in the larger
suite of rooms.

There are two conditions in each of the counting experi-
ments. When counting stationary objects, in the first condi-
tion, the rooms themselves all have a different material, and
so are perceptually distinguishable. In the second condition,
the rooms diagonally opposite each other have the same ma-



Figure 7: A robot used in the tasks that human subjects per-
formed, and which Cassie must perform.

terial and are therefore perceptually indistinguishable them-
selves. There are also two conditions in the experiment in
which the subject must count moving objects. In the first
condition, all of the objects look like the robot shown in Fig-
ure 7. In the second condition, some of the objects look like
the robot in Figure 7 while the rest look like the robot in Fig-
ure 8.

There are three conditions in the following experiments.
In the first, the object to be followed looks like the robot in
Figure 7 and there are several perceptually indistinguishable
robots wandering randomly in the suite. In the second fol-
lowing condition, the object to be followed again looks like
Figure 7 and several perceptually indistinguishable robots are
following their own paths in the suite. The third condition
requires the subject to follow a person while several percep-
tually distinguishable people follow their own paths through
the suite. A view from this last condition is shown in Figure 3.

The large suite of rooms is complicated enough for future
experiments with other tasks for Crystal Cassie.

5 Experiences using Crystal Space
When we decided to use an existing 3-D graphics/gaming en-
gine for the next simulated robot to be built on the GLAIR
architecture, we needed a tool with a published API. We also
wanted, if possible, an engine with publicly available source
code, so we could build the engine ourselves for different op-
erating systems. We had two possibilities, we could use a
commercial game engine that had released the source code
for its game under a public license, or we could use a pub-
licly available engine built by a group of hobbyists for their
own enjoyment.

At the time, id Software1 had released the software for their
original Quake game engine; they have since released the
software for some of their newer Quake engines as well. The
benefit of using this type of engine was that the API would be
well defined and fixed. The drawback was that the company

1http://www.idsoftware.com/

Figure 8: A second robot used in the human subjects’ and in
Cassie’s tasks.

was no longer supporting the product, so we would have to
fix any bugs or add any new features we needed.

The 3-D engines produced by hobbyists had a complemen-
tary set of benefits and drawbacks. Bugs are always being
fixed, and new features are being added. However, this can
make the API quite unstable. On the other hand, the origi-
nal designers are available to answer questions and provide
support.

Given these considerations, and the tools available when
this project started, we chose the Crystal Space engine, which
is a hobbyist project. Because Crystal Space development is
ongoing, we have to adjust our code with every release to re-
flect API changes. The Crystal Space developers include a list
of most of the necessary changes with each release. Recent
releases have reduced the number of necessary changes dra-
matically. The community of hobbyists that design and use
the Crystal Space engine supports projects built using Crys-
tal Space tools by quickly answering most questions. The
chances are fairly good that someone will know which of the
hundreds of C++ classes that compose Crystal Space will be
the best to use for a particular need.

We have used Crystal Space without modification as a set
of shared libraries, on both Linux and Solaris platforms as
an off the shelf solution to our 3-D engine needs. It provides
enough flexibility in building environments to allow a reason-
ably complex environment for our agent to explore.

Crystal Space has performed adequately as a library for
developing a simulated cognitive agent. Crystal Space still
has a few holes in its API, and the Crystal Space Designers are
working to fix them, and are committed to doing so without
creating too many incompatibilities with previous versions.
Overall we have been able to use Crystal Space successfully.

6 Conclusions
Crystal Cassie is a simulated cognitive agent, built on
GLAIR, an existing architecture for representing the control
of cognitive agents, SNePS, a knowledge representation and



reasoning system, and Crystal Space, an off the shelf 3-D en-
gine produced by a community of hobbyists. Crystal Cassie
can understand and generate sentences in a fragment of En-
glish, and has a small suite of primitive acts which she can use
to perform a larger repertoire of actions through the interven-
tion of her reasoning system. GLAIR is a three-layer archi-
tecture, the middle layer of which is separated into three sub-
layers. These five layers are implemented in two processes,
written in different computer languages, that communicate
over four socket connections representing the modalities of
speech, hearing, vision, and action. The lowest GLAIR layer
communicates with two additional processes, implementing
Cassie’s sensor and effector organs, over two two-way, and
one one-way socket connections, for natural language inter-
action (two-way), action (two-way), and vision (one-way).
The process that contains Cassie’s vision organ and action
effectors also contains a program that operates the simulated
world that she occupies. A human user/interlocutor/observer
can talk with Cassie using a keyboard and display connected
to her natural-language-interaction process, and can observe
the simulated world “through Cassie’s eyes” via a display at-
tached to the world simulator.

Crystal Cassie was designed and implemented in order to
develop a computational theory of identifying perceptually
indistinguishable objects. We have designed a number of
tasks that she will have to perform to demonstrate this abil-
ity, and have recorded protocols from a number of human
subjects performing the same tasks using the keyboard and
world-simulation display to “drive” through the environment.
The data from these experiments are currently being ana-
lyzed, and the theory is currently being formulated.

We have found Crystal Space to be a satisfactory set of
tools for implementing a reasonably complex environment for
a simulated cognitive agent. We are willing to share this en-
vironment with other interested researchers, who should con-
tact the first author of this paper.

Acknowledgments
The authors are grateful to the other members of The Univer-
sity at Buffalo SNePS Research Group for their contributions
to the design and implementation of SNePS and GLAIR, and
for their comments throughout the course of this project.

References
[Coradeschi and Saffiotti, 2001a] Coradeschi, S. and Saf-

fiotti, A. (2001a). Forward. In Coradeschi, S. and Saf-
fiotti, A., editors, Anchoring Symbols to Sensor Data in
Single and Multiple Robot Systems: Papers from the 2001
AAAI Fall Symposium, Technical Report FS-01-01, page
viii, Menlo Park CA. AAAI Press.

[Coradeschi and Saffiotti, 2001b] Coradeschi, S. and Saf-
fiotti, A. (2001b). Perceptual anchoring of symbols for
action. In Proceedings of the 17th international joint con-
ference on artificial intelligence (IJCAI-01), pages 407–
412, San Francisco CA. Morgan Kaufman.

[Hexmoor et al., 1993] Hexmoor, H., Lammens, J., and
Shapiro, S. C. (1993). Embodiment in GLAIR: a grounded

layered architecture with integrated reasoning for au-
tonomous agents. In Dankel, II, D. D. and Stewman, J., ed-
itors, Proceedings of The Sixth Florida AI Research Sym-
posium (FLAIRS 93), pages 325–329. The Florida AI Re-
search Society.

[Hexmoor and Shapiro, 1997] Hexmoor, H. and Shapiro,
S. C. (1997). Integrating skill and knowledge in expert
agents. In P. J. Feltovic, K. M. Ford, R. R. H., editor,
Expertise in Context, pages 383–404. AAAI/MIT Press,
Cambridge, MA.

[Santore et al., Forthcoming] Santore, J. F., Segal, E., and
Shapiro, S. C. (Forthcoming). Human identification of per-
ceptually indistinguishable objects. Forthcoming.

[Santore and Shapiro, 2002] Santore, J. F. and Shapiro, S. C.
(2002). Identifying perceptually indistinguishable objects:
Is that the same one you saw before? In Baral, C. and
McIlraith, S., editors, Cognitive Robotics (CogRob2002),
Papers from the AAAI Workshop, Technical Report WS-02-
05, pages 96–102, Menlo Park, CA. AAAI Press.

[Shapiro, 1982] Shapiro, S. C. (1982). Generalized aug-
mented transition network grammars for generation from
semantic networks. The American Journal of Computa-
tional Linguistics, 8(1):12–25.

[Shapiro, 1989] Shapiro, S. C. (1989). The CASSIE
projects: An approach to natural language competence. In
Martins, J. P. and Morgado, E. M., editors, EPIA 89: 4th
Portugese Conference on Artificial Intelligence 390, pages
362–380. Springer-Verlag.

[Shapiro, 1993] Shapiro, S. C. (1993). Belief spaces as sets
of propositions. Journal of Experimental and Theoretical
Artificial Intelligence (JETAI), 5(2 & 3):225–235.

[Shapiro, 1998] Shapiro, S. C. (1998). Embodied Cassie.
In Cognitive Robotics: Papers from the 1998 AAAI Fall
Symposium, Technical Report FS-98-02, pages 136–143.
AAAI Press, Menlo Park, CA.

[Shapiro, 2000] Shapiro, S. C. (2000). SNePS: A logic for
natural language understanding and commonsense reason-
ing. In Łucja Iwańska and Stuart C. Shapiro, editor, Natu-
ral Language Processing and Knowledge Representation:
Language for Knowledge and Knowledge for Language,
pages 175–195. AAAI Press/MIT Press, Menlo Park CA.

[Shapiro and Ismail, 2001] Shapiro, S. C. and Ismail, H. O.
(2001). Symbol-anchoring in Cassie. In Coradeschi, S.
and Saffioti, A., editors, Anchoring Symbols to Sensor
Data in Single and Multiple Robot Systems: Papers from
the 2001 AAAI Fall Symposium, Technical Report FS-01-
01, pages 2–8, Menlo Park, CA. AAAI Press.

[Shapiro and Ismail, 2003] Shapiro, S. C. and Ismail, H. O.
(2003). Symbol anchoring in a grounded layered architec-
ture with integrated reasoning. Robotics and Autonomous
Systems. in press.

[Shapiro et al., 2000] Shapiro, S. C., Ismail, H. O., and San-
tore, J. F. (2000). Our dinner with Cassie. In Working
Notes for the AAAI 2000 Spring Symposium on Natural
Dialogues with Practical Robotic Devices, pages 57–61,
Menlo Park, CA. AAAI.



[Shapiro and Rapaport, 1987] Shapiro, S. C. and Rapaport,
W. J. (1987). SNePS considered as a fully intensional
propositional semantic network. In Cercone, N. and Mc-
Calla, G., editors, The knowlege frontier, pages 263–315.
Springer-Verlag, New York.

[Shapiro and Rapaport, 1992] Shapiro, S. C. and Rapaport,
W. J. (1992). The SNePS family. Computers and Mathe-
matics with Applications, 23(2-5):243–275. Reprinted in
[?, pp. 243–275].

[Shapiro and the SNePS Implementation Group, 2002]
Shapiro, S. C. and the SNePS Implementation Group
(2002). SNePS 2.6 User’s Manual. Department of
Computer Science and Engineering, University at Buffalo,
The State University of New York, Buffalo NY.

[Tyberghein et al., 2002] Tyberghein, J., Zabolotny,
A., Sunshine, E., and et. al. (2002). Crystal
Space: Open Source 3D Engine Documentation.
http://crystal.sourceforge.net, .94 release edition.
ftp://crystal.sourceforge.net/pub/crystal/docs/download/.


