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ABSTRACT

Model-based  diagnuostic expert systems need knowledge
representations of spatial structure and function. In this paper, we
argue that a semantic network representation is an effective
approach t this problem and supports diagnostic reasoning,
interactive graphics. image analvsis. and natural language inter-
fuces. As a case in point, we describe the neuroanatomic module of
an expert system for neurologic diagnosis, NEUREX, currently
under development.

1. Introduction

The objctive of a diagnostic expert system (DES) is to
assess the mnternal status of the subject of the diagnostic evalua-
tion, be it a patient or a device, from observed behavior. There are
two approaches to the design of such a system. The first maps
complaints (svmptoms) or behavioral changes (objective findirgs)
w symbolic numes for the underlying cause of the internal prob-
lem (specific diseases). The mapping is guided by rules which
procesd through intermediate stages to reach diagnostiv conclu-
sions. Such systems are based on shallow knowledge, because
they do not relate input data and conclusions to the structure of
the subjgect and to the function associsted with components of
structure. The second approach makes such associations. using
deep know ledge in the form of a4 model of the subject™®. A deep
reasoning svstem is also said to be buased on first principles’.
Understanding how the subject is structured and how it functions
extends a system’s diagnostic capabilities. For instance, a machine
repair DLS needs to know how the muchine works in order to
analyze complex malfunctions; whereas simple disorders may be
handled by mapping symptoms directly to specific types of dys-
function -- by knowing empirically how the machine fails.

Representation of spatial structure and the function associ-
ated with the components of that structure is a kev element in
butlding a muodel-based DYS. Spatial (physical) structure alone
cuptures the physical characteristics of the components and pheir
interconnections. The functions of the components and their
interactions explain the causal relations between the internal
status of the subject and its behavior. There are several possible
levels of abstraction (or grain sizes) in such representations. The
level chosen depends on the needs of the diagnostic task. For
example, it can be mapped into an abstraction called logical struc-
ture. A subject may have more than one logical structure associ-
ated with a particular way of decomposing function. Since diag-
nosis is an analytic process, logical structure follows from physi-
cal structure; whereas in a synthesis problem, the reverse is true.
Thus we need a representation that allows us to describe spatial
structure, function associated with the components of that struc-
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ture, and the logic of the structural-functional relationships
necessary for diagnostic reasoning. In this paper, we outline the
constituents of these elements and argue the effectiveness of a
semantic network representation. The latter accommodates 3
large, diverse information base; allows structure to be associated
with function; and can support diagnostic reasoning, interactive
graphics for data entry and explanatory output, image analysis,
and natural language interfaces. To exemplify the use of semantic
networks in this manner, we present a proposed representation of
functional neuroanatomy from an expert system for neurological
consultation under development at our institution.

Section 2 is a brief review and critique of basic approaches
to representing spatial knowledge. Section 3 describes the semantic
network approach and argues its effectiveness. Section 4 intro-
duces the fundamentals of neurological diagnosis. Section $
reviews previous works on computerized neurological consulta-
tion. Section 6 discusses the representation of spatial structure and
function in our system, NEUREN. This system was previously
referred to as NEUROLOGIST-1Y.

2. Spatial Structure and Function Representation

The spatial structure of a subjct refers to its organization in
three-dimensional (3-d) physical spuce. In special cases it may be
two dimensional. The representation of 3-d spat:al structure has
been studied in computer science for a long time'> . The

methods used are either analogical or propositional .

An analogical representation is a detailed geometrical
description. This includes mathematical equations and division of
3-d space into volume elements (voxels) where sets of voxels
specif'y the curves, surfaces or objects within the spucezs. Theyv
have the following advantages: the spatial structure of the entity
represented can be succinetly and unambiguously defined, infer-
ence rules fur spatial reasoning can be implemented by algorithms
from computational geometry, graphics and image processing
technigues can be adapted without much difficulty. However,
thev usuallyv overspecify the real world, since every entity can
not or need not be given an exact geometrical description. Further-
more. they sometimes have little relationship to the cognitive
approaches which human beings use.

A propositional representation abstracts salient topological
features in order to describe entities in terms of shape, position,
etc. and spatial relationships by adjacency, connectivity, direction,
etc. This format favors modeling intelligence and is a promising
Wway to overcome some of the disadvantages inherent in analogica!
representations. However, it too has limitations: not all structural
information can be expressed by propositions. Sometimes, spatial
information is better depicted in pictures.

The function associated with components of the structure
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defines the behavior of the subject. For example, the logical rela-
tionships between the input and output terminals of such com-
ponents as "AND gates” and "OR gates” determine how a digital
circuit works. Similarly, a muscle is usually innervated by
several nerves and provides a certain percentage of the force of a
particular movement at a joint. It is important to combine struc-
ture and function’™. However, few investigators have explored
this problem in detail. We bhelieve the representational format
should accommodate both analogical and propositional informa-
tion about structure and function, while fulfilling the other
requirements noted in Section 1.

3. Semantic Network Representation

Cognitive knowledge is generally organized in the form of
concepts and their relations to each other. A physical entity,
each of its physicalspatial properties, and its function are all
independent concepts which relate to each other when, in combi-
nation, they describe the entity. A complex svstem can be decom-
posed in several wavs, each corresponding to a different logical
structure, into sets of entities which may interweave with each
other. The relations hetween entities such as spatial relation and
functional relation are also specific concepts.

A semantic network'* 2" 2"+27 is a representation in which
each concept (including each relationship between concepts) is
represented by a specific node linked to other nodes by predefined
arcs. Fig. 1 shows the general organization of such a network
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categoryl \ category
ent M ent ent ent
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functionl topological topological function2
relationl relation2
Fig. 1. The general organization of the

semantic network representation of
spatial structure and function.

representing spatial structure and function. Each conceptually
significant entity is represented by a unique node such as
“entity1” or “entity2”. The node with “ent” arc pointing to
“entityl” and “fun” arc pointing to "functionl” asserts that
“entityl” has function specified by “functionl”. The analogical
information about entity1 (expressed by coordinates, equations,
etc.) is asserted by the node with “ana” arc pointing to “coordi-
hates” and “ent” arc pointing to “entityl". Similarly, relations
between entities, such as topological connections, are represented
by nodes and arcs (see the node with “rel” and “ent” arcs).

Semantic network representations have been used before for
implementing expert systems. PROSPECTOR, a geological analysis
system'. used partitioned semantic networks to represent
knowledge. The latter consists of production rules and subset and
element taxonomic information. The following are the advan-
tages for implementing a DS based on spatial structure and
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function:

(D Analogi'cal, propositional and functional knowledge can be
integrated into a single network which reflects different lev-
els of abstraction. Each physical entity is “surrounded” by
its geometrical and topological descriptions (if any exist),
other spatially and/or functionally related entities and its
function, ie., a locally limited search of the network can
provide all the information relevant to the entity.

(2)  Rule-based inference can be supported. A typical rule con-
sists of two parts, antecedents and consequents both of
which may contain variables. To check the satisfaction of
the antecedent is to find the existence of certain nodes in the
network. The consequents cause new nodes to be built. Com-
plex control strategies can be implemented on top of the
basic network processing system'” '* 1. 22,

(3) It can be easily expanded and modified. Adding and remov-
ing knowledge are in fact adding and removing concepts in
the network which are both fundumental operations. The
analogical data, eg., coordinates can be changed indepen-
dently and there is no need to modify the propositional
information as long as the relevant spatial relations still
hold.

(4)  Procedural knowledge can be represented by the use of
function nodes, i.e., nodes representing procedures. For exam-
ple, spatial reasoning may involve applying algorithms
from computational geometry using analogical data in the
network. Moreover, probabilistic data?® such as certainty
information of rules can be propagated by procedural calcu-
lation.

(5) Interactive graphics for entering symptom data can be
well-supported®. The analogical data provide the basis to
generate relevant drawings which can be used to enter data
using locator or pick devices. Explanation capability is alsc
greatly enhanced by generating appropriate drawings and
pictures {rom the analogical data.

(6) New knowledge can be derived from existing knowledge
and stored for future use. For example, well-defined topolog-
ical relations between physical entities can be systematically
computed, using analogical information already present, and
added to the network.

(7)1t has the potential to support computer vision techniques to
recognize objects in pictures' °%, The geometric description in
the network provides the geometric structure and the topo-
logical relation provides the relaticnal structure. The two
structures together with other relevant information can he
used to guide image segmentation, labeling, and interpreta-
tion of the pictures.

(8) 1t supports the development of a natural language interface

between the system and the users since semantic networks
are one of the major internal representations used in

computational linguistics®* 4,

In summary, a semantic network is suitable for a model-
based DES. The knowledge embedded in the network provides an
understanding of how the subject is structured, how it works,
and how it may fail. In the following sections, we present an
example from the medical domain -- that of neurcanatomic locali-
zation, a crucial component of a much large DES which will
simulate the behavior of a neurologist.

4. Fundamentals of Neurological Diagnosis

In the first stage of diagnosis -- initialization of the clinical
database -~ the neurologist collects preliminary data, including
qualitative and quantitative descriptions of symptoms (Sxs), the
relationships between Sxs, the results of past and present physical



examinations (Pxs), adjunctive laboratory data (l.xs), other
relevant information, and the overall temporal profile or course of
the iliness. The clinician documents these in writing on forms
and, particularly Pxs, on pictorial drawings’”. The latter not only
indicate the extent of the disability but, when designed appropri-
ately, also provide considerable information about the anatomy
underlying the findings. For example, Fig. 2(a) is a line-drawing
on a graphics screen of a head and neck, Fig. 2(b) is the same
drawing on which is superimposed the distribution of the cutane-
Ous sensory nerves to the area. By drawing sensory loses on Fig.
2(a) and superimposing them on Fig. 2(b), one can readily identify
the malfunctioning nerves.

(a3 (b)

Fig. 2. (a) The view of the head and neck

used to indicate a sersory
disturbance.

(b) The same view on which is

superimposed the distribution

of the cutaneous sensory

nerves to the ares.

In the next stage. the diagnostician uses functional general
anatomic and functional neurcanatomic knowledge w inrer the
presence and site(s) of the cause of the neurologic Sxs, Pxs, and
Lxs. This is called neuroanatomic localization. It is the scientific
foundation upon which the remaining diagnositic analysis is
based. 1t consists of two steps: axial and transverse localization. In
the former, clinica) data are assigned to their appropriate axial
neurosystem{s). The larter is an idiosyncratic phrase conceptualiz-
ing a neuroanatomic-physiologic or Reurvanatomic-psychologic
unit transmitting or processing a specific set of clinically definable
functions and roughly paralleling the axial lines of the body and
limbs as it extends physically through many of the transverse
segments into which the neurologic system is traditionally
divided. These neurosystems may or may not be working nor-
mally. The “transverse” localization tries to identify the specific
transversely-orientated segment(s) of the central nervous system
(CNS) or peripheral nervous system (PNS) where the axial
neurosystem(s) are involved, thereby defining the anatomic coor-
dinates of and precisely pinpointing the lesion.

The neurologist (or neurvsurgeon) has in mind a functional,
3-d model of tl:e chinically important parts of the neurologic sys-
tem along with its receptors (the €ve, eur, sensors in the skin, etc.)
and effectors (skeleta] muscle, sweat glands, ete.). He/she uses this
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Fig. 3. The anatomic structure of the
Spinal cord.

positions and, therefore, spatial relations are fixed and vary little
from one individual 1o the next. These pathways. in turn, carry
information abour homologous areas on each side of the body and
the latter are also relatively consistent from one individual to
another. Therefore, lesions on one side of the thoracic cord at a
given level, regardless of etiology, will cause a predictable pattern
of neurologic deficits from one patient to another, so long as they
involve the same axial and segment-limited structures. Con-
versely, a combination of Sxs, Pxs, and Lxs can be traced back to
its anmatomic source. The latter helps the clinician to decide
Whether the patient has a single well-circumscribed (focal) lesion,
more than one focal lesion (multifocal problem), dysfunction of
one or a few entire axial neurosystems (systems-limited disorder),
Or an uncircumscribed process randomly involving many struc-
tures, usually in more than One transverse segment (diffuse
disorder). Similar anatomic principles also govern structure, func-
tion, and localization in the brain (but with much greater com-
plexity) and the PNS (see I'ig. 4 for an example of a simple system
connecting with a single transverse segment of the spinal cord).

Having determined the probable site and number of lesions,
the clinician combines the neuroanatomic localization with ele-
ments of the clinical database (the relationship between Sxs, Pxs,
Lxs; and the temporal profile of the illness) to deduce the underly-
ing pathophysiology (ischemiu, inflammation, etc.). Anatomy and
pathophysiology form patterns suggesting pathogenetic categories
of illness (geneticallydetermined disorders, physical agents, vas-
cular disorders, neoplasia, etc.). The latter plus multiple epi-
demiologic facts allow the clinician to concentrate attentjon on a
small number of disease-specific etiologies (atherostenotic occlu-
sion of a specific blood vessels, embolic infarction, sy philitic
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Fig. 4. The origin and distribution of
typical spinal nerve.

endarteritis, etc.). Needless to say, hypothesis formation and data
generation are on-going, interactive, and mutually correcting.
Hyvpotheses lead to a search for additional data or correction of
erroneous information. These, in tu rn, enhince the statistical pro-
bubility of one anatomic location, one pathogenetic category, or
one speciic disease while decreasing the probability of competing
alternatives. The diugnostic analysis culminates in rational
therapy.

5. Prior Work on Cemputerized Neurological Consultation

If it 15 to simulate the analvtic bekavior of a neurologist, a
DES in neurology must have a knowledge representation which
effectively integrates both the structure and function of the neu-
rofogic svstem in order to support such tasks as entering clinical
data on gruphic illustrations of the human bodv as well as by
literal furms, using the neurounatomic mode) for diagnostic rea-
soming. and explaining its anatomic localization to the user on
appropriate graphical reconstructions of the neuroanatomy.

A number of  researchers studied selected aspects  of
Knowledgs representation in neurology and its related fields over
the last decade. Some of the implementations are encouraging but
clinically impractical. These can be grouped by the representa-
tonal approach and the portion of neu roanatomy modeled.

5.1. Using Analogical Representation

The parenchymal CNS (brain and spinal cord) is typically
represented by line drawings of transverse cross-sections in medi-
cal literature. This is a reasonably, idealized, analogical approxi-
mation of the 3-d complex without loss of generality. Fig. 5
shows a computerized schematic reconstruction of the major, clin-
ically significant, axial neurosystems and segment-limited struc-
tures in the fifth cervical segment of the spinal cord. Fach
labelled area represents an anatomic region through which fibers
of one or more than one axial neurosystems pass as they intersect
the “transverse” section. (The right fasciculus gracilis, carrying
several types of sensory neurosystem/somatesthesia fibers, inter-
sects the fifth cervicul segment in regions ri, r2. and r3.) Since
curves can be approximated by lines each cross-section can be
represented by a set of polylines and polygons. This approach is
used by *Neurologist* of Catanzarite! and the earlier version of
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Fig. 5.

The fifth cervical segment of the
spinal cord (partially labeled).

our system NEUROLOGIST-I°*, where further limitation is
imposed that only convex polygons are used to represent nervous
tracts and function association is simplified to mapping clinical
data to tract (region) status.

Banks and Weimer? are using the voxel approach to provide
an anatomic knowledge base (SCAN) for neurcanatomic reason-
ing. The human body is represented as heing embedded within a
large cube which is then divided into 27 (3*3*3) smaller cubes,
each of them is likewise divided into 27, and so on to form a
hierarchy of nested cubes. Currently the smallest cubes are each
3mm on a side. The neuroanatomic components are represented by
another hierarchy of “objects”, each of which is mutually associ-
ated with its physical correspondent(s) in the cube hierarchy.

In general, analogical representation defines idealized, struc-
tural neurcanatomy succinctly and unambiguously. To a certain
extent, function can be associated with structure within the phyv-
sical model. As will be discussed below. clinical assessable func
tion is assigned to fibers in the PNS. These, in wrn, are connected
to fibers passing through the CNS areas shown in Fig. S. It also
supports implementation of spatial reasoning using geometric
algorithms. For example, two aforementioned systems® % Jocalize
a focal lesion by computing a convex hull'® which encompasses
all the polygons formed by malfunctioning tracts in a given
transverse segment (cross-section). If it intersects® '* more than
one intact tract, the system will reject the proposition that there
is a single focal lesion in that segment. This method allows
graphic devices to be used directly - generating pictures using the
geometric information.

However, the analogical approach has a major disadvantage
which does not invalidate but clearlv limits the conclusions
which can de derived from the anatomic  analysis. It
oversimplifies the real life situation, because it does not provide
appropriate levels of abstraction and flexibility. CNS anatomy
and physiology, for instance, are very complex. Often, the boun-
daries of a specific neurosystem are not precise and only approxi-
mately predictable. Information is transmitted 10 a variable
extent through several different regions, and functionally
different nerve fibers interweave in one area and segregate in
another. A circumscribed lesion may affect some but not all fibers



passing through it. The convex polygon method reduces the com-
plexity of computation but requires further simplification of
these complexities®. The voxel approach is uniform and elegant
from a mathematical point of view but unnatural from a cogni-
tive perspective. The integrity of objects is not well-preserved: an
entity which can be represented by a single cube may be
represented by 8 cubes of the same size, each of which involves
part of the object merely because it is not aligned against the grid.
This will no doubt increase the complexity of reasoning.

5.2. Using Propositional Representation
Propositional representation is a possible way to overcome
the above problems. It supports spatial reasoning more

effectively®® and has been used to represent the PNS* . As
shown in Fig. 4, the connectivity of nerve segments is the most
important structural information. Each "transverse section” of the
nerve (ie., root, spinal nerve, dorsal and ventral primary ramus,
branch, etc.) is composed of multiple nerve fibers, each with a
specific function. The effects of a lesion in any section depends on
the type and number of fibers involved in that segment.

Given a group of weak muscles, LOCALIZE'! traces fibers
which supply each affected muscle proximally toward the spinal
cord and highlights the pathways. Any set of lesions which
includes at least one highlighted segment from each traced path-
way will account for all of the deficits. Starting with the set of
most distal lesions, the program generates alternative solution sets
by replacing set elements with more proximal lesion sites from
the highlighted pathways. It tries to reduce the number of
hypothesized lesion sites at each convergence point as long as the
consistency checks can be satisfied, e.g.. all muscles which the pro-
gram expects to be weak due to0 a lesion at the convergence point
are actually found to be affected. In its present form, LOCALIZE
handles weak muscles and does not consider myotatic reflexes or
SENSOTY neurosystems.

llowever, propositional representation has its limits: not all
the structural information of the neuroanatomy can be abstracted
in the form of propositions, certain geometrical details are lost
while topelogical features and relations are captured; graphics and
image processing techniques are not supported, because they rely
on geometrical data.

5.3. Rule-Based System Without Modeling

These approaches do not explicitly encode neuroanatomic
structure. Rather, neuroanatomic localization depends on the pres-
ence or absence of specific symptoms and findings for which the
system has rules. Reggia, using a production rule system, con-
cluded that structural knowledge (understanding how the neuro-
logic system is organized) is necessary for complex, spatially-
oriented reasoning"’.

5.4. Comment

To be complete, the neurcanatomic model must be an
integrated representation of the CNS and the PNS, including the
functional distribution of the latter’s principal neuroeffectors and
clinically testable classes of neuroreceptors. We are not aware of
a system which has achieved this goal successfully. Secondly,
information about structure should be both analogical and propo-
sitional and provide appropriate levels of abstraction to facilitate
anatomic localization and graphics techniques. Thirdly, the func-
tional knowledge must support mapping of anatomic dysfunction
from Sxs, Pxs, and Lxs. We feel this is the essential knowledge
base upon which to define a reasoning mechanism which (1) will
simulate a neurologist's clinical approach and (2) will localize a
lesion(s) with an accuracy equal to or, preferably, greater than
that of an expert.
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6. Spatial Structure and Function Representation in
NEUREX

The knowledge concerning the spatial structure and func-
tion of the neuroanatomy in NEUREX is organized as a semantic
network according to the rationale presented in Section 3. The
representation is implemented in Franz LISP and SNePS (Semantic
Network Processing System®’} which are completely compatible
and mutually callable. The latter allows effective searches of the
network knowledge base and the use of both procedural attach-
ments (function nodes) and inference rules.

The anatomic knowledge base consists of neurcanatomy and
general anatomy. The CNS is divided into its major “"transverse”
segments:  telencephalon, diencephalon, brainstem  (mesen-
chephalon, pons, and m-dulla), and spinal cord where material
passing along multiple axial neurosystems are analyzed,
integrated, relayed, and supplemented or removed. Each major
transverse segment is subdivided into smaller segments and
regions within segments, corresponding to developmental units
and/or facilitating precise localization. Where appropriate, a
transverse segment connects on its right and left side with the
PNS via the latter’s nerve roots or their equivalents. A PNS root
is identified by the CNS segment to which it is attached. Each
root network (CNS-PNS) innervates (transmits multiple types of
sensory information from and/or motor directives to) specific
regions or structures of the body. Except for the side of origin
and peripheral distribution, homologous right and left CNS-PNSs
are identical anatomically and innervate corresponding areas of
the body. Each CNS-PNS passes through a system of conduits or
peripheral nerves (P! v) to reach its termini. As thev extend
away from the CNS, PNvs assume a branch-tiree structure which
segments them “transversely” first into spinal or cranial nerves
and, then, into as many additional subunits as needed until the
final nerve segments are reached. Thus, the human neurologic
system has three general patterns of innervation: one correspond-
ing to CNS pathways: the second, to CNS-PNSs; and the third, to
PNvs.

The major functional axial neurosystems transmitting infor-
mation up or down the neurologic system are made up of smaller
units. Lach of these “minisystems” is identified uniquely by 1)
the specific areas it occupies as it passes through each transverse
segment of the CNS or the CNS and PNS; (2) the transverse seg-
ment of the CNS in which it originates, terminates, and/or con-
nects with the PNS; (3) the direction it carries data; and (4) a clin-
ically verifiable function. In reality, a functional minisystem
represents a very large number of individual nerve fibers relaying
the same information in paralle! and in series. The point at
which one set of its fibers connects with the next is indicated in
the model, even though the transferred function does not change.

At present, we are working on the CNS, CNS-PNS and PNv
representations of the axial somatic sensory\somatesthetic and
somatic motor neurosystems. Both have central and peripheral
components. Those minisystems responsible for somesthetic infor-
mation destined to reach consciousness transmit from the lowest
segments of the spinal cord to higher segments of the brain
("upward”). The major volitional motor minisystems transmit
directives caudally ("downward”). Regardless of direction, the
number of minisystems in these axial pathways decreases as one
moves caudally, because they lose a minisystem at each succeeding
transverse segment. Therefore, a CNS pattern of innervation --
motor or sensory -- at any given point along the central neuraxis
depends on the number of minisystems in the axial pathway and
affects the entire field of innervation to the half of the body sup:
plied by these minisystems. A CNS-PNS (“root” or "Segmental")
pattern corresponds to the peripheral somesthetic or motor inner-
vation of the root. Each CNS-PNS may be purely sensory,
entirely motor, or both sensory and motor. If it has a sensory
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component, a CNS-PNS may carry one or, most commonly. several
minisystems; if it has a motor component, it carries two types of
minisystems. A PNv sensory or motor pattern may or may not be
identical to that of a single CNS-PNS. Those related to the limbs
are complex. Several adjacent CNS-PNSs combine in a complicated
manner at specific junctional points (plexi) and then partially dis-
sociate at more distal branch points. Therefore, a proximal PNv
may involve sensorv and/or motor minisystems (and innervation
fields) from two or more CNS-PNSs. The composition of its more
distal segments will be either the same or less complex, the latter
depending on partial dissociation of the minisystems at any
succeeding branch point. Conversely, a CNS-PNS may course
through many or relatively few PN\vs. Despite the complexity of
the CNS, CNS-PNS, and PNv patterns, the anatomic pathways
involved are unique from origin to final destination and remark-
ably consistent from one individual to next.

In addition, the body (general anatomy) is divided into its
major regions (ie., head, arms, torso, legs, etc.) and subregions (i.e.,
upper, middle, and lower third of the right brachium; joints; etc.).
The latter serve as anatomic reference points which help to locate
the components of the neurologic system, support maps of the
cutaneous distribution of sensation, and organize skeletal muscle
function.

The structural features of the aforementioned anatomic
entities are attached to their corresponding concepts differently
according to the features’ significance: coordinates of the polyline
and polygon representation for cross-sections, regions, and pro-
Jected views of body parts; connectivity relationships for nerves
and branches of nerves.

6.1. Representing the CNS

In the case of the CNS which can be geometrically described
by cross-sections through transverse segments, every cross-section
and every region in the section is an anatomic concept which
amaong other things has a geometnc descrintion ie., corresponding
coordinates in a common coordinate system) and is represented by
an atomic nede in the semantic network. More abstract relations
such as adjcency or overlap of two regions can be asserted
between the corresponding nodes. For example, the transverse
segment of the CNS in Vig. $ is the fifth cervical segment of the
spinal cord and is represented by atomic node CS in Fig. 6. Node

nervous
tract
is

TR™ id name

is path Right
fasciculus
id gracilis
c1CS
is id ‘15 I3
n
cross- [+2.3 region o adjacent
section cs [
in is
<o £2C5
(...} id ¢
is <o
(...
id
Cs
cs
co
(...}
Fig. 6. The semantic network representa-

tion of the spinal cord (partially
drawn).
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CS has a geometrical description which carries the coordinates of
its boundary. Each region in the cross-section is represented by an
atomic node; e.g., rl in Fig. § is represented by node r1C5 in Fig. 6.
Node r1C5 has a geometrical description which carries the coordi-
nates of its boundary. The spatial relation that r1 and r2 in C5
are adjacent to each other is asserted by the node with "I arcs
pointing to r1C5 and r2C5 and “rel” arc pointing to "adjacent” in
Fig. 6. Meanwhile, another set of concepts covers the major axial
neurosystems (“'tracts” or “pathways”) in the CNS. Each nervous
tract is represented by an atomic node. This is demonstrated by
node 7R in Fig. 6 representing the right fasciculus gracilis. The
physical location of the nervous tract in CS is specified by an
assertion indicating the corresponding regions by “path” arcs.
Other inf8rmation such as its specific function, evidence of mal-
function, and so on can be further asserted.

6.2. Representing the CNS-PNSs, PNvs and Their Function
Distribution

The OCNS-PNSs and PNvs are represented topologically as
network pathways where each transverse segment is an anatomic
concept. Connectivity of segments is asserted between correspond-
ing concepts. When a particular axial minisystem travels through
the network, its pathway is specified by assertions relating the
minisystem to the segments through which it passes. Each min-
isystem is identified by its parent neurosystem, its specific
function(s), and its peripheral innervation field.

Fig. 7, for instance, illustrates the representation of the sim-
ple CNS-PNS system in Fig. 4 (a spinal nerve free of any inter-
vening plexi is a pure CNS-PNS or root system). Anatomically

A o\
redial medial d ganglion dorsal

cutaneous branch P

root
branch of d.r. P
oF g
a, -] P ~dorsal P d
// camus

lateral lateral spinal [~4

cutaneous branch nerve zxp

branch of d.r. i
ventral
root

AN,
posterior lateral ventral
branch cutaneous rarus-1
branch
p_of v.r. P,

N
/
anterior

branch ventral ramus-2

Fig. 7. The representation of the peri-
pheral nervous system (partially

drawn). Meaning of the arc
labels:

P -- proximal

d -- distal

significant components of the CNS-PNS and transverse nerve seg-
ments of the PNv systems are represented by unique atomic nodes
and the connectivity relations are specified by nodes with “p”
(proximal) and “d" (distal) arcs. The pathway of a particular
minisystem can be traced by a sequence of nerve segments and
branches linked by "p” and “d" arcs from its origin to its destina-
tion.



To represent the CNS-PNS and PNv innervation patterns, we
consider each region or structure of the body to be an anatomic

i 3 . L. pectoralis coracobrachjalis biceps brachii
concept, each with a geometric description outlining a correspond- wajor -
ing region in a display drawing (see Fig. 8). Such information as pravicular
the transverse nerve segments or CNS-PNS supplying an area are
attached by assertions. supraspinatys

flexion abductiong-15%

mu extension abductionl5-90

it

latissimus
dorsi

Fig. 9. Pour of the shoulder joint move-

(a) (b) (e ments with muscles involved and
their contribution to each rele-

vant movement. Meaning of the arc

Fig. 8. (a) The outline of the body. labels:

(b) The same drawing on which is Jt -- joint
Superimposed the distribution nv -- movement
of peripheral nerves (PNvs). ne -- muscle

(c) The same drawing on which ig Cn -- contribute
superimposed the distribution Pr -- percentage

Oof nerve roots (CNsS-PNSs).

Additional information concerning anatomy and function innervating the muscle are treated in a similar manner. The com-
are represented as concepts and asserted into the network accord- plete pathway of 4 minisystem passing through the CNS and PNS
ing to the aforementioned principles. The somatic motor neurosys- is represented by other nodes, specifving its PNy path way and the
tem, for instance, is responsible for movement which js an attri- anatomic regions of each transverse CNS segment through which
bute of joints. The movement of a Joint is controlled by several it travels.
muscles, and muscles may be supplied by motor minisystems
related to one or. as in the case of the limbs, more than one CNS- 6.3. Further Details and Examples

PNS. In regard to the latter, each motor minisystem contributes a
Certain percentage to the total innervation of the muscle and,
therefore, to regulating the force of the muscle’s contraction.

Furthermore, a particular movement at a pint may require the tion stated in section 3:

synchronous contraction of several muscles. Thus, a muscle may (1) Queries about structure and function. A request for the
be responsible for all or a fraction of the force of a movement. location of a particular minisvstem in a cross-section of the
Muscles, joints, different Lvpes of movement, contributions of each CNS will produce a locally limited search of the network;
muscle to a movement, and contributions of the innervation from and generate a picture such as Fig. 5 on the screen,
each CNS-PAS are ail represented by atomic nodes bet ween which highlighting the region, reporting the major axial neurosys-
their functional relations are asserted. l'or example, the shoulder tem to which it belongs, its origin and termination, the
Joint (movement of the humerus in relation to the scapula) has direction it conducts informaticn, and listing all other min-
eight different types of movement: flexion (forward), extension isystems passing through the same area along with their
(backward), abduction 0 1o 15 degree, abduction 15 t 90 degree, function, and so on. Fig. 9 shows the use of the uniform net-
adduction, external (latera]) rotation, internal (medial) rotation work searching function in SNelS, T find which muscles
and rotator cuff. Flexion is controlled by the following muscles: are involved in the flexion of the shoulder joint, we issue
deltoid (40%), pectoralis major - clavicular head (45%), coracobra- the request (find (mu- cn) (find gt shoulder- pint mv flexion))
chialis (10%) and biceps brachii (5%); extension by deltoid (30%), which returns a list containing the names of the four mus-
teres major (209) and latissimus dors;i (50%) abduction 0 to 15 cles involved. To find how much the deltoid contributes to
degree by supraspinatus (904:) and biceps brachii (10%) and the strength of shoulder flexion, we issue the request (find
abduction 15 to 90 degree by deltoid (1009), ete. The percentage pr- (find mu deltoid ¢n (find Jt shoulder-joint mv flexion)))
in parentheses is an arbitrary approximation of the contribution and the program returns: (40). To find how paralysis of the
which the corresponding muscle makes 1o the tota] strength of deltoid will affect shoulder movement, we issue the request
the movement. The representation of this information is illus (find mv- (find Jt shoulder-joint (cn- mu) deltoid)) and the
trated in lig. 9. The motor minisystems {rom each CNS-PNS program returns: (flexion extension abduction15-90).
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Following are further details and examples that demon-
Strate each of the advantages of the semantic network representa-



(2)

O O

(3)

(4)

(s)

Rules. A rule might be stated as follows: if a particular
minisystem carried by a certain PNv segment is malfunc-
tioning then other minisystems in the same segment must be
examined for malfunction. An outline of this rule is

described graphically in Fig. 10.

examine

minisystem

Fig. 10. The graphical description of the

following rule in SNePS:
IF is a minisystem &

is malfunctioning &
is a nerve segment &
prasses through y &
is a minisystem &
passes through y &
has function w

NN N NN

THEN
examine function w

Revisions of the information base. 1f, for instance, research
discloses that a minisystem passes through a region in a
crosssection of the CNS different from that currently
believed by the svstem, one need only build a new node
specifying the relation between the new region and the
minisystem and remove the old node relating the original
region and the minisystem.

Localization. Il a lesion defined by a closed curve is located
in a given transverse segment of the CNS, then all regions in
the segment encompassed by the lesion should be affected
and all the minisystems passing through these regions might
malfunction. Another example is that since several adjacent
or overlapping abnormal regions in the same cross-section
tend to be affected by a single lesion, given a set of abnormal
regions the task to decide the minimum number of lesions is
in fact the task to decide the number of spanning trees in an
undirected graph where a vertex represents a region and an
edge represents an adjacency or overlap relation.

Graphics support. The geometrical information about CNS-
PNS and PNv patterns is used to display pictures such as
those in Fig. 2 and 8 on the screen. Using a stylus or similar
device, the extent of a sensory Sx or Px can be indicated on
the picture. Localization begins by storing the picture in an
image array, and comparing the abnormal area(s) to the
appropriate underlying CNS-PNS and PNv innervation pat-
terns to establish which of the latter most closely approxi-
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Fig.

(6)

(7)

mates the extent of the lesion. The results are stored as new
nodes for further reasoning. For example, the sensory dis-
turbante indicated in Fig. 11(a) partially matches the
cutaneous distribution of three PNv segments (Fig. 11(b))
but more closely coincides with a CNS-PNS sensory pattern
(Fig. 11(¢)), indicating that a nerve root lesion is more
likely. If one asks which CNS, CNS-PNS, or PNv pattern

{c)

(a) (b)

11. (a)

(b)

A sensory disturbance is in-
dicated on the body figure.
It partially matches the cu-
taneous distribution of
three PNv segments.

It closely coincides with a
CNS-PNS sensory pattern.

(e)

best describes the lesion, the system will return the name of
the nerve root, rejecting all other possibilities as unlikely.
On the other hand, if the left side of the body is involved
from the level of the nipple downward, the system will
return the name and a drawing of the most rostral
(transverse) segment of the spinal cord (CNS) containing all
the somatesthetic-light touch minisystems involved and
none of those uninvolved, along with an outline of the
lesion. In fact, the geometrical information can be used to
construct a 3-d picture on the screen, if the lesion extends
through several transverse segments. One can also reverse
the directive. Draw a lesion on the display of a particular
transverse segment of the CNS and ask the system to outline
the expected sensory loss on the appropriate graphic of the
body. While we used the somatic sensory neurosystems to
demonstrate some features of localization, the same princi-
ples can be demonstrated just as well with the somatic
motor neurosystems, using weakness of muscles as the
mput.

We create drawings such as those in Fig. 2. 5 and 8 with a
geometric graph editor®. Adjacent regions always share a
common boundary. This adjacency relationship is inserted
into the knowledge base by a system-construction function
which asserts an adjacency relation between every pair of
regions sharing a common boundary for every cross-section.

Computer-assisted tomography of the CNS. The geometric
information in the knowledge based can be increased to pro-
vide realistic, age-dependent, geometric structures corrected
statistically for normal variation. The system could then be
expanded to interface with scanners (X-ray and nuclear



(8)

magnetic respnance)
tional ney Foanatomy.

to relate tomograpnic output to func-

interactive graphics, image analysis and natura] language inter-

ase of neuroanatomic localization wag presented as an

€xample of the Capability.

System such as SNePs s required in actual implementation. What

constitutes spatia] know
stood. Knowledge engineering in problems

ledge is generally not very wel] under-

Tequiring spatia]

Knowledge wil) no doubt reflect this, These problems have to be
faced in addition 1o developing a detaileq diagnostic Strategy.
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