
The GLAIR Cognitive Architecture

Stuart C. Shapiro and Jonathan P. Bona
Department of Computer Science and Engineering and Center for Cognitive Science

State University of New York at Buffalo
{shapiro|jpbona}@buffalo.edu

Abstract

GLAIR (Grounded Layered Architecture with Integrated
Reasoning) is a multi-layered cognitive architecture for em-
bodied agents operating in real, virtual, or simulated envi-
ronments containing other agents. The highest layer of the
GLAIR Architecture, the Knowledge Layer (KL), contains
the beliefs of the agent, and is the layer in which conscious
reasoning, planning, and act selection is performed. The low-
est layer of the GLAIR Architecture, the Sensori-Actuator
Layer (SAL), contains the controllers of the sensors and ef-
fectors of the hardware or software robot. Between the KL
and the SAL is the Perceptuo-Motor Layer (PML), which
grounds the KL symbols in perceptual structures and subcon-
scious actions, contains various registers for providing the
agent’s sense of situatedness in the environment, and han-
dles translation and communication between the KL and the
SAL. The motivation for the development of GLAIR has been
“Computational Philosophy”, the computational understand-
ing and implementation of human-level intelligent behavior
without necessarily being bound by the actual implementa-
tion of the human mind. Nevertheless, the approach has been
inspired by human psychology and biology.

1. Introduction

GLAIR (Grounded Layered Architecture with Integrated
Reasoning) is a multi-layered cognitive architecture for em-
bodied agents operating in real, virtual, or simulated en-
vironments containing other agents (Hexmoor, Lammens,
and Shapiro 1993; Lammens, Hexmoor, and Shapiro 1995;
Shapiro and Ismail 2003). It was an outgrowth of the SNePS
Actor (Kumar and Shapiro 1991). Our motivating goal has
been what is called “Computational Philosophy” in (Shapiro
1992), that is, the computational understanding and imple-
mentation of human-level intelligent behavior without nec-
essarily being bound by the actual implementation of the hu-
man mind. Nevertheless, our approach has been inspired by
human psychology and biology.

Although GLAIR is a cognitive architecture appropriate
for implementing various cognitive agents, we tend to name
all our cognitive agents “Cassie.” So whenever in this paper
we refer to Cassie, we mean one or another of our imple-
mented GLAIR agents.

Copyright c© 2009, Stuart C. Shapiro and Jonathan P. Bona. All
rights reserved.

2. GLAIR as a Layered Architecture

2.1 The Layers

The highest layer of the GLAIR Architecture, the Knowl-
edge Layer (KL), contains the beliefs of the agent, and is
the layer in which conscious reasoning, planning, and act
selection is performed.

The lowest layer of the GLAIR Architecture, the Sensori-
Actuator Layer (SAL), contains the controllers of the sen-
sors and effectors of the hardware or software robot.

Between the KL and the SAL is the Perceptuo-Motor
Layer (PML), which, itself is divided into three sublayers.
The highest, the PMLa, grounds the KL symbols in percep-
tual structures and subconscious actions, and contains vari-
ous registers for providing the agent’s sense of situatedness
in the environment. The lowest of these, the PMLc, directly
abstracts the sensors and effectors into the basic behavioral
repertoire of the robot body. The middle PML layer, the
PMLb, handles translation and communication between the
PMLa and the PMLc.

2.2 Mind-Body Modularity

The KL constitutes the mind of the agent; the PML and SAL,
its body. However, the KL and PMLa layers are independent
of the implementation of the agent’s body, and can be con-
nected, without modification, to a hardware robot or to a
variety of software-simulated robots or avatars. Frequently,
the KL, PMLa, and PMLb have run on one computer; the
PMLc and SAL on another. The PMLb and PMLc handle
communication over I/P sockets.1

3. The KL: Memory and Reasoning

The KL contains the beliefs of the agent, including: short-
term and long-term memory; semantic and episodic mem-
ory; quantified and conditional beliefs used for reasoning;
plans for carrying out complex acts and for achieving goals;
beliefs about the preconditions and effects of acts; policies
about when, and under what circumstances, acts should be
performed; self-knowledge; and metaknowledge.

The KL is the layer in which conscious reasoning, plan-
ning, and act selection is performed. The KL is implemented

1Other interprocess communication methods might be used in
the future.

141

Biologically Inspired Cognitive Architectures II: 
Papers from the AAAI Fall Symposium (FS-09-01)



in SNePS (Shapiro and Rapaport 1992; Shapiro 2000b;
Shapiro and The SNePS Implementation Group 2008),
which is simultaneously a logic-based, frame-based, and
network-based knowledge representation and reasoning sys-
tem, that employs various styles of inference as well as be-
lief revision.

As a logic-based KR system, SNePS implements a
predicate logic with variables, quantifiers, and function
symbols. Although equivalent to First-Order Logic, its
most unusual feature is that every well-formed expression
is a term, even those that denote propositons (Shapiro
1993). This allows for metapropositions, propositions
about propositions, without restriction and without the need
for an explicit Holds predicate (Morgado and Shapiro
1985; Shapiro et al. 2007). For example the asserted
term, Believe(B8,Rich(B8)) in the context of the
asserted term, Propername(B8,Oscar), denotes the
proposition that Oscar believes himself to be rich (Ra-
paport, Shapiro, and Wiebe 1997). SNePS supports
forward- backward- and bidirectional-reasoning (Shapiro
1987; Shapiro, Martins, and McKay 1982) using a natural-
deduction proof theory, and belief revision (Martins and
Shapiro 1988).

Every functional term in SNePS is represented as an as-
sertional frame in which the argument positions are slots
and the arguments are fillers. This allows for sets of argu-
ments to be used to represent combinatorially many asser-
tions. For example, instanceOf({Fido, Lassie,
Rover}, {dog, pet}) might be used to represent the
assertion that Fido, Lassie, and Rover are dogs and pets. It
also allows sets to be used for symmetric relationships, for
example adjacent({US, Canada}) can represent the
assertion that the US and Canada are adjacent to each other
(Shapiro 1986). The frame view of SNePS supports “slot-
based inference”, whereby an asserted frame logically im-
plies one with a subset or superset of fillers in given slots
(Shapiro 2000a).

By treating the terms as nodes and the slots as labeled di-
rected arcs, SNePS can be used as a propositional network
(Shapiro and Rapaport 1987). This supports a style of in-
ference driven by following paths in the network (Shapiro
1978; 1991).

3.1 The Active Connection Graph

Reasoning is performed by an active connection graph
(ACS) (McKay and Shapiro 1980; 1981). Viewing the
SNePS knowledge base as a propositional graph, every
proposition-denoting term can be considered to be a node
with arcs pointing to its arguments. This includes non-
atomic propositions such as implications, each of which
has one set of arcs pointing to its antecedents and another
pointing to its consequents. Each proposition has a process
charged with collecting and transmitting inferred instances
of its propositions along the arcs to interested other pro-
cesses in a multiprocessing, producer-consumer, message-
passing system (Shubin 1981). This allows recursive rules to
be used without getting into an infinite loop, and prevents the
same inference from being worked on multiple times even if
it is a subgoal in multiple ways (McKay and Shapiro 1981),

and has not yet been satisfied.
The ACS is key to SNePS’ bidirectional inference

(Shapiro, Martins, and McKay 1982; Shapiro 1987). Infer-
ence processes are created both by backward inference and
by forward inference. If such a process is needed and al-
ready exists, a forward-chaining process (producer) adds its
results to the process’s collection, and a backward-chaining
process (consumer) is added to the producer-process’s con-
sumers to be notified. If a query is asked that can’t be
answered, the processes established for it remain, and can
be found be subsequent forward inferences. When new be-
liefs are added to the KL with forward inference, and exist-
ing consumer-processes are found for them, new consumer-
processes are not established. The result of this is that after
a query, additional new information is considered in light of
this concern. In other words, a GLAIR agent working on a
problem considers relevant new data only as it relates to that
problem, focussing its attention on it.

The ACS can be deleted. It is then reestablished the next
time a forward- or backward- inference begins. In this way
the GLAIR agent changes its attention from one problem to
another. When this change of attention happens is, however,
currently rather ad hoc. A better theory of when it should
happen is a subject of future research.

3.2 Contexts

Propositions may be asserted in the KL because they en-
tered from the environment. Either they were told to the
agent by some other agent, possibly a human, or they are
the result of some perception. Alternatively, a proposition
might be asserted in the KL because it was derived by rea-
soning from some other asserted propositions. We call the
former hypotheses and the latter derived propositions. When
a proposition is derived, an origin set, consisting of the set
of hypotheses used to derive it is stored with it (Martins
and Shapiro 1988) à la an ATMS (de Kleer 1986). At each
moment, some particular context, consisting of a set of hy-
potheses, is current. The asserted propositions, the propo-
sitions the GLAIR agent believes, are the hypotheses of the
current context and those derived propositions whose origin
sets are subsets of that set of hypotheses. If some hypothe-
sis is removed from the current context (i.e., is disbelieved),
the derived propositions that depended on it remain in the
KL, but are no longer believed. If all the hypotheses in the
origin set of a derived proposition return to the current con-
text, the derived proposition is automatically believed again,
without having to be rederived (Martins and Shapiro 1983;
Shapiro 2000b).

4. The PMLa
The PMLa, contains: the subconscious implementation of
the cognitively primitive actions of the KL; the structures
used for the perception of objects and properties in the en-
vironment; various registers for providing the agent’s sense
of situatedness in the environment, such as its sense of ”I”,
”You”, ”Now”, and the actions it is currently engaged in; and
procedures for natural language comprehension and genera-
tion. Further discussion of the PMLa, and its connections to
the KL may be found in §9. and (Shapiro and Ismail 2003).

142



5. The Behavior Cycle

Several cognitive architectures, such as ACT-R (Anderson
and Lebiere 1998), Soar (Laird, Newell, and Rosenbloom
1987), Icarus (Langley, Cummings, and Shapiro 2004), and
PRODIGY (Carbonell, Knoblock, and Minton 1990) are
based on problem-solving or goal-achievement as their basic
driver. GLAIR, on the contrary, is based on reasoning: either
thinking about some percept (often linguistic input), or an-
swering some question. The acting component is a more re-
cent addition, allowing an GLAIR agent also to obey a com-
mand, either to perform an act or to achieve a goal. However,
the focus of the design remains on reasoning. Problem solv-
ing vs. reasoning, however, are not incompatible tasks, but
alternative approaches to the ultimate goal of achieving an
AI-complete (Shapiro 1992) system.

GLAIR agents execute a sense-reason-act cycle, but not
necessarily in a strict cyclical order. GLAIR was developed
around implementations of SNePS as an interactive natu-
ral language comprehension, knowledge representation, and
reasoning system. The basic behavior cycle is:

1. input a natural language utterance.

2. analyze the utterance in the context of the current beliefs

• the analysis may require and trigger reasoning
• the analysis may cause new beliefs to be added to the

KL

3. if the utterance is a statement

(a) add the main proposition of the statement as a belief
(b) that proposition will be output

if the utterance is a question

(a) perform backward reasoning to find the answer to
the question

(b) the answer will be output

if the utterance is a command

(a) perform the indicated act
(b) the proposition that the agent performed the act will

be output

4. generate a natural language utterance expressing the out-
put proposition

• reasoning may be performed to formulate the utterance

The categorization of input into either statement (informa-
tive), question (interrogative), or command (imperative) as-
sumes that there are no indirect speech acts (Searle 1975)
or that the real speech act has already been uncovered. An
alternative would be to represent each input as “X said S,”
and reason about what the agent should do about it. Natu-
ral language analysis and generation is an optional part of
the GLAIR architecture. If it is omitted, the utterance is ex-
pressed in a formal language, such as SNePSLOG (Shapiro
and The SNePS Implementation Group 2008) (the formal
language used in this paper) and only step (3) is performed.

If this input-reason-output behavior cycle seems too re-
stricted for a cognitive agent, note that the input might be
“Perform a”, where a is an act, or “Achieve g”, where g is a

goal, and that might start an arbitrarily long sequence of be-
haviors. In fact, any of the reasoning episodes might trigger
afferent or efferent acts, and any act might trigger reasoning
(Kumar 1993; Kumar and Shapiro 1994).

There can be both passive and active sensing. Passive
sensing, such as seeing the environment as the agent navi-
gates through it, may result in percepts that, in a data-driven
fashion, motivate the agent to perform some act. Active
sensing, such as attending to some specific aspect of the en-
vironment, may be used in a goal-directed fashion to gain
particular information that can be used to decide among al-
ternative acts. For example, we have implemented a GLAIR
delivery agent that navigates the hallways of one floor of a
simulated building, and may be told to get a package from
one room, and deliver it to another. A primitive act of this
agent is goForward(): “ move one unit in the direction
it is facing.” As a result of such a move, and without an-
other act on its part, it believes either that it is facing a
room, a blank wall, or more corridor. Adding the appropri-
ate belief to the KL is built into the PMLa implementation of
goForward(), and is an example of passive sensing. On
the other hand, if the agent needs to know where it is, and it
is facing a room, it can deliberately read the room number by
performing the primitive act, readRoomNumber(). This
is an example of active sensing.

6. The Acting Model2

GLAIR’s acting model consists of: actions and acts; propo-
sitions about acts; and policies.

6.1 Policies

Policies specify circumstances under which reasoning leads
to action. An example of a policy is, “when the walk light
comes on, cross the street.” Policies are neither acts nor
propositions. We say that an agent performs an act, believes
a proposition, and adopts a policy. To see that policies are
not acts, note that one cannot perform “when the walk light
comes on, cross the street.” A good test for an expression
φ being a proposition is its ability to be put in the frame, “I
believe that it is not the case that φ.” It does not make sense
to say, “I believe that it is not the case that when the walk
light comes on, cross the street.” Note that this is different
than saying, “I believe that it is not the case that when the
walk light comes on, I should cross the street.” An agent
might explicitly believe “I should cross the street” without
actually doing it. However, if an GLAIR agent has adopted
the policy, “when the walk light comes on, cross the street,”
and it comes to believe that the walk light is on, it will cross
the street (or at least try to).

Policies are represented as functional terms in the KL,
along with other conscious memory structures. Three
policy-forming function symbols are built into GLAIR, each
of which take as arguments a proposition φ and an act α:

• ifdo(φ, α) is the policy, “to decide whether or not φ,
perform α”;

• whendo(φ, α) is the policy, “when φ holds, perform α”;

2Parts of this section were taken from (Shapiro et al. 2007).

143



• wheneverdo(φ, α) is the policy, “whenever φ holds,
perform α”.

A blocks-world example of ifdo is “To decide whether
block A is red, look at it”: ifdo(ColorOf(A,red),
lookAt(A)) (Kumar and Shapiro 1994).3

The policies whendo and wheneverdo are similar to
the production rules of production systems in that they
are condition-action rules triggered when forward-chaining
matches the condition. In the case of both whendo and
wheneverdo, if the policy has been adopted, the agent
performs α when forward inference causes φ to be believed.
Also, α is performed if φ is already believed when the pol-
icy is adopted. The difference is that a whendo policy is
unadopted after firing once, but a wheneverdo remains
adopted until explicitly unadopted.

6.2 Categories of Acts

An act may be performed by an agent, and is composed of
an action and zero or more arguments. For example, for
the Fevahr4 version of Cassie (Shapiro 1998) (henceforth
CassieF ), the term find(Bill) denotes the act of find-
ing Bill (by looking around in a room for him), composed of
the action find and the object Bill.5

Acts may be categorized on two independent dimensions:
an act may be either an external, a mental, or a control act;
and an act may be either a primitive, a defined, or a compos-
ite act.

External, Mental, and Control Acts Actions and, by ex-
tension, acts, may be subclassified as either external, men-
tal, or control. External acts either sense or affect the real,
virtual, or simulated outside world. An example mentioned
above from the Fevahr version of Cassie is find(Bill).
No external acts are predefined in the architecture; they must
be supplied by each agent designer.

Mental acts affect the agent’s beliefs and policies. There
are four:

1. believe(φ) is the act of asserting the proposition φ
and doing forward inference on it;

2. disbelieve(φ) is the act of unasserting the proposi-
tion φ, so that it is not believed, but its negation is not
necessarily believed;

3. adopt(π) is the act of adopting the policy π;

4. unadopt(π) is the act of unadopting the policy π.

Before believe changes the belief status of a propo-
sition φ, it performs a limited form of prioritized be-
lief revision (Alchourrón, Gärdenfors, and Makinson

3ifdo was called DoWhen in (Kumar and Shapiro 1994).
4“Fevahr” is an acronym standing for “Foveal Extra-Vehicular

Activity Helper-Retriever”.
5Actually, since the Fevahr Cassie uses a natural language

interface, the act of finding Bill is represented by the term
act(lex(find),b6), where: find is a term aligned with the
English verb find; lex(find) is the action expressed in English
as “find”; and b6 is a term denoting Bill. However, we will ignore
these complications in this paper.

1985). If andor(0,0){. . . , φ, . . .} is believed,6 it is
disbelieved. If andor(i,1){φ1, φ2, . . .} is believed,
for i = 0 or i = 1, and φ2 is believed, φ2 is disbelieved.

Control acts are the control structures of the GLAIR act-
ing system. The predefined control actions are:
• achieve(φ): If the proposition φ is not already be-

lieved, infer plans for bringing it about, and then perform
do-one on them.

• snsequence(α1, α2): Perform the act α1, and then the
act α2.

• prdo-one({pract(x1, α1), ...,
pract(xn, αn)}): Perform one of the acts αj ,
with probability xj/

∑
i xi.

• do-one({α1, . . . , αn}): Nondeterministically choose
one of the acts α1, . . . , αn, and perform it.

• do-all({α1, . . . , αn}): Perform all the acts
α1, . . . , αn in a nondeterministic order.

• snif({if(φ1, α1), ..., if(φn, αn),
[else(δ)]}): Use backward inference to deter-
mine which of the propositions φi hold, and, if any do,
nondeterministically choose one of them, say φj , and
perform the act αj . If none of the φi can be inferred,
and if else(δ) is included, perform δ. Otherwise, do
nothing.

• sniterate({if(φ1, α1), ..., if(φn, αn),
[else(δ)]}): Use backward inference to de-
termine which of the propositions φi hold, and, if
any do, nondeterministically choose one of them,
say φj , and perform the act snsequence(αj,
sniterate({if(φ1, α1), ..., if(φn, αn),
[else(δ)]})). If none of the φi can be inferred, and if
else(δ) is included, perform δ. Otherwise, do nothing.

• withsome(x, φ(x), α(x), [δ]): Perform backward in-
ference to find entities e such that φ(e) is believed, and,
if such entities are found, choose one of them nondeter-
ministically, and perform the act α on it. If no such e is
found, and the optional act δ is present, perform δ.

• withall(x, φ(x), α(x), [δ]): Perform backward infer-
ence to find entities e such that φ(e) is believed, and, if
such entities are found, perform the act α on them all in
a nondeterministic order. If no such e is found, and the
optional act δ is present, perform δ.
The acts snif, sniterate, withsome, and

withall all trigger reasoning. The default implementa-
tion of do-one uses a pseudorandom number generator to
choose the act to perform, and the default implementation of
do-all uses a pseudorandom number generator to choose
the order of the acts. However, an agent implementer
may replace either pseudorandom number generator with
reasoning rules to make the choice, in which case these acts
will also trigger reasoning.

6andor (Shapiro 1979) is a parameterized connective that
takes a set of argument-propositions, and generalizes and, inclu-
sive or, exclusive or, nand, nor, and exactly n of. A formula of
the form andor(i, j){φ1, . . . , φn} denotes the proposition that
at least i and at most j of the φk’s are true.

144



Primitive, Defined, and Composite Acts GLAIR actions
and acts may also be classified as either primitive, defined,
or composite. Primitive acts constitute the basic repertoire
of an GLAIR agent. They are either provided by the archi-
tecture itself, or are implemented at the PMLa. An example
predefined action is believe; an example primitive action
defined at the PMLa is the Fevahr Cassie’s find (Shapiro
1998). Because primitive actions are implemented below the
KL, GLAIR agents have no cognitive insight into how they
perform them.

A composite act is one structured by one of the con-
trol acts. For example, the Wumpus-World Cassie (Shapiro
and Kandefer 2005), whose only primitive turning acts are
go(right) and go(left), can turn around by per-
forming the composite act, snsequence(go(right),
go(right)).

A defined act is one that, unlike composite acts, is
syntactically atomic, and unlike primitive acts, is not
implemented at the PML. If a GLAIR agent is to perform
a defined act α, it deduces plans p for which it believes
the proposition ActPlan(α, p), and performs a do-one
of them. Such a plan is an act which, itself, can be
either primitive, composite, or defined. For example, the
Wumpus-World Cassie has a defined act turn(around),
which is defined by ActPlan(turn(around),
snsequence(go(right), go(right))).

6.3 Propositions About Acts

Four propositions about acts are predefined parts of the
GLAIR architecture:
1. Precondition(α, φ): In order for the agent to per-

form the act α, the proposition φ must hold.
2. Effect(α, φ) An effect of an agent’s performing the

act α is that the proposition φ will hold. The proposition φ
could be a negation, to express the effect that some propo-
sition no longer holds, such as Effect(putOn(x, y),
clear(y)).

3. ActPlan(α, p): One way to perform the act α is to per-
form the plan p.

4. GoalPlan(φ, p): One way to achieve the goal that the
proposition φ holds is to perform the plan p.

The only difference between a “plan” and an “act” is that a
plan is an act that appears in the second argument position
of an ActPlan or a GoalPlan proposition. However, in a
proposition of the form ActPlan(α, p), it is assumed that
p is “closer” to primitive acts than α is.

6.4 Conditional Plans

Consider a defined act for which there are different plans
depending on circumstances. For example, to get the mail, if
I’m at home, I go to the mailbox, but if I’m in the office, I go
to the mailroom. Such conditional plans may be represented
by implications:
at(home) => ActPlan(get(mail),

go(mailbox))
at(office) => ActPlan(get(mail),

go(mailroom))

perform(act):
pre := {p | Precondition(act,p)};
notyet := pre - {p | p ∈ pre & � p};
if notyet �= nil
then

perform(
snsequence(
do-all({a | p ∈ notyet

& a = achieve(p)}),
act))

else
{effects := {p | Effect(act,p)};
if act is primitive
then apply(

primitive-function(act),
objects(act));

else perform(
do-one({p

| ActPlan(act,p)}))
believe(effects)}

Figure 1: The acting executive

In a context in which at(home) is derivable, the plan
for getting the mail will be go(mailbox). When the
context changes so that at(home) is no longer deriv-
able, ActPlan(get(mail), go(mailbox)) will
no longer be asserted, nor derivable. However,
when the context is reentered, ActPlan(get(mail),
go(mailbox)) will again be asserted without the need
to rederive it.

7. The Acting Executive
The procedure for performing an act is shown in Fig. 1.
Notice that:
• Backward inference is triggered to find:

– the preconditions of act;
– whether each precondition currently holds;
– the effects of act;
– plans that can be used to perform act, if act is not

primitive.
• After the attempt is made to achieve the preconditions of
act, perform(act) is called again, which will again
check the preconditions, in case achieving some of them
undid the achievement of others.

• Effects of act are derived before act is performed in
case the effects depend on the current state of the world.

• If act is a defined act, only one way of performing it is
tried, and that is assumed to be successful. This will be
changed in future versions of GLAIR.

• After act is performed, all its effects are believed to
hold. This is naive, and will be changed in future ver-
sions of GLAIR. We have already implemented GLAIR
agents that only believe the effects of their acts that they
sense holding in the world, but this has been done by giv-
ing them no Effect assertions.

145



8. Modalities

Especially on hardware robots, the sensors and effectors can
operate simultaneously. To take advantage of this, GLAIR
supports a set of modalities. A modality represents a limited
resource—a PMLc-level behavior that is limited in what it
can do at once (for example, a robot cannot go forward and
backward at the same time), but is independent of the be-
haviors of other modalities (a robot can navigate and speak
at the same time). Each modality runs in a separate thread,
and uses its own communication channel between the PMLb
and PMLc layers. Each KL primitive action is assigned, at
the PMLa layer, to one or more modalities. Modalities that
have been implemented in various GLAIR agents include
speach, hearing, navigation, and vision. We intend to make
the organization into modalities a more thoroughgoing and
pervasive principle of the architecture. That version of the
architecture will be called MGLAIR.

9. Symbol Anchoring7

9.1 Alignment

There are KL terms for every mental entity Cassie has con-
ceived of, including individual entities, categories of enti-
ties, colors, shapes, and other properties of entities. There
are PML structures (at the PMLb and PMLc sub-levels) for
features of the perceivable world that Cassie’s perceptual ap-
paratus can detect and distinguish. Each particular perceived
object is represented at this level by an n-tuple of such struc-
tures, 〈v1, . . . , vn〉, where each component, vi, is a possible
value of some perceptual feature domain, Di. What domains
are used and what values exist in each domain depend on the
perceptual apparatus of the robot. We call the n-tuples of
feature values “PML-descriptions”.

Each KL term for a perceivable entity, category, or prop-
erty is grounded by aligning it with a PML-description,
possibly with unfilled (null) components. For example,
CassieF used two-component PML-descriptions in which
the domains were color and shape. The KL term denoting
CassieF ’s idea of blue was aligned with a PML-description
whose color component was the PML structure the vision
system used when it detected blue in the visual field, but
whose shape component was null. The KL term denoting
people was aligned with a PML-description whose shape
component was the PML structure the vision system used
when it detected a people in the visual field, but whose color
component was null.

Call a PML-description with some null components an
“incomplete PML-description”, and one with no null com-
ponents a “complete PML-description”. KL terms denot-
ing perceivable properties and KL terms denoting recogniz-
able categories of entities are aligned with incomplete PML-
descriptions. Examples include the terms for blue and for
people mentioned above, and may also include terms for
the properties tall, fat, and bearded, and the categories man
and woman. The words for these terms may be combined
into verbal descriptions, such as “a tall, fat, bearded man,”

7This section is taken from (Shapiro and Ismail 2003).

whose incomplete PML-descriptions may be used to percep-
tually recognize the object corresponding to the entity so de-
scribed.

A complete PML-description may be assembled for an
entity by unifying the incomplete PML-descriptions of its
known (conceived-of) properties and categories. Once a
PML-description is assembled for an entity, it is cached by
aligning the term denoting the entity directly with it. Af-
terwards, Cassie can recognize the entity without thinking
about its description. On the other hand, Cassie may have a
complete PML-description for some object without knowing
any perceivable properties for it. In that case, Cassie would
be able to recognize the object, even though she could not
describe it verbally.

If Cassie is looking at some object, she can recognize it
if its PML-description is the PML-description of some en-
tity she has already conceived of. If there is no such en-
tity, Cassie can create a new KL term to denote this new
entity, align it with the PML-description, and believe of it
that it has those properties and is a member of those cate-
gories whose incomplete PML-descriptions unify with the
PML-description of the new entity. If there are multiple
entities whose PML-descriptions match the object’s PML-
description, disambiguation is needed, or Cassie might sim-
ply not know which one of the entities she is looking at.

9.2 Deictic Registers

An important aspect of being embodied is being situated in
the world and having direct access to components of that
situatedness. This is modeled in GLAIR via a set of PML
registers (variables), each of which can hold one or more
KL terms or PML structures. Some of these registers derive
from the theory of the Deictic Center (Duchan, Bruder, and
Hewitt 1995), and include: I, the register that holds the KL
term denoting the agent itself; YOU, the register that holds
the KL term denoting the individual the agent is talking with;
and NOW, the register that holds the KL term denoting the
current time.

9.3 Modality Registers

GLAIR agents know what they are doing via direct access
to a set of PML registers termed “modality registers”. For
example, if one of Cassie’s modalities were speech, and she
were currently talking to Stu, her SPEECH register would
contain the KL term denoting the state of Cassie’s talking to
Stu (and the term denoting Stu would be in the YOU register).
In many cases, a single modality of an agent can be occupied
by only one activity at a time. In that case the register for that
modality would be constrained to contain only one term at a
time.

One of the modality registers we have used is for keeping
track of what Cassie is looking at. When she recognizes an
object in her visual field, the KL term denoting the state of
looking at the recognized entity is placed in the register, and
is removed when the object is no longer in the visual field. If
one assumed that Cassie could be looking at several objects
at once, this register would be allowed to contain several
terms. If asked to look at or find something that is already

146



in her visual field, Cassie recognizes that fact, and doesn’t
need to do anything.

9.4 Actions

Each KL action term that denotes a primitive action is
aligned with a procedure in the PMLa. The procedure takes
as arguments the KL terms for the arguments of the act to be
performed. For example, when Cassie is asked to perform
the act of going to Bill, the PMLa going-procedure is called
on the KL Bill-term. It then finds the PML-description of
Bill, and (via the SAL) causes the robot hardware to go
to an object in the world that satisfies that description (or
causes the robot simulation to simulate that behavior). The
PMLa going-procedure also inserts the KL term denoting
the state of Cassie’s going to Bill into the relevant modality
register(s), which, when NOW moves , causes an appropriate
proposition to be inserted into Cassie’s KL.

9.5 Time

As mentioned above, the NOW register always contains the
KL term denoting the current time (Shapiro 1998; Ismail
2001; Ismail and Shapiro 2000; 2001). Actually, since
“now” is vague (it could mean this minute, this day, this
year, this century, etc.), NOW is considered to include the
entire semi-lattice of times that include the smallest current
now-interval Cassie has conceived of, as well as all other
times containing that interval.
NOW moves whenever Cassie becomes aware of a new

state. Some of the circumstances that cause her to become
aware of a new state are: she acts, she observes a state hold-
ing, she is informed of a state that holds. NOW moves by
Cassie’s conceiving of a new smallest current now-interval
(a new KL term is introduced with that denotation), and NOW
is changed to contain that time. The other times in the old
NOW are defeasibly extended into the new one by adding
propositions asserting that the new NOW is a subinterval of
them.

Whenever Cassie acts, the modality registers change (see
above), and NOW moves. The times of the state(s) newly
added to the modality registers are included in the new NOW
semi-lattice, and the times of the state(s) deleted from the
modality registers are placed into the past by adding propo-
sitions that assert that they precede the new NOW.

To give GLAIR agents a “feel” for the amount of time
that has passed, the PML has a COUNT register acting as an
internal pacemaker (Ismail 2001; Ismail and Shapiro 2001).
The value of COUNT is a non-negative integer, incremented
at regular intervals. Whenever NOW moves, the following
happens:

1. the value of COUNT is quantized into a value δ which
is the nearest half-order of magnitude (Hobbs 2000) to
COUNT, providing an equivalence class of PML-measures
that are not noticeably different;

2. a KL term d, aligned with δ, is found or created, providing
a mental entity denoting each class of durations;

3. a belief is introduced into the KL that the duration of
t1, the current falue of NOW,is d, so that the agent can

have beliefs that two different states occurred for about
the same length of time;

4. a new KL term, t2 is created and a belief is introduced
into the KL that t1 is before t2;

5. NOW is reset to t2;

6. COUNT is reset to 0, to prepare for measuring the new
now-interval.

9.6 Language

Cassie interacts with humans in a fragment of English. Al-
though it is possible to represent the linguistic knowledge of
GLAIR agents in the KL, use reasoning to analyze input ut-
terances (Neal and Shapiro 1985; 1987b; 1987a; Shapiro and
Neal 1982), and use the acting system to generate utterances
(Haller 1996; 1999), we do not currently do this. Instead, the
parsing and generation grammars, as well as the lexicon, are
at the PML. (See, e.g. (Rapaport, Shapiro, and Wiebe 1997;
Shapiro 1982; Shapiro and Rapaport 1995).) There are KL
terms for lexemes, and these are aligned with lexemes in the
PML lexicon. We most frequently use a KL unary functional
term to denote the concept expressed by a given lexeme, but
this does not allow for polysemy, so we have occasionally
used binary propositions that assert that some concept may
be expressed by some lexeme. There may also be KL terms
for inflected words, strings of words, and sentences. This al-
lows one to discuss sentences and other language constructs
with GLAIR agents.

10. Bodily Feedback

The control acts snsequence, do-all, sniterate,
and withall each cause a sequence of acts to be per-
formed before it is completed. In a normal, single-processor,
procedural/functional architecture this would not cause a
problem as each act in the sequence would be performed
only after the previous one returns control to the control
act. However, in GLAIR, primitive acts are performed
in modalities operating concurrently with reasoning, so it
is important for the control act to get feedback from the
body that an act has completed before it proceeds to the
next act in the sequence. Think of the problem deaf peo-
ple have speaking at a “normal” rate without being able to
hear themselves. In previous agents (Shapiro et al. 2005b;
2005c), bodily feedback for the speech modality was pro-
vided for via the hearing modality, but this was included ex-
plicitly at the KL and using a special pacedSequence act.
We intend to build bodily feedback directly into the GLAIR
architecture in the future.

11. Properties of cognitive architectures

In this section, we discuss GLAIR using propertes listed in
(Langley, Laird, and Rogers 2009).

11.1 Representation of knowledge

Knowledge (more properly, beliefs) is represented in
the GLAIR Knowledge Layer in SNePS, which is si-
multaneously a logic-based, assertional frame-based, and

147



graph(network)-based knowledge representation and rea-
soning system. Noteworthy features of the SNePS repre-
sentation are: every well-formed expression is a term, even
those denoting propositions; all beliefs and conceived-of en-
tities are represented in the same formalism, including rea-
soning rules (such as conditionals) and acting plans. SNePS
is more fully discussed above and in the cited papers.

Single notation vs. Mixture of formalisms Although
all knowledge is represented in a single formalism, namely
SNePS, SNePS, itself, is simultaneously three different for-
malisms: logic-based, which supports a natural-deduction-
style inference mechanism; assertional frame-based, which
supports inference from one frame to another with a subset
or superset of fillers in some of the slots; and graph/network-
based, which supports inference of labeled arcs from the
presence of paths of labeled arcs.

Support for metaknowledge Since every SNePS expres-
sion is a term, including those that denote propositions,
propositions about propositions may be represented without
restriction and without the need for an explicit Holds
predicate. The default acts included as options in snif,
sniterate, withsome, and withall provide for
lack-of-knowledge acting. The use of conditional plans,
as discussed in § 6.4 , has allowed a GLAIR agent to
use contextual information to select among alternative
mathematical procedures to perform (Shapiro et al. 2007).

By including in the Knowledge Layer a term that refers
to the agent itself, GLAIR agents are able to represent and
reason about themselves. As mentioned in § 9.2, a deictic
register in the PML is a pointer to the self-concept. PMLa
implementations of primitive acts can insert beliefs into
the KL about what the agent is currently doing, and the
movement of time, as discussed in § 9.5, gives the agent an
episodic memory.

Giving GLAIR agents knowledge of the actions they are
currently performing above the level of primitive actions is
a subject of further work.

Declarative vs. Procedural representations The Knowl-
edge Layer contains declarative representations of knowl-
edge, even of procedures for carrying out defined acts (see
§ 6.2 ). The PMLa contains implementations of primitive
acts in a way that is not cognitively penetrable. We have not
yet experimented with GLAIR agents that learn such proce-
dural representations of primitive acts.

Semantic memory vs. Episodic memory The Knowl-
edge Layer is the locus of both semantic and episodic mem-
ory. Most of the beliefs of GLAIR agents we have developed
so far are parts of semantic memory. As mentioned above,
PMLa implementations of primitive acts can insert beliefs
into the KL about what the agent is currently doing, and the
movement of time, as discussed in § 9.5, gives the agent an
episodic memory.

11.2 Organization of knowledge

Flat vs. Structured/Hierarchical organization of knowl-
edge SNePS uses an inherently structured organization of
knowledge. Its term-based predicate logic representation
allows for nested functional terms, including proposition-
valued terms, the act-valued terms that constitute composite
acts, and reasonng rules. SNePS has often been used to rep-
resent hierarchical information, including subsumption hier-
archies, parthood and other mereological relations, and sim-
ilar information used in ontological reasoning.

Short-term vs. long-term memory GLAIR currently has
no short-term memory from which some memories migrate
into long-term memory. The closest thing to a short-term
or working memory is the active connection graph (see
§ refsec:acg ), which contains the demons currently work-
ing on one problem, which are discarded when the agent
changes to another problem.

12. Evaluation criteria for cognitive

architectures

In this section, we evaluate GLAIR according to criteria
listed in (Langley, Laird, and Rogers 2009).

12.1 Generality, versatility, and taskability

Generality The KL and PMLa layers are independent of
the implementation of the lower body and the environment
as long as there is some way for the primitive sensory and ef-
fector acts at the PMLa layer to be implemented in the SAL
layer. The agent designer designs the PMLb and PMLc lay-
ers to effect the connection. GLAIR agents have been ac-
tive in: a real world laboratory setting (Shapiro 1998); a vir-
tual reality world (Shapiro et al. 2005c); a world simulated
by ASCII input/output (Kandefer and Shapiro 2007); and
graphically simulated worlds (Shapiro and Kandefer 2005;
Anstey et al. in press).

Versatility The GLAIR architecture lends itself to modu-
lar design for new environments and tasks. If the designers
have a specific agent body and environment in mind, they
must identify the afferent and efferent behavior repertoire
of the agent. They can then specify the actions to be im-
plemented at the PMLa layer. These become the primitive
actions at the KL layer, and high-level actions can be pro-
grammed using the acting model described in § 6.
Since the control actions, which include snsequence,
snif, and sniterate, form a Turing-complete set, a
GLAIR agent can perform any task that can be composed
computationally from its primitive acts (Böhm and Jacopini
1966).

Once the KL primitive actions have been designed, it is
common to test and further develop the agent in a simulated
environment before moving it to a hardware robot in the real
world, or to a more detailed simulation in a graphical or vir-
tual world.

Taskability One benefit of representing acts in the same
formalism as other declarative knowledge is that agents that

148



communicate with a GLAIR agent can command it to per-
form tasks using the same communication language. The
formal language commonly used is SNePSLOG, the lan-
guage in which the acting model was explained in § 6.,
but GLAIR agents have been built that use fragments of
English (Shapiro 1989; Shapiro, Ismail, and Santore 2000;
Shapiro and Ismail 2003; Kandefer and Shapiro 2007). The
meaning of verb phrases are represented in the act struc-
tures of the acting model. If English versions of con-
tol acts are included in the fragment of English, GLAIR
agents may be given composite acts to perform. For ex-
ample, CassieF (Shapiro 1998) can be told to “Go to the
green robot and then come here and help me.” With appro-
priate grammatical support, natural language may be used
to teach GLAIR agents new tasks. For example, an early
GLAIR agent was told, “IF a block is on a support then a
plan to achieve that the support is clear is to pick up the
block and then put the block on the table” (Shapiro 1989;
Shapiro, Ismail, and Santore 2000).

12.2 Rationality and optimality

Rationality When attempting to achieve a goal φ, a
GLAIR agent chooses an act α to perform based on its
belief that the act will achieve the goal, as expressed by
GoalPlan(φ, α). However, we have not yet experi-
mented with GLAIR agents that formulate such beliefs by
reasoning about the effects of various acts. That is, we have
not yet developed GLAIR agents that do traditional AI plan-
ning. Nor have we experimented with GLAIR agents that
formulate GoalPlan beliefs after acting and noting the ef-
fects of its acts. So a GLAIR agent is rational in the sense
that it selects an act that it believes will lead to the goal.
However, it doesn’t know that the act will lead to the goal.

Optimality The GLAIR architecture allows for, but does
not explicitly implement as part of the architecture, agents
that choose optimal actions based on preferences they form.
This has been used to implement agents that can prefer
certain shortcut ways of performing arithmetical operations
(Goldfain 2008), and by metacognitive agents such as those
described in (Shapiro et al. 2007), which are able to observe
themselves at work and prefer efficient (requiring fewer
steps than the alternatives) ways of accomplishing a goal.

12.3 Efficiency and scalability

SNePS does not place any formal restriction on the num-
ber of terms that can be represented and stored, nor on the
number of relations between them. There is a naturally-
occurring limit that depends on the computational resources
available to the system and will vary from one machine to
the next. The upper limit for any instance of SNePS depends
on the heap size of the Lisp image in which it is running.
We have not evaluated SNePS in terms of formal computa-
tional complexity, A recent technical report on SNePS’ effi-
ciency (Seyed, Kandefer, and Shapiro 2008) shows that the
system can reason over knowledge bases that include tens
of thousands of terms/propositions, though some reasoning
tasks take many seconds to complete in this situation. The

same report outlines steps to increase the number of sup-
ported memory elements and the speed with which they are
processed by the system. Some of these planned modifica-
tions have already been implemented in the latest releases.
Other proposed changes include introducing a sophisticated
scheme for moving to long-term memory information in the
KB that is not being used in the service of reasoning at that
time and is not likely to be used soon. SNePS3 (currently un-
der development) will introduce even more efficiency gains.

12.4 Reactivity and persistence

GLAIR’s use of separate buffers for separate perceptual
modalities facilitates reactivity by ensuring that sensory data
from one modality does not block and demand all of an
agent’s “attention.” In some of our work with GLAIR-based
agent-actors for virtual drama(Shapiro et al. 2005a), agents
interact with human audience participants in a 3D virtual
world that allows the human a great deal of freedom to move
around in, and effect changes within, the world. In one case,
the agent’s task is to guide the participant on a quest and
complete a series of activities. The participant’s actions can-
not be fully anticipated, and may include verbally addressing
the agent, losing interest and wandering off, making unre-
stricted movements unrelated to the task, etc. The agent’s
task then consists of following and keeping up with the par-
ticipant and reacting as appropriately as is possible to her
actions while simultaneously trying to convince her to par-
ticipate in the assigned task. This requires an implementa-
tion of persistence in which the agent keeps track of goals
for the current task (and the greater quest), while simultane-
ously dealing with unpredictable changes in the environment
due to the participant’s activities.

12.5 Improvability

Improvability GLAIR includes several forms of learning:
Learning by being told: Propositions and policies added

to the KL, whether from a human, another agent, or via
perception are immediately available for use. For exam-
ple, a GLAIR agent is instructable. If it is unable, due
to lack of knowledge, to perform some act, a human may
instruct it so that the agent will be able to perform that act
in the future.

Contextual learning: As discussed in §3.2, when a propo-
sition φ is derived in a context C, its origin set o,
a set of hypotheses, is stored with it. As the agent
performs, the context will probably change and some
of the hypotheses in o be removed from the context.
When a new context arises that again contains all the
hypotheses in o, φ will again be asserted without hav-
ing to be rederived. Consider a conditional plan such
as φ => GoalPlan(α, p). The first time the plan
is considered in an appropriate context, φ and then
GoalPlan(α, p) will have to be derived. If another sit-
uation arises in which the hypotheses in o are asserted,
GoalPlan(α, p) will be asserted without the need for
rederivation.

Experience-Based Deductive Learning Consider the gen-
eral definition of transitivity, expressible in SNePSLOG

149



as

all(r)(Transitive(r)
=> all(x,y,z)({r(x,y), r(y,z)}

&=> r(x,z)))

along with the belief that Transitive(ancestor).
The first time an ancestor question is posed to Cassie,
she will use the transitivity definition to derive

all(x,y,z)({ancestor(x,y),
ancestor(y,z)}
&=> ancestor(x,z)))

and then answer the question. The specific ancestor
rule will be stored in the Knowledge Layer. The next time
an ancestor question is posed, Cassie will use the spe-
cific ancestor rule, but not the general transitivity def-
inition. Even though the knowledge base is now larger
(two rules are stored instead of one), the second ques-
tion will be answered more quickly than if the first ques-
tion hadn’t been asked. Cassie has developed a kind of
expertise in ancestor-reasoning (Choi and Shapiro 1991;
Choi 1993).

Several other forms of improvability have not yet been
added to GLAIR. For example, we have not yet experi-
mented with agents that use the observed effects of its acts
to modify or extend its plans. Nor have we yet experimented
with agents that “compile” defined acts into primitive acts.

12.6 Autonomy and extended operation

The GLAIR acting system allows for agents that act au-
tonomously for long periods of time, though we have not
made any formal measure of agents’ degrees of autonomy.
Many of our agents can act indefinitely independent of any
explicit instructions from, or interactions with, an opera-
tor by pursuing goals, following plans, and responding to
changes in the environment as they are perceived.

13. Future Concerns

Several issues that are certainly important for cognitive ar-
chitectures have not yet been addressed in the development
of GLAIR. These include uncertainty and considerations of
real-time operation to limit the amount of reasoning.

14. Current Status

SNePS has been under development, with numerous uses,
modifications, additions, and reimplementations since be-
fore 1979 (Shapiro 1979). Likewise, GLAIR has been under
development since before 1993 (Hexmoor, Lammens, and
Shapiro 1993), and has been used for a variety of agents, for
some examples see (Shapiro and Kandefer 2005; Kandefer
and Shapiro 2007; Anstey et al. in press). MGLAIR is still
being defined, although prototype versions have been used
to build a variety of agents (Shapiro et al. 2005a).

References

Alchourrón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction

and revision functions. The Journal of Symbolic Logic
50(2):510–530.
Anderson, J. R., and Lebiere, C. 1998. The Atomic Com-
ponents of Thought. Mahwah, NJ: Lawrence Erlbaum.
Anstey, J.; Seyed, A. P.; Bay-Cheng, S.; Bona, J.; Hibit,
S.; Pape, D.; Shapiro, S. C.; and Sena, V. in press. The
agent takes the stage. International Journal of Arts and
Technology,.
Böhm, C., and Jacopini, G. 1966. Flow diagrams, turing
machines, and languages with only two formation rules.
Communications of the ACM 9(5):366–371.
Carbonell, J. G.; Knoblock, C. A.; and Minton, S. 1990.
PRODIGY: An integrated architecture for planning and
learning. In VanLehn, K., ed., Architectures for Intelli-
gence. Hillsdale, NJ: Lawrence Erlbaum. 241–278.
Choi, J., and Shapiro, S. C. 1991. Experience-based deduc-
tive learning. In Third International Conference on Tools
for Artificial Intelligence TAI ’91. Los Alamitos, CA: IEEE
Computer Society Press. 502–503.
Choi, J. 1993. Experience-Based Learning in Deductive
Reasoning Systems. PhD dissertation, Technical Report 93-
20, Department of Computer Science, State University of
New York at Buffalo, Buffalo, NY.
de Kleer, J. 1986. An assumption-based truth maintenance
system. Artificial Intelligence 28(2):127–162.
Duchan, J. F.; Bruder, G. A.; and Hewitt, L. E., eds.
1995. Deixis in Narrative: A Cognitive Science Perspec-
tive. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Goldfain, A. 2008. A Computational Theory of Early
Mathematical Cognition. Ph.D. Dissertation, State Univer-
sity of New York at Buffalo, Buffalo, NY.
Haller, S. 1996. Planning text about plans interactively.
International Journal of Expert Systems 9(1):85–112.
Haller, S. 1999. An introduction to interactive discourse
processing from the perspective of plan recognition and
text planning. Artificial Intelligence Review 13(4):259–
333.
Hexmoor, H.; Lammens, J.; and Shapiro, S. C. 1993. Em-
bodiment in GLAIR: a grounded layered architecture with
integrated reasoning for autonomous agents. In Dankel II,
D. D., and Stewman, J., eds., Proceedings of The Sixth
Florida AI Research Symposium (FLAIRS 93). The Florida
AI Research Society. 325–329.
Hobbs, J. R. 2000. Half orders of magnitude. In Obrst,
L., and Mani, I., eds., Papers from the Workshop on Se-
mantic Approximation, Granularity, and Vagueness, 28–
38. A Workshop of the Seventh International Conference
on Principles of Knowldege Representation and Reason-
ing, Breckenridge, CO.
Ismail, H. O., and Shapiro, S. C. 2000. Two problems with
reasoning and acting in time. In Cohn, A. G.; Giunchiglia,
F.; and Selman, B., eds., Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Seventh In-
ternational Conference (KR 2000), 355–365. San Fran-
cisco: Morgan Kaufmann.

150



Ismail, H. O., and Shapiro, S. C. 2001. The cognitive
clock: A formal investigation of the epistemology of time.
Technical Report 2001-08, Department of Computer Sci-
ence and Engineering, University at Buffalo, Buffalo, NY.
Ismail, H. O. 2001. Reasoning and Acting in Time. PhD
dissertation, Technical Report 2001-11, University at Buf-
falo, The State University of New York, Buffalo, NY.
Kandefer, M., and Shapiro, S. C. 2007. Knowledge acqui-
sition by an intelligent acting agent. In Amir, E.; Lifschitz,
V.; and Miller, R., eds., Logical Formalizations of Com-
monsense Reasoning, Papers from the AAAI Spring Sym-
posium, Technical Report SS-07-05, 77–82. Menlo Park,
CA: AAAI Press.
Kumar, D., and Shapiro, S. C. 1991. Architecture of an
intelligent agent in SNePS. SIGART Bulletin 2(4):89–92.
Kumar, D., and Shapiro, S. C. 1994. Acting in service of
inference (and vice versa). In Dankel II, D. D., ed., Pro-
ceedings of The Seventh Florida AI Research Symposium
(FLAIRS 94). The Florida AI Research Society. 207–211.
Kumar, D. 1993. A unified model of acting and inference.
In Proceedings of the Twenty-Sixth Hawaii International
Conference on System Sciences. Los Alamitos, CA: IEEE
Computer Society Press.
Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987.
SOAR: an architecture for general intelligence. Artificial
Intelligence 33(1):1–64.
Lammens, J. M.; Hexmoor, H. H.; and Shapiro, S. C. 1995.
Of elephants and men. In Steels, L., ed., The Biology
and Technology of Intelligent Autonomous Agents. Berlin:
Springer-Verlag, Berlin. 312–344.
Langley, P.; Cummings, K.; and Shapiro, D. 2004. Hierar-
chical skills and cognitive architectures. In Proceedings of
the Twenty-Sixth Annual Conference of the Cognitive Sci-
ence Society, 779–784.
Langley, P.; Laird, J. E.; and Rogers, S. 2009. Cognitive
architectures: Research issues and challenges. Cognitive
Systems Research 10(2):141–160.
Lehmann, F., ed. 1992. Semantic Networks in Artificial
Intelligence. Oxford: Pergamon Press.
Martins, J. P., and Shapiro, S. C. 1983. Reasoning in
multiple belief spaces. In Proceedings of the Eighth In-
ternational Joint Conference on Artificial Intelligence. San
Mateo, CA: Morgan Kaufmann. 370–373.
Martins, J. P., and Shapiro, S. C. 1988. A model for belief
revision. Artificial Intelligence 35:25–79.
McKay, D. P., and Shapiro, S. C. 1980. MULTI — a LISP
based multiprocessing system. In Proceedings of the 1980
LISP Conference, 29–37.
McKay, D. P., and Shapiro, S. C. 1981. Using active con-
nection graphs for reasoning with recursive rules. In Pro-
ceedings of the Seventh International Joint Conference on
Artificial Intelligence. San Mateo, CA: Morgan Kaufmann.
368–374.
Morgado, E. J. M., and Shapiro, S. C. 1985. Believing and
acting: A study of meta-knowledge and meta-reasoning.

In Proceedings of EPIA-85 “Encontro Portugues de In-
teligencia Artificial”, 138–154.
Neal, J. G., and Shapiro, S. C. 1985. Parsing as a form
of inference in a multiprocessing environment. In Pro-
ceedings of the Conference on Intelligent Systems and Ma-
chines, 19–24. Rochester, Michigan: Oakland University.
Neal, J. G., and Shapiro, S. C. 1987a. Knowledge-based
parsing. In Bolc, L., ed., Natural Language Parsing Sys-
tems. Berlin: Springer-Verlag. 49–92.
Neal, J. G., and Shapiro, S. C. 1987b. Knowledge rep-
resentation for reasoning about language. In Boudreaux,
J. C.; Hamill, B. W.; and Jernigan, R., eds., The Role of
Language in Problem Solving 2. Elsevier Science Publish-
ers. 27–46.
Orilia, F., and Rapaport, W. J., eds. 1998. Thought, Lan-
guage, and Ontology: Essays in Memory of Hector-Neri
Castañeda. Dordrecht: Kluwer Academic Publishers.
Rapaport, W. J.; Shapiro, S. C.; and Wiebe, J. M. 1997.
Quasi-indexicals and knowledge reports. Cognitive Sci-
ence 21(1):63–107. Reprinted in (Orilia and Rapaport
1998, pp. 235–294).
Searle, J. R. 1975. Indirect speech acts. In Cole, P., and
Morgan, J. L., eds., Speech Acts: Syntax and Semantics,
volume 3. Academic Press. 59–82.
Seyed, A. P.; Kandefer, M.; and Shapiro, S. C. 2008. Sneps
efficiency report. SNeRG Technical Note 43, Department
of Computer Science, State University of New York at Buf-
falo, Buffalo, NY.
Shapiro, S. C., and Ismail, H. O. 2003. Anchoring in
a grounded layered architecture with integrated reasoning.
Robotics and Autonomous Systems 43(2–3):97–108.
Shapiro, S. C., and Kandefer, M. 2005. A SNePS approach
to the wumpus world agent or Cassie meets the wumpus. In
Morgenstern, L., and Pagnucco, M., eds., IJCAI-05 Work-
shop on Nonmonotonic Reasoning, Action, and Change
(NRAC’05): Working Notes. Edinburgh, Scotland: IJCAII.
96–103.
Shapiro, S. C., and Neal, J. G. 1982. A knowledge en-
gineering approach to natural language understanding. In
Proceedings of the 20th Annual Meeting of the Associa-
tion for Computational Linguistics. Menlo Park, CA: ACL.
136–144.
Shapiro, S. C., and Rapaport, W. J. 1987. SNePS con-
sidered as a fully intensional propositional semantic net-
work. In Cercone, N., and McCalla, G., eds., The Knowl-
edge Frontier. New York: Springer-Verlag. 263–315.
Shapiro, S. C., and Rapaport, W. J. 1992. The SNePS
family. Computers & Mathematics with Applications 23(2–
5):243–275. Reprinted in (Lehmann 1992, pp. 243–275).
Shapiro, S. C., and Rapaport, W. J. 1995. An introduction
to a computational reader of narratives. In Duchan, J. F.;
Bruder, G. A.; and Hewitt, L. E., eds., Deixis in Narrative:
A Cognitive Science Perspective. Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc. 79–105.
Shapiro, S. C., and The SNePS Implementation Group.
2008. SNePS 2.7 User’s Manual. Department of Com-

151



puter Science and Engineering, University at Buffalo, The
State University of New York, Buffalo, NY.
Shapiro, S. C.; Anstey, J.; Pape, D. E.; Nayak, T. D.; Kan-
defer, M.; and Telhan, O. 2005a. MGLAIR agents in a
virtual reality drama. Technical Report 2005-08, Depart-
ment of Computer Science & Engineering, University at
Buffalo, Buffalo, NY.
Shapiro, S. C.; Anstey, J.; Pape, D. E.; Nayak, T. D.; Kan-
defer, M.; and Telhan, O. 2005b. MGLAIR agents in
virtual and other graphical environments. In Proceedings
of the Twentieth National Conference on Artificial Intelli-
gence (AAAI-05). Menlo Park, CA: AAAI Press. 1704–
1705.
Shapiro, S. C.; Anstey, J.; Pape, D. E.; Nayak, T. D.; Kan-
defer, M.; and Telhan, O. 2005c. The Trial The Trail, Act 3:
a virtual reality drama using intelligent agents. In Young,
R. M., and Laird, J., eds., Proceedings of the First An-
nual Artificial Intelligence and Interactive Digital Enter-
tainment Conference (AIIDE-05), 157–158. Menlo Park,
CA: AAAI Press.
Shapiro, S. C.; Rapaport, W. J.; Kandefer, M.; Johnson,
F. L.; and Goldfain, A. 2007. Metacognition in SNePS. AI
Magazine 28:17–31.
Shapiro, S. C.; Ismail, H. O.; and Santore, J. F. 2000.
Our dinner with Cassie. In Working Notes for the AAAI
2000 Spring Symposium on Natural Dialogues with Prac-
tical Robotic Devices, 57–61. Menlo Park, CA: AAAI.
Shapiro, S. C.; Martins, J. P.; and McKay, D. P. 1982. Bi-
directional inference. In Proceedings of the Fourth Annual
Meeting of the Cognitive Science Society, 90–93.
Shapiro, S. C. 1978. Path-based and node-based inference
in semantic networks. In Waltz, D. L., ed., Tinlap-2: Theo-
retical Issues in Natural Languages Processing. New York:
ACM. 219–225.
Shapiro, S. C. 1979. The SNePS semantic network pro-
cessing system. In Findler, N. V., ed., Associative Net-
works: The Representation and Use of Knowledge by Com-
puters. New York: Academic Press. 179–203.
Shapiro, S. C. 1982. Generalized augmented transi-
tion network grammars for generation from semantic net-
works. The American Journal of Computational Linguis-
tics 8(1):12–25.
Shapiro, S. C. 1986. Symmetric relations, intensional in-
dividuals, and variable binding. Proceedings of the IEEE
74(10):1354–1363.
Shapiro, S. C. 1987. Processing, bottom-up and top-down.
In Shapiro, S. C., ed., Encyclopedia of Artificial Intelli-
gence. New York: John Wiley & Sons. 779–785. Reprinted
in Second Edition, 1992, pages 1229–1234.
Shapiro, S. C. 1989. The CASSIE projects: An approach
to natural language competence. In Martins, J. P., and Mor-
gado, E. M., eds., EPIA 89: 4th Portugese Conference on
Artificial Intelligence Proceedings, Lecture Notes in Artifi-
cial Intelligence 390. Berlin: Springer-Verlag. 362–380.
Shapiro, S. C. 1991. Cables, paths and “subconscious”
reasoning in propositional semantic networks. In Sowa,

J., ed., Principles of Semantic Networks: Explorations in
the Representation of Knowledge. Los Altos, CA: Morgan
Kaufmann. 137–156.
Shapiro, S. C. 1992. Artificial intelligence. In Shapiro,
S. C., ed., Encyclopedia of Artificial Intelligence. New
York: John Wiley & Sons, second edition. 54–57.
Shapiro, S. C. 1993. Belief spaces as sets of propositions.
Journal of Experimental and Theoretical Artificial Intelli-
gence (JETAI) 5(2&3):225–235.
Shapiro, S. C. 1998. Embodied Cassie. In Cognitive
Robotics: Papers from the 1998 AAAI Fall Symposium,
Technical Report FS-98-02. Menlo Park, California: AAAI
Press. 136–143.
Shapiro, S. C. 2000a. An introduction to SNePS 3. In Gan-
ter, B., and Mineau, G. W., eds., Conceptual Structures:
Logical, Linguistic, and Computational Issues, volume
1867 of Lecture Notes in Artificial Intelligence. Berlin:
Springer-Verlag. 510–524.
Shapiro, S. C. 2000b. SNePS: A logic for natural lan-
guage understanding and commonsense reasoning. In Nat-
ural Language Processing and Knowledge Representation:
Language for Knowledge and Knowledge for Language.
Menlo Park, CA: AAAI Press/The MIT Press. 175–195.
Shubin, H. 1981. Inference and control in multiprocess-
ing environments. Technical Report 186, Department of
Computer Science, SUNY at Buffalo.

152




