A SCRABBLE CROSSWORD GAME PLAYING PROGRAM*

Stuart C. Shapiro

Department of Computer Science
State University of New York at Buffalo

Amherst, New York 14226

|

Howard R. Smith
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

Keywords and Phrases: SCRABBLE Crossword Game, game playing,’
lexicon, dictionary, letter table, trie,
data structures, searching.

CR Categories: 3.64, 3.66, 3.74

£33 3

| S—

*The work reported herein was done while both authors were at
the Computer Science Department, Indiana University, Bloomington,
. Indiana 47401.

3l
[}

-
]

Abstract

A program has been designed and implemented in SIMULA 67 on a

DECSystem-10 to play the SCRABBLE Crossword Game interactively against

a human opponent. The heart of the design is the data structure for

the lexicon and tﬁe algorithm for searching it. The lexicon is repre-
sented as a letter table, or trie using a canonical ordering of the
‘ letﬁers in the words rather than the original spelling. The algorithm
ﬁ t~akés the trie and a collection of letters, including blanks, and in
a single backtrack search of the trie finds all words that can be formed
. from any combination and permutation of the letters. Words using the
l higher valued letters are found before words not using those letters,
and words using a collection of letters are found before words using a
sub-collection of them. The search procedure detaches after each group

of words is found and may be resumed if more words are desired.

3 3

3

ey
}

[

£ &8 o B W

T [E3 ED

1. Introduction

The SCRABBLE Crossword Game is a well known game considered to
require a fair amount of intelligence, strategic and tactical skill,
facility with words, and luck. Unlike most games in the artificial
intelligence literature, it can be played by two or more players and

is neither a zero sum game nor a game of perfect information. For

~'these reasons, game tree searching procedures do not seem applicable.

When humans play the game, a large easily accessible vocabulary seems

to be the most important determiner of victory. One might, therefore,
think that it would be easy to write a program that plays the SCRABBLE
Crossword Game at the championship level. However, several issues are

not so clear: How should the lexicon be organized for maximum useful-

ness?; How should a program decide where to play?; How can a program

take advantage of the small literature on the strategy and tactics of
the game (e.g. [1])?; What is the relative importance of a good memory
for words vs. skillful decisions about what letters to use or not to

use and where to play?

Our interest has focused .on the organization of the lexicon. This
lexicon differs from those usually used in natural language processing
programs because of the use to which it is to be put. Usually one is
confronted with a possible word. One must determine if it is a word,

and, if so, segment it into affixes and stem, and retrieve lexical infor-

mation associated with the stem. One must allow for the possibility

that the word is lexically ambiguous and that the segmentation can be
done in several different ways. The problem for the SCRABBLE Crossword

Game lexicon is, given a set of letters, find all the words that can be

made from any combination and permutation of them. This is a very

different problem, but similar to the information retrieval problem of,

E &S o ==

-3 -

given a set of keys find all records that contain any subset of them,
or the pattern recognition problem of, given a set of features, some
of which may be spurious, find all objects that might have given rise

to then.

We have designed a lexicon and an algorithm for searching it.
Around they, we have designed and implemented a program that plays the
SCRABBLE Crossword Game interactively at a competitive, human level.
We chose SIMULA 67 [2,3,4] for the programming language for reasons to
be discussed below. In the sections below, we first briefly describe
the program organization and the board evaluation technique, then we

discuss the lexicon and the lexicon search algorithm in more detail.

2. Program Organization

Because our major concern was with the lexicon and associated

algorithms, the rest of the program is the minimal required to play a

‘reasonable game. We will describe the program as it is, and in the

final section of this paper indicate desirable enhancements.

The program is written to play a two person game - the program
player against one human opponent. Figure 1 shows the overall organi-

zation of the major program modules, which we shall describe below.

2.1 The Game Manager

The game manager handles interaction with the human opponent and
keeps track of all game information. It deals out tiles to the human
opponent and the program player at the beginning of the game and after
each play. Dealing is done randomly (without replacement) from a list
initialized correctly at the beginning of the game. The seed of the

pseudo-random number generator is chosen by the human at the start of

| = e

Program

Player

Human
Opponent

Game
Manager
Board Board
Analyzer Z Representation
Ordered List
of Possible
Plays
Z

Referee

=

Lexicon

y/d

Lexicon
Manager

FIGURE 1: Organization of Major Program Modules

the game 'so that a game can be repeated to see the effect of learning

new words. Whether the program or the human plays first is decided by

randomly drawing a tile for each, according to the rules. The game

manager's basic cycle is as follows:
1. Print out the current board.

2. Print out the human's rack and request an instruction.
(The human's options at this point are described in Section

2.3).

3. If the human specifies a word to play, pass it to the referee

for checking and scoring.

4, If the referee says that the play is illegal (see Section

2.5), print an appropriate message and go to step (2).

5. If the move was legal, update the board representation and
the human's score, deal the human new tiles to replace the
ones just used, print the score for the move just made and
the new rack so the human can start thinking about the next

move.

6. Pass the human's move to the board analyzer for updating the

list of possible plays.

7. If the inspect made is on, print the program player's rack.

8. Get the program's move, update the board and the program's

score, print the move and the score of the move.

9. Pass the program's move to the board analyzer.

10. Go to step (1).

The game ends when the human so specifies in step (2). Each play-

=3

er's total score is decreased by the value of the tiles in his/her rack,

3

and the final scores are printed.

2.2 The Board Representation

The board is represented as a 15 x 15 array of SQUAREs. In inter-
action with the human, the rows are numbered 1-15 and the columns A-O,

in the official manner [1,pp33-4]. Each SQUARE has a value as shown

below:
Kind of SQUARE value
normal 0
double letter 1
triple letter 2
double word 3
triple word 4

If a SQUARE is occupied by a tile, it also contains the tile, an indica-
tion of whether the word using that tile is horizontal or vertical, and
the value of a play using that tile as assigned by the board analyzer.

Figure 2 shows how the board is printed before any play has been made.

2.3 The Human Opponent

When it is the human's turn to move, the following options are

available:
0. terminate the game
1. play a word
2. pass without eichanging tiles
3. pass and exchange some tiles

4. have the total scores of both players printed

@
?
aut

D O & £

WOV~ UN

FIGURE 2:

How the board looks to
any words are

LWooNO BN

the human before
played.

g
N
|
i
!

S. have the board and human's rack printed

6. access the lexicon manager (see Section 2.7)

7. get general instructions for interacting with the program
8. get this 1list of options.

When the human plays a word, a notation close to the official nota-
tion of the SCRABBLE Crossword Game PLAYERS [1,pp33-4] is used. The
word is typed in with each letter already on the board preceeded by a
"$". When a blank tile is played, a "#" is typed followed by the
letter it is being used as. For example, the play, $F#IRM, means that
the player is using a blank, an R and an M from the rack and an F from
the board, is using the blank as an I, and is spelling the word, "firm".
The location of the word is indicated by the official notation. For
example, to place a word horizontally on row 12 from column K to column
N, the notation is 12K-N. To place a word vertically on column C from

row 13 to row 15, the notation is C13-15.

2.4 The Program Player

There are two basic ways'to choose a play: 1) pick a place to
play, then find a word that will fit; 2) pick a word to make, then find
a place to put it. In either case, one might assign high priority to
using or to not using certain tiles in the rack in order to keep the
rack balanced or to build toward being able to make a bonus word (using
all seven tiles on the rack). The second method is easier to use if
the word chosen is made entirely from tiles in the rack, than if tiles
from the board are also to be used (see Appendix, moves 3, 17 and 29).
This is most appropriate when a bonus word can be made entirely from

the rack. We decided to use the first method.

We adopted the following simplified approach. Possible places to
play are tiles already on the board. If a tile is already being used
in a horizontal word, only a vertical play will be considered and vice
versa. This means that often valuable moves 1like 3, 17, 19, 21, 33, 35
and 39 in the Appendix will not be considered by this version of the

program.

In certain situations, choice of a tile to play on puts obvious
iﬁ (to humans) limitations on possible words. For example, if we decide
to play on a K in column N only words with a K as last letter or second
' to last letter are possible. One might decide to build such limitations
Il into the lexicon search algorithm. However, this complicates situations
where we decide to play on a centrally located tile. We decided to
ignore such limitations in the lexicon lookup and use the referee to

check each word found to see if it really fits where the player wants

to put 1it.

The program player uses three parameters, MAXLOC, MAXWDS, and

B

MINPT. It considers the best MAXLOC positions from the ordered 1list
maintained by the board analyzer. For each position, it passes the
tiles in its rack plus the tile at the position to the lexicon search
algorithm, and considers the first MAXWDS words found. Each word is
passed to the referee along with its proposed location. The referee

determines if the word really fits there, and if so, returns a score

= o8 & ==

for the play. As soon as a play worth at least MINPT points is found,

it is played. If no such play is found, the highest scoring play is

 sia)

made. If none of the MAXLOC x MAXWDS words are playable, the player

exchanges all the tiles on its rack for new ones. Of course, if fewer

than seven tiles are left to draw from, this exchange is illegal and

M
S |

the program just passes. In the game recorded in the Appendix, MAXLOC

I_f’\

{
§
|
g
!

&&= e

- 10 -

was 6, MAXWDS was 5 and MINPT was 14. Of the program's 25 moves, 6 were
worth MINPT or more, 10 were worth fewer than MINPT, the program ex-
changed its rack 7 times, and passed twice. The average score for the
16 words actually played was 13.125. The average score for the human's

25 words was 13.88.

When the inspect mode is on, all positions and words the program

player considers are printed on the terminal.

2.5 The Referee

The referee is called by the program player with a proposed move
and by the game manager with the human's move. In either case, a word
and a location are passed to the referee, which checks the following

(not necessarily in the order shown):
1. The location and the length of the word are consistent.
2. The word will not extend off the board.

3. All letters except those preceeded by "$" are on the player's

rack.

4, The word contains at least one tile from the board or is

adjacent to a tile on the board in at least one place.

5. The location places each letter preceeded by a "$" where
such a tile is already on the board and every other tile

on an empty square.

6. The two ends of the word are not adjacent (in the direction

of the word) to non-empty squares.

If the referee is judging the human's move, it passes the word and
all cross-words formed by the play to the lexicon search routine. If

one of these words is not in the lexicon, the human is asked if it

&4

0 on &N am g &0

- 11 -

really is a word. If the human responds "yes", the word is given to
the lexicon manager for immediate insertion into the lexicon. If the
response is "no'", the current version of the program allows the play

anyway.

If the play is legal, the referee computes its score, including
the main word and all newly formed cross-words, and returns this to

the caller.

2.6 The Board Analyzer

The board analyzer is called by the game manager after each move
to update the values of the playable tiles and the ordered list of these
positions. The analyzer begins by setting to 0 the value of each tile
already on the board that has now been used in both directions. It
then computes a value for each tile newly placed on the board by the
play. If the play was vertical (horizontal), the value is the sum of
the value of the square and the value of each unoccupied square in the
same row (column) except that no square is included that is more than
seven squares away from the tile being evaluated or that is beyond the
closest occupied square. Those occupied squares are then reevaluated and
the ordered list of playable positions is updated for the program
player's next move. The values calculated by the board analyzer are
stored in each evaluated SQUARE as mentioned in Section 2.2. For exam-
ple, Figure 3 shows a section of the board after placing REA$L at 12A-D.
The value of the L at 12D is changed to 0, the values of the R, E, and A
in row 12 are set to 9, 8, and 4 respectively, and the W at 9C is re-

evaluated from 11 to 8.

We realize that the board evaluation scheme needs improvement, but

it does provide a rough approximation to an adequate ordering of the

- 12 -

E3 £

2
3
4
S
6
7
8
9 H
10 2 E
11 L
12 REAL
13 30
14 3
15 4 1
ABCD

FIGURE 3: A section of the board after playing
REASL at 12A-D

{
b
I
i
|

2 oo on o8 N 63 &0 o0 MO B9 S0 o0

§

- 13 -

playable positions and we were more concerned with the lexicon, to

which we now turn.

2.7 The Lexicon Manager

The lexicon manager can perform the following operations:
1. Insert a word into the lexicon

2. Delete a word from the lexicon

3. Check if a particular word is in the lexicon

4, Find words that can be formed from any permutation and combi-

nation of a set of tiles.

The referee uées operation 3 to check the human's plays and opera-
tion 1 when the human insists that a word that isn't in the lexicon
should be. The referee also uses operation 3 to check cross-words
formed by plays proposed by the program.player. The program player uées
operation 4 to find possible words to play. The human can interact with
the lexicon manager by choosing option 6 (see Section 2.3). He/She can
then repeatedly use options 1, 2 or 4 before returning to the game. This
option has been used by the authors for early editing of the lexicon.

For example, we entered all legal two letter words [1,p.156] this way.

Option 4 takes advantage of the SIMULA 67 detach facility by taking
a set of tiles and a number, n. It returns approximately n words (see
below), and then can either search the lexicon using a different set of
tiles or can resume the search for more words using the original set of
tiles. The availability'of detach was the main reason for choosing

SIMULA 67 as the programming language.

2 o0 em Sn W 68 & an AW S on em o

) s

- 14 -

3. The Lexicon Data Structure

The lexicon was designed for the particular problem, “given a col-
lection of letters, find all words that can be formed from any combina-
tion and permutation of the letters, and find.these words in approxi-
mately the order of their value in the SCRABBLE Crossword Game." Two
key ideas were combined in the design of the daté structure - letter

tables [5, 6, 8], or tries [7], and canonical ordering.

A letter table is a binary tree in which each node has the follow-
ing four fields: 1) a letter; 2) information depending on the applica-
tion; 3) a success link to a subtree; 4) a fail link to a subtree. To
look up a word in a letter table one starts at the root and follows

fail links until a node is found whose letter is the first letter in

‘the word. Then one looks up the remainder of the word in the success

subtree of that node. When a node is found for the last letter in the
word, the information field contains information about that word, e.g.
lexical features. Note that as a word is looked up, all words formed

from initial sub-sequences of the word are also found.

Consider the problem of designing a human readable anagram lexicon
to find all words that can be formed from permutations of a given collec-
tion of letters. Take any word to be listed and reorder its letters
according to any canonical ordering, e.g. alphabetical. List these
re-spellings lexicographically based on the same ordering, and under
each re-spelling list the original word. For example, to find anagrams

of "live'", look up "eilv", and find "evil", "live'", and "vile".

Combining these two ideas, the data structure of our lexicon is a
letter table using a canonical ordering of letters instead of the orig-
inal spelling order. The information field of each node contains a

list of the words formed from permutations of the letters which access

—

2 on e o8 N €& ¢ o N & an e

- 15 -

the node. So that words can be found in approximately the order of
their values in the SCRABBLE Crossword Game, the canonical ordering
used is the value of the letters in that game. Among letters with the
same value, the one with the least frequency in English is sorted |

first to increase the bushiness of the tree. The ordering used is:
ZQJXKVWYFHBPMCGDULSIRNOATE

Figure 4 shows a small lexicon using this data structure. The fields

are shown as indicated below.

letter| words

fail succ

Each node is numbered for reference in Section 4.

The lexicon is maintained in a sequential file on disk, ordered in
the same way it is searched: 1letter field, words field, success subtree,
fail subtree. This file is scanned as the tree is searched and subtrees

that are not needed are not stored in main memory.

4. The Lexicon Search Algorithm

The search algorithm takes the lexicon tree and a list of letters
in the canonical order. The list of letters may contain one or more
occurrences of the blank, "#'", which may match any letter and are ini-
tially placed at the front of the list. The search algorithm finds all
words in the tree that are formed from any permutation and combination
of the letters in the liét. It finds words using the higher valued
letters before words not using them. It also finds words using a col-
lection of letters before words using a proper sub-collection of those

letters. For example, if a word can be formed usihg all the letters

e @ e W & €9 M e & on pm &R

e

- 16 -

1 2 3 4 4 QUIT
Q U 1| T|/
r o ~ P . P >~
y 5 6 7 8 » LIKE
K L I E
y 9 10, LOOK
0 ol /
11 12 13 14 154 LIVES, EVILS
\' L S I E /
p | o > o > | o > o
16 17,LIVE, EVIL, VILE
I E|/
y 18 194NO 20, NOT
N ol / |/
FIGURE 4: An eiample of the lexicon data structure

L_M; i

- 17 -
in the 1list, this will be the first word found.

In the algorithm presented below, the procedure detach is to be
understood as causing control to be returned to the original caller of
the procedure in such a way that the current value of the local vari-
ables are available to the original caller, and so that the procedure
may bé resumed at the point right after the detach. Other variables

and functions used are:

tree: a node of the lexicon tree

letters: a list of letters ordered as discussed above

nil: the empty list and the empty tree

letter(tree)

words (tree)

the four fields of tree

succ(tree)

fail(tree) |

hd(letters): the first letter.on the list

tl(letters): the list without the first letter

next-let(letters): the first non-# letter on the list, or
nil if there is none

move-to-front(letter, letters): equal to letters, but with
the first occurrence of letter moved to the front
of the list

before(letter1, letter2): true if letter! is before letter2
in the canonical ordering or if letter2 is nil,
false otherwise

remove-next-lei(letters): equal to letters with the first

none-# letter removed.

The search algorithm is:

procedure findwords(tree,letters);

while tree # nil and letters # nil do
if letter(tree) = next-let(letters) then
Eggiﬁ {lexicon node matches first non-# letter} |
letters +« move-to-front(next-let(letters), letters);
findwords (succ(tree), tl(letters));

if words(tree) # nil then detach;

letters « tl(letters); {now ignore this letter and}
tree « fail(tree) {continue searching}

end

else if hd(letters) = '#' then

{lexicon node doesn't match first ﬁon-# letter,
but it can ﬁatch the #}

if before(letter(tree), ﬁéxt-let(letters)) then
begin {allow the # to match the node}

findwords (succ(tree), tl(letters));

if words(tree) # nil then detach;

tree + fail(tree) {the # can match something else

end

i
g
€
i
1
€
i
)
i
g
!

else letters + remove-next-let(letters)

{we are past this letter, so ignore it}

else if before(hd(letters), letter(tree)) then
. letters « tl(letters) {we're past this letter,

so ignore it}

else tree « fail(tree) {keep looking}
[? Table 1 shows a trace of this procedure on the lexicon of Figure 4 and
)

the list of letters, #VSIE. Note that success links are followed recur-

uinisy . TTU TTu S
(L1)29ns MoT10F =4 q q LT 4
(91)oons moytro3F 3 : I=1 d1 I 91)
(€T)1TRy MOTTOF pue § axoult - ITu = (gT)SpPiom I8 S ¢T £
uaniay : q ItTu 14
(pT) TTRF MOTTOF pue] oiouly - TTuU = (yT)SPIOM dI I vl v
_ uInlay ITu TTu S
(sT) rTesr mor1oy pue g saoult d d ST S
| yoelaq STIAA ‘STAIT = (ST)SPlIom ;| : ST S
. - uIni1ay Ttu TTu 9
o (sT) oons Moyt1o3} d=9 qd q ST S
' (¥1) 2ons mo1toOF I=I a1 I 1At 14
(g1) 2ons mMoyT0F _ §=§ IS S €T g
(z1)2ons MoTTOF ‘7 soydjeuw ¢ (S‘T1)ex030q ‘y=(SYALIAT) PY ‘S#1T IS # 1 (A 4
I1)29ns MOTTO0F ‘3uoly 03 A 9Aou . A=A HISA# A 1T 1
(s) 1Tey mo1TO3 - ITU = () SPIOM HISA# X S 1
uInlay 1S TTu Z
(9) TTey MOTTIOF (1°S)or039qe *y#(SUALLAT) PU ‘S#T IS 1 9 (4
A 230uBT (T‘p)ex0zeq ‘A (SYALLAT)PY ‘A#T HISA 1 9 z
(s)oons morToF ‘Y soydjeu 4 (A‘X)21039q y=(SYALIAT) PU ‘A#X HISA# A S I
(1) TTeF moOTTOF - TTu = (T)SpIom JISA# d 1 T
uInlay d1IS TTu [4
(z) trey mor103 (n‘s)oroFaqe *p#(SYALIAT) PU ‘S#n 9IS n 4 4
A oxoudt (n°A)e103aq ‘p#(SYALIATI PU ‘Afn HISA n z z
(1)2ons morToF ‘b soyd3em § (A‘D)9103oq ‘y=(SUALLAT) PU ‘AR TISAW d 1 1

T 479VL

1ﬂﬂ G 0 oF W S =D &9 U P e e

& e o g

' uiniay a4 TTu 1
& (8T)TTRI MOTTOZ TTu = (87)SPiom) N 81 1
' uiniay | | 1Tu z
- (6T)1Tez MOTTOF (0‘d)aroyoq- y£(SYALLAT)PY ‘T40 q 0 61 4
(81)2ons Mmor103 ‘N soyojeuw 4 (2°N)91039q *p=(SYALLATIPY ‘H#N q4 N 8T I
I 210udT (I‘N)a1oyoqe ‘y=(SYALLATIPY ‘I#N dI# N 81 T
§ ox0oudr (S'N)oxoyaqw- ‘= (SYILLIT)PYU ‘S#N HIS# N 8T 1
(T1) TTey MoTTOF ‘A 9xoult TTU = (TT)SPAOM FISHA A 11 I
uIn3ay IS # TTU 4
(z1) 1TR3 MOTTOF TTu = (Z1)Spaom HIS# 1 At 4
uIniay q TTu ¢
(9T) 1TEy MOTTOF ‘I oxoulty TTu = (9T) SPIoM dI I 91)
uiniay ITu I1U b
(L1) 1Ty MOTTOF pue g oxousy 2| | LT b
yoelaq HTIA ‘TIAS ‘4AIT = (L1)Spiom d d LT 14

uot3dy s3Insay 1s9] S1983397] oww%uwm 9oLl 19491

JO 9pON UOTSIANOIY

(ponutijuo)) 1 FT9VL

& .l oy a9 o e =D 9 U% P B =S oo

- 21 -

sively since we will later back up along these links, but fail links
are followed iteratively since once following a fail link from a node
we are no longer interested in that node or its success subtree. This
is the method by which only those pieces of the tree in which we are
interested are retained in main memory. Also note that since words
are found in groups, if n words were wanted, af léast n words, but

possibly a few more, will be found.

One deficiency of this search algorithm is that when the program
player picks a board position to play on and passes the tile at that
position along with the tiles on its rack to the search algorithm,
words that do not use the tile on the board may be returned. We want
to be able to mark certain letters in the list as required to be used
in the retrieved words. We will define the procedure findwords2 that
takes a node of the tree and an ordered list of nodes, n with the

following fields:

letter(n): a letter corresponding to an element of the

second argument of findwords

req(n): true if letter(n) is required to be in the

retrieved words, false otherwise

done (n): true if no node further on in the 1list is

required, false otherwise

Given such a list with the letter and req fields set, it is easy to
define the procedure setdone which returns the list with the done fields
set properly. In the procedure below, letters is such a list after
setdone has been applied, next-let(letters) returns the letter field

of the first node in letters whose letter field is not #,

next-req(letters) returns the req field of the first node in letters whose

- 22 -

letter field is not #, remove-next-let(letters) removes from letters

the first node whose letter field is not #, and move-to-front(letter,
letters) moves to the front of lettéfs the first node whose letter
field is letter and if that node has a true req field returns setdone
of the changed list. Lines in findwords2 that are different from
corresponding lines in findword are marked by a "»" in the left margin.

procedure findwords2(tree, letters);
while tree # nil and letters # nil do
if letter(tree) = next-let(letters) then
begin {lexicon node matches first non-# letter}
letters « move-to-front(next-let(letters), letters);
findwords(succ(tree), tl(letters));

> if words(tree) # nil and done(hd(letters)) then
detach;
> if req(hd(letters)) then tree « nil
> else begin letters « tl(letters);
- tree fail(tree)
> end
end
else if hd(letter) = '#' then

{lexicon node doesn't match first non-# letter, but
but it can match the #}
if before(letter(tree), next-let(letters)) EEEE
begin {allow the # to match the node}
findwords (succ(tree), tl(letters));
> . if words(tree) # nil and done(hd(letters))
then detach
tree + fail(tree) {the # can match something els:

£
£
{
k
i
1
E
4
N
4
i
J

end
- else if next-req(letters) then letters <« nil

-+ else letters « remove-next-let(letters)
' else if before(hd(letters), letter(tree)) then {we've passed
this letter}

+ if req(hd(letters)) then letters + nil
> else letters +« tl(letters)

else tree « fail(tree) {keep looking}

£

/M 3 e3

- 23 -

Notice that the req field keeps us from ignoring required letters, and
the done field prevents words from being returned unless all required

letters are included.

S. Conclusions

The lexicon data structure and search algérithm seem successful.
The program player quickly makes use of high valued tiles on the board
or on its rack. There is still much room for improvement besides in-
creasing the program's vocabulary. Implementing findwords2 would make
the program player's search for words to play more efficient and more
likely to yieid playable words without changing the MAXLOC and MAXWDS
parameters. The board evaluation scheme is still rather pyimifive. For
example, the value of double letter squares should be twice the average
value of the (still unplayed) tiles instead of 1. The program player
should be modified to allow for playing words parallel to adjacent words
and for extending existing words. Strategies such as maintaining a
balanced rack and retaining high frequency poly-graphs to increase the
future probability of a bonus word might be added. Even without these
improvements, the program plays a competitive game against a human

opponent.

Acknowledgements

The authors appreciate the work of Ben Shneiderman, Margaret Ambrose
and Barbara Rasche who along with the senior author, worked on a pre-
liminary version of this program. Computer services were provided by
IUPUI Computing Facilities as part of the Indiana University Computing

Network.

- 24 -

References

1.

Conklin, D. K. (Ed.) The Official SCRABBLE Players Handbook.

Harmony Books Division, Crown Publishers, Inc., New York, 1976.

Dahl, 0.-J. and Hoare, C.A.R. Hierarchical program structures.

Dahl, O0.-J., Dijkstra, E.W., and Hoare, C.A.R. (Eds.) Structured

Programming. Academic Press, London, 1972, 175-220.

Dahl, 0.-J., Myhrhang, B.; Nygaard, K. The Simula 67 Common Base

Language. Norwegian Computing Centre, Forskningsveien 1B, Oslo 3,
1968.

Dahl, 0.-J., and Nygaard, K. Simula - an Algol-based simulation

language. Comm. ACM 9, 9 (Sept., 1966), 671-678.

De La Briandais, R. File searching using variable length keys.

Proc. WJCC, AFIPS Press, Montvale, N.J., 1959, 295-298.

Hays, D.G. Introduction to Computational Linguistics. American

Elsevier, N.Y., 1967, 92-94.

Knuth, D.E. The Art of Computer Programming Vol. 3/Sorting and

Searching. Addison-Wesley, Reading, Mass., 1973, 481-487.

| Lamb, S.M. and Jacobsen, W.H., Jr. A high-speed large-capacity

dictionary system. Mechanical Translation, 6 (Nov., 1961), 76-107.

Reprinted in Hays, D.G. (Ed.) Readings in Automatic Language

Processing. American Elsevier, New York, 1966, 51-72.

- 25 -

Appendix

Table 2 provides a record of a complete game played between the
program player and a human, DPF. DPF had previously played several
rushed rounds against the program and consistently scored lower than
the program. However, in the game presented here, he took advantage
of his knowledge of the program's weaknesses. The game was played
with the inspect mode on and took 17 minutes, 28.56 seconds of CPU
time on a DECSystem-10 and 2 hours, 50 minutes, 39.05 seconds of real

time. At the end of the game, there were 1488 words in the lexicon.

In Table 2, a letter already on the board is underlined and blanks

are represented as a square. Figure 5 shows the board at the end of

the game.

ABCDEFGHIJKLMNDO

1 4 1 4 E 'QUE4 1

2 3 2 EVE LO 2

3 3 1 I WINK 3

4 1 3 1 LOIN 1 4

5 3 SNOW 5

6 2 2 D E RE 6

7 1 T H VAN 7

8 4 1C HOOF 1APT 38

9 1BUSY 1IF N R 9

10 2 L A RAGEZE 10

I' 11 TI M I Y E 11

12 1 35 DIME LAZES 12

13 J CO0OG 10N IT 13

14 A 3 A ZRADAR PIT 14

15 REBUDGETS 1 0 15
ABCDEFGHIJKLMNO

FIGURE 5: The board at the end of the game of Table 2

- 26 -

Table 2

) Score
| Rack Word Location Pl'ayD—P;otal Plg;ogrzlt‘:lal
1. IFOHIOT HOOF 8G-J 20 20
a, 2. GSMHRCB FfRM J8-11 10 10
3. LATIFIT FAIL K9-12 28 48

4. EZIGSHB HO 17-8 | 9 19

5. ITYTTIT THY G7-9 14 62

6. AEZIGSB LAZE 12K-N 26 45

7. YCITTIT YET N11-13 6 68

8. UNOIGSB BUSY 9D-G 9 54
l 9. DLCITIT CULT E8-11 12 80

10. PEDNOIG ZIP Ml12-14 32 86
' 11. ONADIIT SAID F9-12 13 93

12. RPEDNOG exchange rack 86

13. AREONIT PI 14M-N 22 115

14. GMRDNEI DIME 12F-1 10 96

15, AAREONT MOAT H12-15 18 133

16. ANRGRDN RADAR 14G-K 8 104

17. TEEAREN ENTREE 06-11 23 156
i 18. UAJTNGN exchange rack 104

19. ACISEAE LAZES 12K-0 23 179
' 20. PUBOSGD. BUDGET 15C-H 11 115

21. RACIEAE REBUDGET 15A-H 33 212

22. INQIVPS ON 13H-1 8 123
' 23. UACIEAE CAB Cl3-15 14 226

24, EIQIVPS exchange rack 123
E 25. VNUIEAE VAN 7M-Q 10 236

26. ROGNLGI exchange rack 123
27. ANUIEAE VANE M7-10 8 244

28. EQVLUNI exchange rack 123
D 29. ITOUIAE TO 014-15 11 255

30. DEEOOKW exchange rack 123
U 31. JNIUIAE JAR Al13-15 10 265

32. PGGRLVQ RAP N6-8 16 139
) 33. ISNIUIE ENDS 112-15 17 282 |
{: 34. EOGGLVQ exchange rack 139

35. WINIUIE WRAP N5-8 9 291

- 27 -
Table 2 (Continued)

| Score

Rack mord tocation PIayQB;btal Plz;o %g?al
36. EDOWNSE SNOW 5J-N 14 153
37. OINIUIE INN L3-5 6 297
38. ONKEDWE WINK 3K-N o 22 175
39. QGOIUIE RAGE 10J-M 5 302
40. LUIOEDE ELK N1-3 14 189
41. LQOIUIE QUE 1L-N 22 324
42, EGUIODE pass : 189
43, XOLOIIE WISE K3-6 9 333
44, EGUIODE DE 6J-K 7 196
45, EVXOLOI LOIN 41-L 4 337
46. EGUIOE COG 13C-E 6 202
47. EVXOI EVIL I11-4 8 345
48. EUIE EVE 2H-J 8 210
49. Xo Lo 2N-0 2 347
50. UI pass 210
S1. X pass 347

' 339 208

CoO O &8 3@m 68

