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inheritance, and terminological subsumption. We characterize our goals for a more natural logicand its computational implementation in a knowledge representation and reasoning system below.The mapping from natural language sentences into the representation language should be asdirect as possible. The representation should reect the structure of the natural language (NL)sentence it purports to represent. This is particularly evident in rule sentences, such as \smalldogs bite harder than big dogs", where the representation takes the form of an implication.8x; y((small(x) ^ dog(x) ^ large(y) ^ dog(y)) ) bites-harder(x; y)) (1)This is in contrast with the predicate-argument structure of the original sentence. By comparison,the representation of Fido bites harder than Rover is more consistent with the structure of theoriginal sentence, bites-harder(Fido, Rover) (2)This is so, despite the intuitive observation that the two sentences have nearly identical syntacticstructure, and similar meaning.The subunits of the representation should be what we term conceptually complete. By this wemean that any component of the representation of a sentence should have a meaningful interpre-tation independent of the entire sentence. For example, for the representation of the sentence asin (1) above, we might ask what the meaning of x or y is? Presumably, some thing in the world.Note that the original sentence mentions only dogs. We suggest that a better translation mightbe: bites-harder(allx such that small-dog(x); ally such that large-dog(y))where the variables, x and y, would have their own internal structure that reects their conceptual-ization. Note that we are suggesting something stronger than just restricted quanti�cation (simpletype constraints can certainly be felicitously represented using restricted quanti�ers). Complexinternalized constraints (that is, other than simple type) and internalized quanti�er structurescharacterize this approach to the representation of variables. Thus representation of the sentence:Every small dog that is owned by a bad-tempered person bites harder than a large dog should reectthe structure of the representation of (2).A high degree of structure sharing should be possible. In language, multi-sentence connecteddiscourse often uses reduced forms of previously used terms in subsequent reference to those terms.This can be reected in the representation language by structure sharing and corresponds to theuse of pronouns and some forms of ellipsis in discourse. An example of this phenomenon is therepresentation of intersentential pronominal reference to scoped terms, e. g.,Every apartment had a dishwasher. In some of them it had just been installed.Every chess set comes with a spare pawn. It is taped to the top of the box.(examples from [21]). The structures that are being shared in these sentences are the variablescorresponding to the italicized noun phrases. Logical representations can only model this \sharing"by combining multiple sentences of natural language into one sentence of logic. This method isunnatural for at least two reasons. First, when several sentences must be combined into onesentence, the resulting logical sentence, as a conjunction of several potentially disparate sentences,is overly complex. Second, this approach is counter intuitive in that a language user can re-articulate the original sentences that he/she represents. This argues for some form of separate2



representations of the original sentences. The problem with logic in this task is that logic requiresthe complete speci�cation of a variable, corresponding to a noun phrase, and its constraints in thescope of some quanti�er. This di�culty is not restricted to noun phrases; indeed, it is frequentlythe case that entire subclauses of sentences are referred to using reduced forms such as \too", e. g.,John went to the party. Mary did, too.A language-motivated knowledge representation formalism should model this sort of reference,minimally by structure sharing.Finally, collections of logical formulas do not seem to capture the intuitive use of conceptsby people. This representation for knowledge is unstructured and disorganized. What is missingis that �rst-order predicate logic does not provide any special assistance in the problem of whatBrachman called \knowledge structuring" [6], that is, the speci�cation of the internal structure ofconcepts in terms of roles and interrelations between them and the inheritance relationships be-tween concepts. Any computational theory must incorporate knowledge-structuring mechanisms,such as subsumption and inheritance of the sort supported in frame-based and semantic-network-based systems. For example, a taxonomy provides \links" that relate more general concepts tomore speci�c concepts. This allows information about more speci�c concepts to be associated withtheir most general concept, so information can �lter down to more speci�c concepts in the taxon-omy via inheritance. More general concepts in such a taxonomy subsume more speci�c conceptswith the subsumee inheriting information from its subsumers. For atomic concepts, subsumptionrelations between concepts are speci�ed by the links of the taxonomy. A clear example of sub-sumption in natural language is the use of descriptions such as person that has children subsumingperson that has a son. If one were told: People that have children are happy, then it follows thatPeople that have a son are happy. The intuitive idea is that more general descriptions shouldsubsume more speci�c descriptions of the same sort, which in turn inherit attributes from theirmore general subsumers.We have presented some general arguments for considering the use of a more \natural" (withrespect to language) logic for the representation of natural language sentences. We have alsopresented some characteristics of natural language that a knowledge representation and reasoningsystem should support. In the remainder of this exposition, we will clarify the motivations forthis work with speci�c examples, present an alternative representation for simple unstructuredvariables, and reify some aspects of the logic of these variables.2 Structured VariablesWe are attempting to represent variables as a \bundle" of constraints and a binding structure(quanti�er). We term these bundles \structured variables" because variables, in this scheme,are non-atomic terms. The implemented language of representation is a semantic network rep-resentation system called ANALOG (A NAtural LOGic), which is a descendant of SNePS [41,42].Figure 1 gives a case frame proposed for the representation of variables in ANALOG. Theshaded node labelled V is the structured variable. The restrictions on the variable are expressedby nodes R1; : : : ;Rk. Scoping of existential structured variables (with respect to universal structured3



SYNTAX:If V; V1; : : : ; Vn (n � 0) are distinct variable nodes, and if R1; : : : ; Rk (k � 0) are propo-sition nodes, and all the Ri dominatea V , then
V

Depends

Depends

Quantifier

Quantifier

R1

Rk

V1

Vn

is a network (actually a class of networks) and V is a structured variable node.SEMANTICS:V b is an arbitrary quanti�er-constrained (8- or 9-constrained) individual, dependenton V1 ; : : : ; Vn , such that all the restriction propositions R1 ; : : : ; Rk hold forthat arbitrary individual.aOne node dominates another if there is a path of directed arcs from the �rst node to the secondnode.b V is the intensional individual denoted by V .Figure 1: Caseframe for Structured Variablesvariables) is expressed by the depends arcs to universal structured variable nodes V1; : : : ;Vn. Anexample of a structured variable (the node labelled V1) is given in Figure 2 (described below).We note that the semantics of structured variables is left largely unspeci�ed here, due to spacelimitations. However, it is an augmented (by the addition of arbitrary individuals) semantic theorybased on [15, 16, 17, 41] and described in [1]. The representations of sentences, shown as examplesin this paper use the case frames speci�ed by [41].4



3 Advantages of Structured Variables3.1 Natural FormWe suggest that the representation of numerous types of quantifying expressions, using structuredvariables, is more \natural" than typical logics, because the mapping of natural language sen-tences is direct. We give an example in Figure 2 and defer the formal speci�cation of nodes toSection 5.1.4. Node M1! corresponds to the asserted proposition that all men are mortal. Node V1is the structured variable corresponding to all men. Finally, node M2 is the restriction propositionthat corresponds to the arbitrary man being a member of the class of men. The member-classcase frame is the representation for the proposition that an object is a member of a class. Thisrepresentation is more natural in that the top-level proposition is one of class membership, ratherthan a rule-like if-then proposition. Note that any member-class proposition of the form \X is Y "would be represented as a similar network structure (for example, the representation of All richyoung men that own a car are mortal is given in Figure 19).
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V1Figure 2: Structured Variable Representation of All men are mortal.The representation of structured variables suggested here can represent most �rst-order quan-tifying expressions directly. Also, we can represent general quantifying expressions directly (al-though their semantics needs to be detailed). In general, there is a direct mapping from naturallanguage quantifying expressions into structured variable representations, as structured variablescorrespond directly to noun phrases with restrictive relative clause complements. Figure 3 showsthe fragment of the generalized augmented transition network (GATN) grammar that processesnoun phrases corresponding to structured variables [37]. Note that in this NP subnetwork allrestrictions on a noun phrase corresponding to a structured variable can be locally collected andthe corresponding structured variable built. This includes restrictive relative clauses, whuch areparsed in the RREL subnetwork.3.2 Conceptual CompletenessIn typical logics, terms in one sentence are not referenced in other sentences. In general, re-usinga term involves re-writing the term in the new formula. Ideally, we would like to re-use exactly5
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Figure 3: GATN NP subnetwork for noun phrases corresponding to structured vari-ables.the same terms in di�erent sentences (in much the same way that language re-uses noun phrases),and we would want this re-use to result in closed sentences. This requires that variables (typicallycorresponding to noun phrases, or anaphora) in such terms be meaningful, independent of thesentence(s) that use or de�ne them. We call such variables conceptually complete, and they maybe shared by multiple sentences. This is an issue in the representation of multisentential dialog,where intersentential reference to sententially scoped objects frequently occurs. For example, Allcars come with a spare tire. It is not a full-sized tire, can only be represented, in standard logics, byre-writing the terms corresponding to the shared variables in all representations of sentences thatuse them or combining several sentences into one representation. To see the di�cultly, consider arepresentation of the example:8x[car(x)) 9y(spare-tire(y) ^ in(y; x))]8w 8z[(in(w; z)^ car(z) ^ spare-tire(w))) :full-sized(w)]In these cases, there is a clear advantage to a conceptually complete (closed) variable representationas well as the structure sharing associated with a semantic network representation. We would likethe representation of the example to be:There is a spare tire, y, in every car xy is not full-sizedusing two distinct sentences; however, in the second sentence, y is a free variable. With structuredvariables that contain their own binding structures (quanti�ers), no open sentences are possible.Thus, in the example, the variable y would not be free. Further, with structure sharing, distinctsentences may share constituents which would have been open sentences in a logical representation.3.3 Quanti�er ScopingAny representation must account for the expression of quanti�er scoping, at least as simply as the�rst-order predicate logic (FOPL) linear notation. The linear notation implicitly expresses a partial6



ordering of quanti�ers and terms, by the order and bracketing of the quanti�ers. With structuredvariables, quanti�er scoping is expressed explicitly by the presence or absence of dependency arcs.However, the nonlinearity of the representation introduces a new problem in specifying limitedquanti�er scopings normally expressed by bracketing. For example, the di�erences in the sentences8x 8y (P (x; y)) Q(x)) and 8x ((8y P (x; y))) Q(x)) are associated with bracketing and cannotbe expressed (directly) in the nonlinear representation suggested here. The �rst sentence canbe represented using structured variables; the second requires augmenting the representation, asits antecedent states a property of the collection of all y s. This should not be seen as a majorshortcoming of this representation as several solutions to the problem are possible. Partitionedsemantic networks [22, 23] or a representation for collections [11] would allow the representationof all possible quanti�er scopings.3.3.1 Branching Quanti�ersThere is a class of natural language sentences that are not expressible in any linear notation [3,14, 33, 34]. The standard example is: Some relative of each villager and some relative of eachtownsman hate each other. A linear notation (as in standard logics) requires that one existentiallyquanti�ed relative (of the townsman or villager) scope inside both universally quanti�ed townsmanand villager. This forces a dependency that should not be there, since the relative of the villagerdepends only on the particular villager and the relative of the townsman depends only on theparticular townsman. Examples of these types of quanti�ers are called branching quanti�ers,because expression of their scoping required a tree-like notation (the Henkin pre�x [24]). Forexample, the branched quanti�er sentence could be expressed as in Figure 4.Since the dependency arcs associated with structured variables can specify any partial orderof the variables in a sentence, we may express any sort of dependency, including those of the typeassociated with branching quanti�ers. Figure 5 illustrates how this is done for the relative-villagersentence. Nodes V1 and V3 represent the existential relatives that are scope dependent on nodesV2 (each villager) and V4 (each townsman), respectively.8x | 9y n[(villager(x)^townsman(z)))(relative(x, y)^relative(z, w)^Hates(y, w))]/8z | 9wFigure 4: Branching quanti�er representation for Some relative of each villager andsome relative of each townsman hate each other.3.3.2 Donkey SentencesAnother class of sentences that are di�cult for �rst-order logics are the so-called donkey sentences[18]. These are sentences that use pronouns to refer to quanti�ed variables in closed subclausesoutside of the scope of the subclauses. In the example sentence Every farmer who owns a donkey7
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townsmanFigure 5: Representation for the Branched Quanti�er Sentence: Some relative ofeach villager and some relative of each townsman hate each other.beats it, the noun phrase a donkey is a variable inside the scope of a universally quanti�ed variable(every farmer) and is referred to pronominally outside the scope of the existentially quanti�eddonkey. Consider some attempts to represent the above sentence in FOPL:(a) 8x (farmer(x) ) 9y (donkey(y) & owns(x; y) & beats(x, y)))(b) 8x (farmer(x) ) ((9y donkey(y) & owns(x; y)) ) beats(x, y)))(c) 8x 8y ((farmer(x) & donkey(y) & owns(x; y)) ) beats(x, y)))Representation (a) says that every farmer owns a donkey that he beats, which is clearly morethan the original sentence intends. Representation (b) is a better attempt, since it captures thenotion that we are considering only farmers who own donkeys; however, it contains a free variable.Representation (c) fails to capture the sense of the original sentence in that it quanti�es over allfarmers and donkeys, rather than just farmers that own donkeys. To see this, consider the case ofthe farmer that owns two donkeys and beats only one of them. Clearly, the donkey sentence canapply to this case, but interpretation (c) does not.Since there are no open subformulas, it is possible for formulas to use constituent variables atany level, including at a level which would result in an unscoped variable in an FOPL representa-tion. Figure 6 shows the representation for Every farmer who owns a donkey beats it. Note thatM1! denotes the proposition Every farmer who owns a donkey beats it and V1 and V2 are everyfarmer that beats a donkey he owns and a beaten donkey that is owned by any farmer, respectively.4 Related WorkThis paper suggests a hybrid approach to knowledge representation and reasoning for naturallanguage processing by combining semantic network representations and structured object rep-8
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Figure 6: Representation for the Donkey Sentence: Every farmer that owns a don-key beats it.resentations (corresponding to structured variables) to produce a KR formalism that addressesthe previously outlined goals of knowledge representation for natural language processing. Thereis a large body of work that addresses similar issues. For comparative purposes, it is useful tocategorize this related work into three groups: structured variable representations, atomic variablerepresentations, and, hybrid variable representations.There is a large body of work in structured object representation that characterizes very com-plex structured variables as frames, scripts, and so on. Frame-based systems such as KL-ONEand KRL use highly structured concept representations to express the \meaning" of concepts [5,9, 45]. These concept representations are constructed using structural primitives. These highlystructured objects, which typically consist of slots and �llers (with other mechanisms, such asdefaults), can be viewed as complex structured variables that bind objects with the appropriateinternal structure (although they are not, typically, so viewed). Their use of structural primitivesallows the speci�cation of a subsumption mechanism between concepts. A di�culty with theserepresentations is that structured representations correspond directly to predicates in the under-lying logic. Thus, constituents of a structured concept are not available as terms in the logic. Inthe donkey sentence, the donkey in farmer that owns a donkey cannot be used as a term.An alternative to the frame-based, highly structured object representations is that of a log-ical form representation. The general motivation for a logical form is the need for a mediatingrepresentation between syntactic and meaning representations, usually in the context of determin-9



ing quanti�er scoping. Representative examples of logical-form-based approaches include [25, 27,43]. Logical form representations resemble this work in that, typically, quanti�ers are bundledwith typed variables that are \complete" in the manner described here. Additionally, the utilityof such representations lies in the relative ease of mapping natural language into a representation,which is also, clearly, a goal of this work. However, logical form is not a meaning representation,unlike the other representational work considered here. In general, logical form representationsprovide a \weakest" ambiguous interpretation that is subject to further computation before itsmeaning is apparent. It is possible to view this work as an \improved" logical form that hasthe advantage of having a \natural" mapping from language to representation. We improve onlogical form, however, by including clear speci�cation of some types of di�cult quanti�er scoping,incorporated into a propositional semantic network system allowing structure sharing (of nodesand terms) and cyclic structures of the sort seen in English, which are not easily represented ina linear notation. Further, we provide a subsumption mechanism not typically present in logicalform work.Previous work using atomic (that is, unstructured) variable representation has been primarilybased on FOPL. In the work of Schubert et al. [35, 10], which uses a semantic-network-basedformalism, variables are atomic nodes in the network. Type (and other) restrictions are speci�ed bylinks to the variable nodes. There are no explicit universal or existential quanti�ers. Free variablesare implicitly universally quanti�ed; Skolem arcs specify existentially quanti�ed variable nodes.Because this is a nonlinear notation, sentences with branching quanti�ers can be represented.However, the separation of variables from their constraints causes the representation to be not\natural" relative to the original natural language. Moreover, since restrictions on possible �llersfor variables appear to be simple type restrictions, there is no representation for noun phrases withrestrictive relative clause complements and, consequently, no representation for donkey sentences.Fahlman's [13] representation of variables is more general (potentially variables have complexstructure) but has similar shortcomings.An alternative atomic variable representation theory is that of Discourse Representation The-ory [26]. DRT is a semantic theory that (among other things) accords inde�nite noun phrasesthe status of referential terms rather than the standard quanti�ed variables, and de�nite nounphrases the status of anaphoric terms. These terms are scoped by discourse representation struc-tures (DRSs), and the theory provides rules to expand these DRSs based on the discourse beingrepresented, as well as rules for interpreting the DRSs. DRT was directly motivated by the dif-�culties in the representation of donkey sentences and deals with them by making the scope ofterms (variables) be the DRS rather than the sentence (proposition). DRSs themselves may scopeinside other DRSs, creating a hierarchy of DRSs and scoped terms. The approach is similar tothat of Hendrix's [22, 23] partitioned semantic networks. As with all the atomic variable represen-tations, there is a separation of constraints from variables, and the form of DRSs is not \natural"in the same sense that a proposition that represented a sentence would be. Further, the rules ofconstruction of DRS explicitly prohibit the representation of intersentential pronominal referenceto scoped terms. Variables are still scoped (by the DRS) and not conceptually complete, althoughall their constraints are associated with the DRS in whose scope they lie.An important philosophicallymotivated attempt to represent the semantics of natural languageis Montague grammar [12, 31, 32]. Montague grammar is a theory of natural language processing inthat it is a complete formal speci�cation of the syntax, semantics, and knowledge representation fornatural language understanding. Montague grammarmimics the syntactic structure of the surface10



sentence in specifying the mapping to logic and interpretation. In that, it resembles this work, butits coverage is far more ambitious than, and exceeds the scope of, the work in this paper. However,as a compositional semantic theory based on a higher-order intensional logic, it provides no inherentfacility for the description of discourse relations and anaphoric connections [20]. Further, it su�ersfrom the same (previously described) problems that all logic-based variable representations do.A related body of work is that of Barwise and Cooper [4] on generalized quanti�ers in naturallanguage. They attempt to represent and provide semantics for more general types of quanti�ednatural language sentences (e. g., many, most) and specify a translation of a fragment of Englishusing phrase structure rules. Their discussion of semantic issues related to these generalizedquanti�ers (which are, typically, manifested as noun phrases) forms a productive basis for anyattempt to specify the semantics of quanti�ed noun phrases.Hybrid variable representations accord variables potentially complex internal structure. Arepresentative system is the work of Brachman with KRYPTON [7, 8]. KRYPTON is a KRsystem that supports (and separates) two kinds of knowledge: terminological (in the TBox) andassertional (in the ABox). Since KRYPTON can represent complex descriptions in the TBox, inprinciple, general structured variables with arbitrary restrictions are possible in the TBox, withlogic-based assertional representations in the ABox. Descriptions in the TBox are used in theABox (syntactically as unary predicates or as binary relations). The form of the representationis more natural than FOPL, since restrictions on objects, which can take the form of complexterminological constraints in the TBox, are simple predicates (in the ABox) on those objects.However, variables are still atomic in the ABox and since sentences of the ABox are FOPL-based,KRYPTON cannot represent branched quanti�ers or donkey sentences. Additionally, constituentsof complex terms (concepts) in the TBox are not available in the ABox, so donkey sentencescannot be represented.The Ontic system of McAllester [29] also provides the ability to de�ne structured variablesusing a combination of type expressions and functions that reify these types into sets. Ontic is asystem for verifying mathematical arguments, and, as such, the selection of type expressions andfunctions is limited to the mathematical domain. Additionally, Ontic is �rst-order and set-theoreticwith quanti�cation over terms (which may be variables of complex type). In principle, one couldrepresent natural language in Ontic; however, the type system would have to be enriched, and itwould still su�er from the disadvantages outlined for KRYPTON. In later work, McAllester hasaddressed natural language issues [19, 30] similar this work, particularly the natural form issue.5 The Knowledge Representation Formalism5.1 Syntax and Semantics of the FormalismIn this section, we provide a syntax and semantics of a logic whose variables are not atomicand have structure. We call these variables structured variables. The syntax of the logic isspeci�ed by a complete de�nition of a propositional semantic network representation formalism(an augmentation of [39]). By a propositional semantic network, we mean that all information,including propositions, \facts", etc., is represented by nodes. The implemented system, ANALOG,is used here, for convenience, to refer to the logical system.11



5.1.1 SemanticsAs a propositional semantic network formalism, any theory of semantics that ascribes propositionalmeaning to nodes can be the semantics used in ANALOG. In this paper, examples and representa-tions are used that follow the case frame semantics of [41, 40] which provide a collection of proposi-tional case frames and their associated semantics based on an extended �rst-order predicate logic.We augment that logic further with arbitrary individuals (for the semantics of structured variables)in a manner similar to the semantic theory of [15, 16, 17]. We will provide semantics for nodes,in this paper, as necessary. For a complete speci�cation of the semantics of ANALOG, see [1,2].5.1.2 The Domain of InterpretationANALOG nodes are terms of a formal language. The interpretation of a node is an object in thedomain of interpretation, called an entity. Every ANALOG node denotes an entity, and if n isan ANALOG node, then n denotes the entity represented by n. It is useful, for discussing thesemantics of ANALOG networks, to present them in terms of an \agent". Said agent has beliefsand performs actions, and is actually a model of a cognitive agent.5.1.3 MetapredicatesTo help formalize this description we introduce the metapredicates Conceive, Believe, and =. Ifn; n1; n2 are metavariables ranging over nodes, and p is a metavariable ranging over propositionnodes, the semantics of the metapredicates listed above are:Conceive(n) Means that the node is actually constructed in the network.Conceive(n) may be true without n being known to be trueor false.Believe(p) Means that the agent believes the proposition p .n1 = n2 Means that n1 and n2 are the same, identical, node.Belief implies conception, as speci�ed in axiom one.Axiom 1: Believe(p) ) Conceive(p)5.1.4 De�nition of NodesInformally, a node consists of a set of labeled (by relations) directed arcs to one or more nodes.Additionally, a node may be labeled by a \name" (e. g., BILL, M1, V1) as a useful (but extra-theoretic) way to refer to the node. This naming of a rule or proposition node is of the form Mn,where n is some integer. A \!" is appended to the name to show that the proposition representedby the node is believed. However, the \!" does not a�ect the identity of the node or the propositionit represents. Similarly, variable nodes are labeled Vn where n is some integer, and base nodes arenamed Bn where n is some integer (additionally, base nodes may be named for the concept they12



represent, e. g., man). More formally a node is de�ned as follows:De�nition 1: There is a none-empty collection of labelled atomic nodes called base nodes.Typically, base nodes are labelled by the entity they denote. Example: bill is a base node.De�nition 2: A wire is an ordered pair <r; n>, where r is a relation, and n is a node. Metavari-ables w;w1; w2; : : : range over wires. Example: <member, john> is a wire.De�nition 3: A nodeset is a set of nodes, fn1; : : : ; nkg. Meta-variables ns; ns1; ns2; : : : rangeover nodesets. Example: fjohn, billg is a nodeset if john and bill are nodes.De�nition 4: A cable is an ordered pair <r; ns>, where r is a relation, and ns is a non-emptynodeset. Meta-variables c; c1; c2; : : : range over cables. Example: <member, fjohn, billg> is acable.De�nition 5: A cableset is a non-empty set of cables, f<r1; ns1>, : : :, <rk; nsk>g, such thatri = rj () i = j. Meta-variables cs; cs1; cs2; : : : range over cablesets. Example: f<member,fjohn, billg>, <class, fmang>g is a cableset.De�nition 6: Every node is either a base node or a cableset. Example: bill is a base node,f<member, fjohn, billg>, <class, fmang>g is a cableset.De�nition 7: We overload the membership relation \2" so that x 2 s holds just under thefollowing conditions:1. If x is a node and s is a nodeset, x 2 s () 9y [y 2 s ^ Subsume(y; x).]Example: M1 2 fM1, M2, M3g2. If x is a wire such that x = <r1; n>, and s is a cable such that s = <r2; ns>, thenx 2 s () r1 = r2 ^ n 2 ns.Example: <member, john> 2 <member, fjohn, billg>3. If x is a wire and s is a cableset, then x 2 s () 9c[c 2 s ^ x 2 c].Example: <member, john> 2 f<member, fjohn, billg>, <class, fmang>gBecause we need more de�nitions before Subsume can be de�ned, we defer its de�nition to Figure 8.De�nition 8: A variable node is a cableset of the form f<all, ns>g (universal variable)or f<some, ns1>, <depends, ns2>g (existential variable). A variable node is further restrictedin the form it may take in the following ways:1. If it has the form f<all, ns>g, then every n 2 ns must dominate it.2. If it has the form f<some, ns1>, <depends, ns2>g, then every n 2 ns1 must dominate it andevery n 2 ns2 must be a universal variable node.3. Nothing else is a variable node. 13



Example: V1 = f<all, ff<member, fV1g>, <class, fmang>gg>g is the variable node corre-sponding to every man. The variable label V1 is just a convenient extra-theoreticmethod of referring to the variable.We de�ne two selectors for variable nodes:rest(v) = � ns if v = f<all; ns>gns1 if v = f<some; ns1>,<depends; ns2>gdepends(v) = ns2 if v = f<some; ns1>,<depends; ns2>gInformally, rest(v) is the set of restriction propositions on the types of things that may be boundto the variable node v. Depend(v) is the set of universal variable nodes on which an existentialvariable node, v, is scope-dependent.De�nition 9: A molecular node is a cableset that is not a variable node. Example: f<member,fjohn, billg>, <class, fmang>g is a molecular node, since it is a cableset but not a variable node.De�nition 10: An nrn-path from the node n1 to the node nk+1 is a sequence,n1; r1; : : : ; nk; rk; nk+1for k � 1 where the ni are nodes, the ri are relations, and for each i, <ri; ni+1> is a wire inni. Example: If M1 = f<member, fjohn, billg>, <class, fmang>g, then M1, member,john andM1, class,man are some nrn-paths.De�nition 11: A node n1 dominates a node n2 just in case there is an nrn-path from n1to n2. The predicate dominate(n1, n2) which is true if and only if n1 dominates n2. Example: IfM1 = f<member, fjohn, billg>, <class, fmang>g, then M1 dominates john, bill, and man.De�nition 12: A rule node is a molecular node that dominates a variable node that doesnot, in turn, dominate it.Example: V1 = f<all, fM1g>gM1 = f<member, fV1g>,<class, fmang>gM2 = f<member, fV1g>, <class, fmortalg>gM2 is a rule node since M2 dominates V1, which does not, in turn, dominate M2. M1is not a rule node because, while it dominates V1, it is also dominated by V1. Thenon-rule nodes that dominate variable nodes correspond to restrictions on binders ofthose same variable nodes.5.1.5 The ANALOG modelDe�nition 13: An ANALOG model is a tuple (A; B; M; R; U; E; �) where A is a set ofrelations, B is a set of base nodes, M is a set of non-rule molecular nodes, R is a set of rule nodes,U is a set of universal variable nodes, and E is a set of existential variable nodes, and � � M [ R.B, M , R, U , and, E are disjoint. � consists of believed propositions. Note that the metapredicatesBelieve and Conceive are, by de�nition: 14



Believe(n) () n 2 �.Conceive(n) () n 2M [ R5.1.6 ReductionWe follow [38, 39] in arguing for a form of reduction inference (de�ned in axioms 2 and 3 below)as being useful. This is a form of structural subsumption [44], peculiar to semantic networkformalisms,s which allows a proposition to \reduce" to (logically imply) propositions whose wiresare a subset of the wires of the original proposition. Figure 7 gives an example of a propositionexpressing a brotherhood relation among a group of men. Node M1 represents the proposition thatbill, john, ted, and joe are brothers. By reduction subsumption, all proposition nodes (suchas M2 and M3) involving fewer brothers follow.In the following model (A; B; M; R; U; E; �):A =frelation, arggB =fbill, john, ted, joegM =fM1, M2, M3g� =fM1, M2, M3gwhere:M1 = f<relation, fbrothersg>, <arg, fbill, john, ted, joeg>gM2 = f<relation, fbrothersg>, <arg, fjohn, ted, joeg>gM3 = f<relation, fbrothersg>, <arg, fbill, johng>gSome reductions:reduce(M2, M1) = Treduce(M3, M1) = TFigure 7: Example of Subsumption by Reduction for a Particular ModelHowever, we must restrict the use of reduction inference to precisely those propositions andrules which are reducible through the use of the IsReducible metapredicate.Axiom 2: Reduce(cs1; cs2) () (8w[w 2 cs2 ) w 2 cs1] ^ IsReducible(cs1)).Note that the semantics of the metapredicate IsReducible will be speci�ed in terms of the partic-ular case frames used in a representation. Propositions like M1 are clearly reducible, but not allpropositional case frames are reducible. For example,8x((man(x) ^ rich(x))) happy(x))should not allow the reduction (involving fewer constraints on x):8x(man(x)) happy(x))15



as the latter does not follow from the former. Note that reduction is appropriate when theconstraints in the antecedent of the rule are disjunctive.A proposition that is a reducible reduction of a believed proposition is also a believed propo-sition. Since nodes are cablesets we state this as in axiom 3.Axiom 3: (Reduce(n1; n2) ^Believe(n1))) Believe(n2)5.1.7 Types of NodesWe have de�ned four orthogonal types of nodes: base, molecular, rule, and variable nodes. In-formally, base nodes correspond to individual constants in a standard predicate logic, molecularnodes to sentences and functional terms, rule nodes to closed sentences with variables, and variablenodes to variables. Note that syntactically all are terms in ANALOG, however.5.1.8 The Uniqueness PrincipleNo two non-variable nodes in the network represent the same individual, proposition, or rule.Axiom 4: n1 = n2 () n1 = n2This is a consequence of the intensional semantics. A bene�t of this is a high degree of structure-sharing in large networks. Additionally, the network representation of some types of sentences(such as the donkey sentence) can reect the re-use of natural language terms expressed by pro-nouns and other reduced forms.5.2 SubsumptionSemantic network formalisms provide \links" that relate more general concepts to more speci�cconcepts; this is called a taxonomy. It allows information about concepts to be associated withtheir most general concept, and it allows information to �lter down to more speci�c concepts in thetaxonomy via inheritance. More general concepts in such a taxonomy subsume more speci�c con-cepts, the subsumee inheriting information from its subsumers. For atomic concepts, subsumptionrelations between concepts are speci�ed by the links of the taxonomy. To specify subsumption,some additional de�nitions are required.De�nition 14: A binding is a pair v=u, where either u and v are both structured variablesof the same type (universal or existential), or u is a universal SV and v is any node.Examples: V1/V2JOHN/V1De�nition 15: A substitution is a (possibly empty) set of bindings, ft1=v1; : : : ; tn=vng.Examples: fV1/V2, JOHN/V3gfB1/V1, M1/V2g 16



De�nition 16: The result of applying a substitution, � = ft1=v1; : : : ; tm=vmg, to a node n isthe instance n� of n obtained by simultaneously replacing each of the vi dominated by n with ti.If � = fg, then n� = n.Example: If M1 = f<member, fV1g>, <class, fMANg>g then:M1fJOHN/V1g = f<member, fJOHNg>, <class, fMANg>gDe�nition 17: Let � = fs1=u1; : : : ; sn=ung and � = ft1=v1; : : : ; tm=vmg be substitutions. Thenthe composition � � � of � and � is the substitution obtained from the setfs1�=u1; : : : ; sn�=un; t1=v1; : : : ; tm=vmgby deleting any binding si�=ui for which ui = si�.Example: � = fV1/V2, V4/V3g� = fV2/V1, JOHN/V4g� � � = fJOHN/V3, JOHN/V4gDe�nition 18: A substitution, �, is consistent i� neither of the following hold:9u; t; s[t=u 2 � ^ s=u 2 � ^ s 6= t]9u; v; t[t=u 2 � ^ t=v 2 � ^ u 6= v]A substitution that is not consistent is termed inconsistent. The motivation for the second con-straint (called the unique variable binding rule, UVBR) is that in natural language, users seldomwant di�erent variables in the same sentence to bind identical objects [38]. For example, Everyelephant hates every elephant has a di�erent interpretation from Every elephant hates himself.Typically, the most acceptable interpretation of the former sentence requires that it not be inter-preted as the latter. UVBR requires that within an individual sentence that is a rule (has boundvariables), any rule use (binding of variables) must involve di�erent terms for each variable in therule to be acceptable.Examples: fJOHN/V2, BILL/V2g is inconsistent.fJOHN/V1, JOHN/V2g is inconsistent.fJOHN/V1, BILL/V2g is consistent.De�nition 19: The predicate occurs-in(x; y) where x is a variable is de�ned:occurs-in(x; y) () dominate(y; x):occurs-in enforces the standard occurs check of the uni�cation algorithm (and is just a moreperspicacious naming of dominate) [28].In ANALOG, we specify subsumption as a binary relation between arbitrary nodes in the net-work. We de�ne subsumption between two nodes x and y in Figure 8. This de�nition of subsump-tion includes subsumption mechanisms that Woods classi�es as structural, recorded, axiomatic,and deduced subsumption [44]. In Figure 8, case (1) corresponds to identical nodes (a node, obvi-ously, subsumes itself). Case (2) is the reduction inference case discussed in section 5.1.6. Case (3)17



Subsume(x; y) in a model (A; B; M; R; U; E; �) if any one of:1. x = y.2. Reduce(x; y)3. For x 2 U and y 2 B [M [ R, if not occurs-in(x, y) and there exists asubstitution S such that8r[r 2 rest(x); � ` rfy=xg � S]:Logical derivation is here denoted by \`." Substitution and substitutionapplication with respect to a node is here denoted by \rfy=xg � S."4. For x 2 U and y 2 U [E, if8r[r 2 rest(x)) 9s[s 2 rest(y) ^ Subsume(r; s)]]5. For x; y 2 E, if all of the following hold:8s[s 2 rest(y) ) 9r[r 2 rest(x) ^ Subsume(r; s)]]8r[r 2 rest(x)) 9s[s 2 rest(y) ^ Subsume(r; s)]]8d[d 2 depends(y)) 9c[c 2 depends(x) ^ Subsume(c; d)]]Otherwise, fail. Figure 8: Subsumption Procedureapplies when a universal structured variable node subsumes another node. This corresponds to adescription like any rich man subsuming John if John is known to be a man and rich. Such a vari-able will subsume another node if and only if every restriction on the variable can be derived (inthe current model) for the node being subsumed. Subsumption, consequently, requires derivationwhich is de�ned in [1]. For the examples shown here, standard �rst-order logical derivation will beassumed. Case (4) allows a more general universal variable node to subsume a less general exis-tential variable node. For this to happen, for every restriction in the universal variable node theremust be a restriction in the existential variable node, and the former restriction must subsume thelatter restriction. For example, the variable node corresponding to every rich girl would subsumesome rich happy girl (but not some girl). Case (5) allows one existential variable node to subsumeanother. The requirement for this case is, essentially, that the variables be notational variants ofeach other. This is because it is not, in general, possible for any existential variable to subsumeanother except when they are structurally identical. The reason this case is needed (rather thanjust excluding it entirely) is that for a rule node corresponding to every boy loves some girl tosubsume every rich boy loves some girl, the existential variable node corresponding to the somegirl in the �rst rule node must subsume the existential variable node corresponding to the somegirl in the second rule node (see Section 6 for numerous examples of this sort of subsumption innatural language).The commonsense nature of the subsumption cases can, most easily, be illustrated by examples,some of which, for conciseness, are given in natural language in Figure 9. The examples illustrate18



Case 1: Subsume(john, john)Case 2: Subsume(f<member, fjohn, billg>, <class, fmang>g,f<member, fjohng>, <class, fmang>g)Subsume(All rich men are happy,All young rich men that own a car are happy)Case 3: Subsume(All dogs, Fido), Provided ` dog(Fido).Subsume(All things have a mass, Fido has a mass)Case 4: Subsume(Every girl, Every pretty girl)Subsume(Every pretty girl, Every pretty girl that owns a dog)Subsume(Every girl, Some pretty girl)Subsume(Every pretty girl, Some pretty girl that owns a dog)Case 5: Subsume(Every boy that loves a girl,Every boy that loves a girl and that owns a dog)Figure 9: Examples of Subsumption (cases refer to cases of Figure 8)the idea that more general quanti�ed descriptions should subsume less general quanti�ed descrip-tions of the same sort. In Figure 10, a more detailed example for a particular model is given. NodeM2 represents the proposition that all men are mortal, M3 the proposition that Socrates is aman, and M4 the proposition that Socrates is mortal. V1 is the structured variable representingany man. It then follows that M4 is a special case of M2 directly by subsumption, since V1 subsumesSocrates. Note that the restrictions on subsumption involving variables is stricter than Reduce,which only requires that the wires of one node be a subset of the other.As with reduction (Axiom 3), a proposition that is subsumed by a believed proposition is alsoa believed proposition. This can be stated as a more general form of Axiom 3.Axiom 5: (Subsume(n1; n2) ^Believe(n1 ))) Believe(n2 )5.3 SummaryWe have formally speci�ed the subsumption mechanism in the ANALOG system. The subsump-tion mechanism takes advantage of the conceptual completeness of the structured variable rep-resentation to allow the kinds of common sense description subsumption relationships that arepervasive in natural language. 19



In the following model (A; B; M; R; U; E; �):A =fmember, class, allgB =fman, mortal, SocratesgM =fM1, M3, M4gR =fM2gU =fV1gwhere:M1 = f<member, fV1g>, <class, fmang>gM2 = f<member, fV1g>, <class, fmortalg>gM3 = f<member, fSocratesg>, <class, fmang>gM4 = f<member, fSocratesg>, <class, fmortalg>gV1 = f<all, fM1g>gThe resulting subsumption:subsume(M2, M4) = TFigure 10: Example of Subsumption for a Particular Model6 ANALOG for Natural Language ProcessingSo far, we have motivated some aspects of the logic underlying the ANALOG KRR system andformalized some important concepts, such as subsumption, associated with the logical system.At this junction, we will attempt to illustrate the utility of the system in the context of speci�cexamples of natural language processing.ANALOG includes a generalized augmented transition network (GATN) natural languageparser and generation component linked up to the knowledge base (based on [37]). A GATN gram-mar speci�es the translation/generation of sentences involving complex noun phrases into/fromANALOG structured variable representations.We present three demonstrations of the NLP component of ANALOG. The �rst illustratesthe representation and use of complex noun phrases, the second illustrates the use of non-linearquanti�er scoping and structure sharing, and the last is a detailed presentation (with most of theunderlying ANALOG representations) of a demonstration that illustrates the use of rules and validand useful answers to questions. The last two demonstrations also have examples of subsumption.6.1 Representation of Complex Noun PhrasesOne of the most apparent advantages of the use of structured variables lies in the representationand generation of complex noun phrases that involve restrictive relative clause complements. Therestriction set of a structured variable typically consists of a type constraint along with propertyconstraints (adjectives) and other more complex constraints (restrictive relative clause comple-20



ments).(parse -1)ATN parser initialization...Input sentences in normal English orthographic convention.Sentences may go beyond a line by having a space followed by a <CR>To exit the parser, write ^ end.: Every man owns a carI understand that every man owns some car.: Every young man owns a carI understand that every young man owns some car.: Every young man that loves a girl owns a car that is sportyI understand that every young man that loves any girl owns some sporty car.: Every young man that loves a girl that owns a dog owns a red car that is sportyI understand that every young man that loves any girl that owns any dog ownssome red sporty car.: Every young man that loves a girl and that is happy owns a red sporty car that wastes gasI understand that every young happy man that loves any girl owns somesporty red car that wastes gas.: ^ endATN Parser exits...Figure 11: Examples of complex noun phrase use that correspond to structured vari-ablesIn Figure 11, user input is italicized, the text at the beginning is a standard message and willbe omitted from the remaining �gures. Figure 11 shows example sentences with progressively morecomplex noun phrases being used. These noun phrases are uniformly represented using structuredvariables. Parsing and generation of these noun phrases is simpli�ed because structured vari-ables collect all relevant restrictions on a variable into one unit, a structured variable. The parserparses the user's sentence and builds an ANALOG representation for the user input. The resultingrepresentation is then passed to the generation component, which generates the output response(sometimes pre�xed by the canned phrase I understand that). If constraints on variables cor-responding to the complex noun phrases were represented using FOPL, then it would be di�cultto generate natural language noun phrases corresponding to these variables. This is because theconstraints on variables would, likely, be well-separated from the variables in the antecedents ofrules involving these variables. This is not the case in a structured variable representation.6.2 Non-Linear Quanti�er Scopings and Structure SharingSince this representational formalism is grounded in an inherently nonlinear notation (semanticnetworks), the representation of tree-like quanti�er scopings is straightforward. Thus, sentencesinvolving branching quanti�ers can be represented. In addition, the structure of ANALOG's se-mantic network representation allows structure-sharing (and, indeed, may require it) to a highdegree. One of the initial goals was the representation of co-reference and structure sharing in21



multisentential dialog. Because the parser/generator maintains a very simple discourse model, wecannot illustrate complex examples (such as the branching quanti�er sentence) of this structuresharing in natural language (although such representation may readily be built). A simpler ex-ample is the donkey sentence, where a scoped constituent of a noun phrase (the donkey in Everyfarmer who owns a donkey beats it) is used in the main clause of the sentence. Figure 12 illustratesa dialog involving questions about the donkey sentence.: Every man that owns some donkey beats itI understand that every man that owns some donkey beats some donkey.: Fred is a boyI understand that Fred is a boy.: Every boy is a manI understand that every boy is a man.: Doc is a donkeyI understand that Doc is a donkey.: Dumbo is a donkeyI understand that Dumbo is a donkey.: Fred owns DocI understand that Fred owns Doc.: Fred owns DumboI understand that Fred owns Dumbo.: Does Fred beat DocI don't know.: Does any man beat some donkeyYes, every man that owns some donkey beats some donkey.: Every man that owns any donkey beats itI understand that every man that owns any donkey beats every donkey.: Does Fred beat DocYes, Fred beats Doc.: Does any man beat some donkeyYes, every man that owns some donkey beats some donkey.: Does any man beat any donkeyYes, Fred beats Doc and every man that owns any donkey beats everydonkey and every man that owns some donkey beats some donkey.: Who beats a donkeyFred beats Doc and every man that owns any donkey beats every donkeyand every man that owns some donkey beats some donkey.Figure 12: Example of structure sharing in donkey sentence.In Figure 12 note that the system is initially unable to determine whether Fred beats Docor Dumbo. This is because the initial rule (every man that owns some donkey beats it) issatis�ed in a model where only one of the donkeys is being beaten. After the system is told thatall such donkeys are beaten, it does determine that Fred beats Doc. Note that this determinationalso requires that the description every man subsume Fred who is a boy (and consequently a22



man). This is an example of derived subsumption. Also note that the answers to many questionsare often rules themselves (e. g., Who beats a donkey has as one answer Every man that ownssome donkey). This is discussed in the next section.: Every man is mortal (1)I understand that every man is mortal. (2): Who is mortal (3)Every man is mortal. (4): Is any rich man mortal (5)Yes, every rich man is mortal. (6): John is a man (7)I understand that John is a man. (8): Is John mortal (9)Yes, John is mortal. (10): Who is mortal (11)John is mortal and every rich man is mortal and every man is mortal. (12): Are all rich young men that own some car mortal (13)Yes, every young rich man that owns some car is mortal. (14): Any rich young man that owns any car is happy (15)I understand that every young rich man that owns any car is happy. (16): Is John happy (17)I don't know. (18): Young rich John owns a car (19)I understand that mortal rich young John owns some car. (20): Who owns a car (21)Mortal rich young John owns some car. (22): Is John happy (23)Yes, mortal rich young John is happy. (24)Figure 13: Examples of questions that have rules as answers.6.3 Rules as Answers to QuestionsBecause the structure of the representation of rules is \at", that is, there is not the arti�cialantecedent-consequent structure associated with �rst-order logic-based representations, it is possi-ble to frame questions whose answers are rules and not just ground formulas. Since the structureof the question will mirror the structure of the rule, any rule that is subsumed by a question isan answer to that question. Figure 13 gives a sample dialog involving questions whose answersare ground propositions (e. g., Is John mortal) as well as questions whose answers are rules (e. g.,Who is mortal). This dialog also illustrates the uses of subsumption. Since we told the systemEvery man is mortal, it follows that any more speci�cally constrained man (e. g., Every rich youngman that owns some car) must also be mortal. Note that this answer (a rule) follows directly bysubsumption from a rule previously told to the system. This is another way in which rules maybe answers to questions. 23
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Figure 14: Representation of sentence (1) Every man is mortal.
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V2Figure 15: Representation of sentence (3) Who is mortal?6.3.1 A Detailed Demonstration ExaminationIn this section we present the representations and processing associated with the last demonstra-tion in detail. All references to sentences will be to the numbered sentences in Figure 13. Therepresentation for sentence (1) is that of Figure 14. Sentence (3) then asks who is mortal. In astandard FOPL-based system, no answer could be given because there are, as yet, no instances ofmen in the knowledge base. This is contrary to the commonsense answer of sentence (4), whichreiterates the rule of sentence (1). This is possible in ANALOG because the structure of therepresentation of the question (Who is mortal) is similar to that of any of its answers. Thus, anyasserted proposition that is subsumed by the question is a valid answer (including rules).Sentence (5) is an example of a question about a rule. Since every man is mortal is believed(the system was told this in sentence (1)) it follows that any more restricted sort of man is alsomortal. The subsumption procedure speci�es this explicitly. The representation of sentence (5)in Figure 16 is a less general form of sentence (1) in Figure 14, since V1 (any man) subsumes V3(any rich man). Since the rule in Figure 16 is subsumed by a believed node (that of sentence (1)),it follows by Axiom 5 that sentence (5) is believed (thus, the representation of the question itselfis a believed proposition) and the system answers yes to the question. Sentence (7) asserts thatJohn is a man, and the result is the representation of Figure 17. At this point, the system knowsall men are mortal and John is a man. When the question of sentence (9) (whose representation24
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Figure 16: Representation of sentence (5) Is any rich man mortal?
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M7!Figure 17: Representation of sentence (7) John is a man.is in Figure 18) is asked, the system �nds the rule of sentence (1) and determines that it subsumessentence (9) because John is a man, and again by axiom 5 the result follows. However, note thatin this derivation the result is a ground formula rather than a rule. Sentence (11) illustrates theretrieval of the system's informationabout who is mortal; note the additional believed propositions.Sentence (13) is an example of a more complex noun phrase in a rule. The representation of (13) isin Figure 19 and is subsumed by that of sentence (1) or (5) leading to the yes answer. In Figure 19,V4 represents the arbitrary rich young man that owns some car, and V5 represents some owned25
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Figure 19: Representation of sentence (13) Are all rich young men that own some car mortal?car of V4. In sentence (15) (Figure 20), a new rule about rich young car-owning men (V6) beinghappy (M21) is introduced. The question of sentence (17) (is John happy) cannot be answered,because the system cannot determine that node V6 subsumes John. This is because, while John isa man, he is not known to be young, rich, and owning a car (requirements for this subsumption).Sentence (19) informs the system of these requirements the systems understanding is veri�ed byquestion (21), whose representation is shown in Figure 22. Note that the structure of the questioninvolving two variables (Who and a car) is identical to that of the structure of its answer, whichwould not be the case if constraints were separated from variables in the antecedents of rules (asis done in typical logics). The question is asked again and, because the subsumption relationshipcan be determined, is answered in the a�rmative.26
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Figure 20: Representation of sentence (15) Any rich young man that owns any car is happy.
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M22Figure 21: Representation of sentence (17). Is John happy?7 SummaryWe initially presented some broad goals for a knowledge representation and reasoning system fornatural language processing. We have described, in some detail, such a system. ANALOG is apropositional semantic-network-based knowledge representation and reasoning system that sup-ports many aspects of NLP, in particular, the representation and generation of complex nounphrases, the representation of various types of quanti�ed variable scoping, a high degree of struc-ture sharing, and subsumption of the sort typically associated with ordinary natural language use.We have presented examples of natural language dialog and their associated representations in theANALOG system that illustrate the utility of this formalism for NLP.The full ANALOG system has not been described here, due to space limitations, but includes27
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