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Abstract—One of the major drawbacks of the Map-Reduce pating in the BSP computation. A superstep consists of three
(MR) model is that, to simplify reliability and fault tolera nce, it ~stages: a local computation, a process communication, and
does not preserve data in memory across consecutive MR joba: 5 harrier synchronization. Each peer maintains a locaé stat

MR job must dump its data to the distributed file system before . hich i ible by thi | I
they can be read by the next MR job. This restriction imposes a In-memory, which 1S accessibie by this peer only across a

high overhead to complex MR workflows and graph algorithms, Supersteps. In addition, during the local computationestafy
such as PageRank, which require repetitive MR jobs. The Bulk a superstep, each peer has access to the messages sent by othe

Synchronous Parallelism (BSP) programming model, on the tler  peers during the previous superstep. It can also send nesssag
hand, has been recently advocated as an alternative to the MR to other peers during the process communication stage, to

model that does not suffer from this restriction, and, under b d at th t t The barri h iz ati
certain circumstances, allows complex repetitive algortims to € read at the next superstep. € Dbarner synchronization

run entirely in the collective memory of a cluster. We presen Stage synchronizes all peers to make sure that they have
a framework for translating complex declarative queries fa received all the sent messages before the next superstep.

scientific and graph data analysis applications to both MR ad  To cope with peer failures, each peer may use checkpoint
BSP evaluation plans, leaving the choice to be made at rundie  o.qyery to occasionally flush the volatile part of its stat

based on the available resources. If the resources are suféat, . .
the query will be evaluated entirely in memory based on the BB to the DFS, thus allowing to roliback to the last checkpoint

model, otherwise, the same query will be evaluated based ohe When a failure occurs. In many graph analysis problems a
MR model. large part of the state is used for storing the graph, which

is immutable and does not require checkpointing. Therefore
. INTRODUCTION the BSP model is better suited to graph analysis than the MR
model, provided that the entire graph can fit in the collectiv
Recently, the Map-Reduce (MR) programming model [#hemory of the cluster. Because of their importance and their
has been emerged as a popular framework for large-scedpetitive nature, graph analysis programs are the maddylik
data analysis on the cloud. In particular, Hadoop! [14¢andidates to benefit from the BSP model, which explains why
the most prevalent implementation of this framework, hake most important BSP implementation to date is Google’s
been used extensively by many companies on a very laf@eegel [20], which has been used by Google as a replacement
scale. Currently, the majority of these MR jobs are specifi¢édr the MR model for analyzing large graphs exclusively. In
in declarative query languages, such as HiveQLl [30] aradidition, Apache’s Giraph[12] is an open-source altevedt
PigLatin [22]. One of the major drawbacks of the MR modédPregel and Apache’'s Hama |26] is a general BSP computation
is that, to simplify reliability and fault tolerance, it deeot platform built on top of Hadoop that can process any kind of
preserve data in memory between the map and reduce tad&sa.
of a MR job or across consecutive MR jobs. Consequently, When coding a parallel data analysis application in BSP,
using the original implementation of the MR model, to passne must make sure that the local state of each peer does not
data to the next job in a MR workflow, a MR job mustexceed its memory capacity. This means that, since the graph
dump its data to the distributed file system (DFS), to b&ructure is needed through the BSP computation, one has to
read by the next MR job. This restriction imposes a highse a sufficient number of peers to make sure that the graph
overhead to complex MR workflows and graph algorithmgartition processed by each peer can fit in its memory. That
such as PageRank, which require repetitive MR jobs. The Bu the entire graph, as well as the auxiliary data needed for
Synchronous Parallelism (BSP) programming model [32], grocessing the graph, must fit in the collective memory of the
the other hand, which precedes the MR model by more theluster. This imposes a minimum for the cluster size. Then,
a decade, has been recently advocated as an alternative taath important question is what happens if the cluster is not
MR model that does not suffer from this restriction, and,emdlarge enough to process a certain BSP application over arlarg
certain circumstances, allows complex repetitive along to amount of data. One solution would be to rewrite the BSP code
run entirely in the collective memory of a cluster. to process the graph in batches, but then this program would
A BSP computation consists of a sequence of superstepst be that different from a MR job, since it would have to
Each superstep is evaluated in parallel by every peer partidump the state to secondary storage before it would be able



to process the next batch from the graph. Furthermore, thighe bag is accessed only once (a property inferred sttica
change would require a major rewriting of the BSP code. Wy our type-inference system), then the bag elements are
believe that, to be effective, a data analysis applicattmukl lazily accessed using stream iterators. Otherwise, theidbag
not depend on the cluster size. Instead, if the cluster gelamaterialized to a memory vector. When the vector size excxeed
enough, the code should be able to be evaluated entirelyairthreshold, it is spilled to a local file. Consequently, when
memory in BSP mode. Otherwise, the same unchanged cademory is not sufficient, our BSP evaluations may spill data
should be able to be evaluated in MR mode. Supporting bdthlocal files, thus deteriorating performance.
modes can be done if the application is coded in a declarativeConsider, for example, the following MRQL query that cal-
query language, so that queries expressed in this languagecallates the k-means clustering algorithm (Lloyd’s aldori,
translated into both a MR workflow and a BSP job, leaving they derivingk new centroids from the old:
choice to be made at run-_time based on the availa_ble resUrCe o oat centroids = ...

Another reason for using a common declarative language step select < X: avg(s.X), Y: avg(s.Y) >

for both MR and BSP computations is that, currently, most from s in Points _ _
programmers prefer to use a higher-level query language for group by k: (select ¢ from cin centroids
their MR applications, such as HiveQL, instead of codingrthe order by distance(c,s))[0]

directly in an algorithmic language, such as Java (Pig isl use limit 10;

for over 60% of Yahoo! MR jobs, while Hive is used forwherePoints is the input data set of points on a planeptroids
90% of Facebook MR jobs). This, we believe, will also be this the current set of centroidé €luster centers), andistance
trend for BSP applications because, even though, in pilimcipis a function that calculates the distance between two point
the BSP model is very simple to understand, it is hard fthe initial value ofcentroids (the ... value) can be a bag d&f
develop, optimize, and maintain non-trivial BSP applica random points. The select-query in the group-by part assign
coded in a general-purpose programming language. Cwrenthe closest centroid to a poist (where[0] returns the first
there is no widely acceptable BSP query language. Existihgple of an ordered list). The repeat step query clusters the
MR query languages, such as HiveQL and PiglLatin, providiata points by their closest centroid, and, for each cluster
a limited syntax for operating on data collections, in tha new centroid is calculated from the average values of its
form of relational joins and group-bys. Because of thegmints. The step query repeats 10 times. Most other SQL-
limitations, these languages enable users to plug-in nusttike query languages do not allow subqueries in group-by
MR scripts into their queries for those jobs that cannot beor they allow arbitrary operations over groups and, theeef
declaratively coded in their query language. This nullifies have insufficient expressive power to capture any arbitkéiRy
benefits of using a declarative query language and may residmputation. MRQL, on the other hand, has been proven to
to suboptimal, error-prone, and hard-to-maintain codereMobe MR-complete[[1I0]. The MRQL query optimizer generates
importantly, these languages are inappropriate for coxpla single map-combine-reduce job for the select-query in the
scientific applications and graph analysis, because they mpeat-step, which is evaluated 10 times. More specifically
not directly support iteration or recursion in declaratfieem for each data point, the mapper of this job finds the closest
and are not able to handle complex, nested scientific datantroid from the bag of the current centroids (which reside
which are often semi-structured. But there are other quarymemory) and uses it as the combine/reduce key. The mapper
languages for distributed data processing, such as MRQL [If§ each node uses an in-memory hash table to group the
and AQL [2], that are expressive enough to capture complprints by the key (the closest centroid) and partially aggtes
data analysis applications in declarative form. the groups incrementally from the incoming points using the
In this paper, we give semantics to BSP computatiome®mbine function. That is, the hash table lasntries, where
and present translation rules from MR computations to BSfch entry has 4 values, which are the partial counts and sums
computations. These rules allow MR workflows, produced yf avg(s.X) andavg(s.Y). Finally, the reducers perform the final
compiling MR queries, to be transformed to a sequence of B&uctions from the partial aggregated results shuffledhfro
jobs. Consecutive BSP jobs are fused into a single BSP job the nodes. Our system translates this query to a single BSP
chaining the supersteps from these jobs, thus yieldingomdy job, since the repeat-step query is translated to a BSPHeb, t
BSP job for each query. Our goal is to support both evaluatioepetition is done with a second BSP job, and the two BSP
modes: if the input data and state fit in memory, then a qugopbs are fused into one. That is, the resulting BSP tramsiati
is evaluated in memory using BSP; otherwise, it is evaluateelads the input points once and calculates the final cestroid
using MR. We have implemented our MR-to-BSP translatiorstirely in memory. We will show in Sectidn X that the BSP
for MRQL (J10], [9]). MRQL is a novel query language forevaluation of this query can be an order of magnitude faster
MR computations that is more powerful than existing quetyan its MR evaluation.
languages, such as Hive and PigLatin, since it can operate ohere is a number of recent proposals for improving the
more complex data, such as nested collections and trees, arecution of MR workflows and repetitive MR jobs, such as,
it supports more powerful query constructs, thus elimirgati HaLoop [3], Twister[[8], and SystemMI_[13]. There also some
the need for using explicit MR procedural code. Our MRQlproposals for cloud computing that use distributed memory
system can store local data collections (bags) in three waystead of DFS for inter-node communication, such as, the



main memory MR (M3RI[[28]), Spark [34], Piccolb [25], andthe BSP to the MR evaluation plans, produced by MRQL for
distributed GraphLah [19]. The closest approach to ourkas ttwo analytical task queries: K-means clustering and PagkRa
Shark [27] (Hive on Spark) sub-project of Spark|[34], which Il RELATED WORK
evaluates SQL-like queries using in-memory evaluation. To '
the best of our knowledge, Shark does not provide a compreThe map-reduce (MR) model was first introduced by Google
hensive query optimization framework yet, although theee ain 2004 [7]. Several large organizations have implemented
plans for doing so in the future. Our work is also related tis model, including Apache Hadoop [33] and PIg|[22],
the Datalog query language used by the Asterix project [4)\Pache/Facebook Hive [30], Google Sawzall[24], and Mi-
which is used as an intermediate language for translatifgPsoft Dryad[16]. The most popular MR implementation is
and optimizing Pregel-like and iterative map-reduce-u@ddiadoop [14], an open-source project developed by Apache,
specifications to Hyracks physical operations. None ofeghewhich is used today by Yahoo! and many other companies
Systems pro\/ide any query |anguage' Optimization techniqltp perform data analysis. There are also a number of higher-
or query evaluation on top of an existing BSP platform.  level languages that make MR programming easier, such as
In summary, the key contribution of this work is in theiveQL [30], PigLatin [22], SCOPE|5], and Dryad/Ling [17].
design of a framework for translating complex declarati/dive ([30], [31]) is an open-source project by Facebook that
queries for scientific and graph data analysis applicatiorss Provides a logical RDBMS environment on top of the MR
both MR and BSP evaluation plans, leaving the choice fndine, well-suited for data warehousing. Using its high-
be made at run-time based on the available resources. If {B¥e! duery language, HiveQL, users can write declarative
resources are sufficient, the query will be evaluated dptine dueries, which are optimized and translated into MR jobs
memory based on the BSP model, otherwise, the same quii§t aré executed using Hadoop. Yahoo!'s Pig [11] resembles
will be evaluated based on the MR model. Leveraging on o€ &S it provides a user-friendly query-like languagdieca
earlier work on translating complex MRQL queries into MR igLatin [22], on top of MR, which allows explicit filtering,

workflows, this work makes the following contributions: ~ MaPp, join, and group-by operations. SCOPE [5], an SQL-like
scripting language for large-scale analysis, does not atipp
« We present a novel BSP algebra that captures the esseggg. queries but provides syntax to simulate sub-querieg us

of most BSP computations. Contrary to some Bsguter-joins.
implementations, this algebra separates BSP superstepgne BSP model was introduced by Leslie G. Valiant in
explicitly as functional arguments to a BSP operatofggg [32] and has been since improved and extended by
thus making easier to chain together supersteps frofuny others (eg[[29]). The best known implementations of
consecutive BSP jobs. . the BSP model for data analysis on the cloud are Google’s
« We presgnt transformation rules to map any workflovy ‘ﬁregel [20] and Apache’s Giraph [12] and Hanfa {[26] [15]).
MR jobs into a workflow of BSP operations, thus making\ithough Pregel has already been used extensively by Google
possible to translate any MR query into a BSP workflovjgr |arge graph analysis, it has not reached the populafity o
« We present rules for fusing cascading BSP jobs into\gr yet. Its open-source counterpart, Giraph, and the génera
single BSP job, thus deriving a single BSP job for thgsp platform, Hama, are still in their very early stages of
entire query. ) . development and are not used in the same degree as Pregel.
- We report on a prototype implementation of the BSRhe BSp model is compared with the MR modelinl[23], which

evaluation of MRQL queries on top of Apache Hamayjscusses how to map any MR computation to a BSP, and vice
We show the effectiveness of our method through expgfs,sa.

iments that compare the BSP to the MR evaluation plans
for two analytical task queries: K-means clustering and I1l. BACKGROUND: THE MR ALGEBRA

PageRank. In our earlier work ([10],[[9]), we have presented an algebra

The rest of this paper is organized as follows. Secfion fﬁ)r MR C(_)mp_u_tations, which is _summarized in t_his section (in
compares our approach with related work. Secfioh Il surf-more simplified form). It consists of the following openato
marizes our earlier work on a MR algebra, which is used * source(filetag): a tagged dataset from a DFS file.
in the implementation of the MRQL language. Sectfod IV « S1US2: the bag union of the datase$§ and S.
describes our BSP algebra and its implementation on Apache’s mapReduce(m, ) S: a MR job.

Hama. Sectioi V gives the transformation rules from the ¢ repeat(f)sS: a repetition of MR jobs.

MR algebra to the BSP algebra, thus making possible tfidese algebraic operators can capture most nested ralation
translation of MR queries to BSP jobs. Sectiod VI describegperations, including equi-join, selection, projectigmoup-

the normalization rules for fusing cascading BSP jobs intmy with aggregation, unnesting, intersection, etc. Theyoa

a single BSP job, thus deriving a single BSP job from eapture general-joins and total aggregation. We will discuss
MR query. Sectiol VIl describes how MRQL physical plansotal aggregation in Sectidn ViI.

are translated to BSP plans. Section VIl addresses totalThe operatiorsource(file,tag) reads an input file from DFS,
aggregation in BSP, which requires to summarize resultssacrwhich can be a raw text or binary file, and breaks it into
all peers. Finally, SectidnIX presents experiments coingar data fragments, based on some specification. Every fragment



is annotated with an integeag to identify the data source. tuples (based on their tag) and performs their cross prdduct

The result is a dataset of tydg(int, « ) }, which is a bag of memory (since they already match the join condition).

pairs, where each pair contains an integer tag and a fragmerfinally, ‘repeat(f) S’ transforms a datasef of type {a}

of type a. to a dataset of typegla} by applying the functionf of
The operationrhapReduce(m, r) S” specifies a map-reducetype {a} — {(a,bool)} repeatedly, starting fromS, until

job. It transforms a dataset of type {a} into a dataset of all returned boolean values are false. The implementation

type {5} using a map functionn and a reduce function of repeat in Hadoop does not require any additional MR

with types: job (other than those embedded in the functifph as it
m: a— {(k7)} uses a user-defined Java counter to count the true values
r: (5 {7}) — {8} resulting from the outermost physical operator fin These

for the arbitrary typesn, 5, 7, and . The map function cqunts are accumulated across all Hadoop tasks assigned to
m transforms values of type from the input dataset into this outermost operator. Theepeat operator repeats th¢

a bag of intermediate key/value pairs of typgs,~)}. The Workflow until the counter becomes zero. _
reduce functionr merges all intermediate pairs associated 1heré are other operations required to capture SQL-like
with the same key of type: and produces a bag of valuegIueries, which are all glescrlbed in our earlier wark [10]_.rOu

of type 3, which are incorporated into theapReduce result. earlier work also describes general methods for trangjatity

The semantics ofrapReduce can be given by the following MRQL query into a MR algebraic plan and for optimizing and
equation: translating this plan into a MR job workflow.

IV. THE BSP ALGEBRA

In this section, we present our BSP algebra that captures
BSP computations. It has been implemented on Apache Hama.
The domain of our BSP algebra {§7,V)}, where[ is the
Béer id type and’ is a snapshot type. More specifically, the
BSP domain is a map froni to V, which, for each peer
participating in the BSP computation, returns its localpstent
of type V. This snapshot contains all the local data of the peer
1 that reside in its local memory. The BSP algebra consists of
the following operators:

mapReduce(m,r) S = cmap(r) (groupBy(cmap(m) S))

wherecmap and groupBy are defined as follows: Given two
arbitrary typesy and 3, the cmagpyf) s operation (also known
as concat-map or flatten-map in functional programming la
guages) applies the functiofi of type a— {8} to each
element of the input bag of type {a} and collects the results
to form a bag of type{3}. Given two typesk and «, for
an input bag of pairs of type bag((x,a) ), the groupBys)
operation groups the elementssafy the key of types to form

a bag of type bag(k, {a}) ). For example, groupBy((1,"A"), - .
(2,“8%)’ (1}?!?(:,,) }g{)( re{[ur}zs)the bag (12“'&\,,20, 5)))({&({5 %) « source(file,tag): a tag_ged dataset from a DFS file.

}. The implementation of a dataset in a MR platform, such as*® 51 U S5: the bag union OfSt_ht?] daBtgieﬁs andt_Sg.

Hadoop [14], is the path name of a DFS file that contains® PSP(1ad. superstep, state ) 5: the operation.

the data. ThenmapReduce is a MR job that reads a DFSNote that, as it was the case for the MR algebra, this BSP
file as input and dumps the output into a DFS file. The unigigebra cannot capture total aggregation, which is adedess

operation is a no-op since it simply concatenates the DFAS peparately in Section VIIl. _
names. As it was for the MR algebra, the operatisource(file,tag)

In our earlier work [10], we have used an explicit joirf€@ds an input file from DFS and breaks it into data fragments,

algebraic operation to capture several equi-join algorittior based on some specification. Every fragment is annotatéd wit
the MR framework, such as reduce- and map-side joins ([18}) integertag that identifies the dqta source. This operation
[33]), as well as cross products afidoins using distributed réturns the mag((Z, {(int, @)})}, which associates each peer
block-nested loops. Here, to simplify our translationsifillR £ With a dataset of typg{(int, )}, which is a bag of pairs,
to BSP, we have used only one equi-join algorithm, the reducghere each pair contains the tag and a fragment of type
side join, which can be expressed as a mapReduce operafipip dataset is stored locally in the snapshot of peer

over the union of the two join inputs. For example, the join 1he BSP operationbSp( tag, superstep, initstate ) 5" maps

lect X.C. Y.D from X. Y where X A=Y B a datasetS of type {(Z,{(int,V)})} into a dataset of type
select AL, Y.L drom A Y-where AA=Y. {(Z,{(int,V)})}, using arguments of the following types:

can be evaluated using: tag: int
mapReduce( A(n,z).if n=1 then {(z.A,(n,z))} else {(z.B,(n,2))}, superstep:  ({M},V,K)— ({(I,M)},V, K,boolean)

AK,s).{ (x.C,y.D) [ (1,¥)€s, (2,y)€s }) e .
(sourceEX,l)Usource(Y,Z)) } initstate : K

where an anonymous functioh(z, y).e specifies a binary The tag is the output value tag. Thsuperstep operation is
function f such thatf(z,y) = e. In this join specification, performed by every peer participating in the BSP computatio
the MR input is the combination of the two inputsandY, and can modify the peer’s local snapskhoby returning a new
under different tags, 1 and 2 respectively. For each infaletu local snapshol’. Since we are going to use a single BSP job
(either fromX or Y), the MR mapper emits the join key alongto capture a workflow of multiple, repetitive MR jobs, each
with the tuple. The reducer separates ¥htuples from they  superstep must be able to execute multiple operations,ane f



for I in peersdo { class IM { | peer; M message; }
terminate[l] = false; class Result { Bag<IM> messages; Bag<V> snapshot;
snapshot[l] = input[1]; S state; Boolean exit; }
state[l] = initstate [I];
; void bsp ( BSPPeer<K,V,K,V,M> peer) {
msgs ={ }; Bag<V> shapshot = readLocalSnapshot(input);
do { S state = initstate ;
new_msgs ={ }; Result result;
exit =true; Bag<M> msgs = new Bag<M>();
for | in peersdo { M msg = null;
(m,v,k,b) = superstep({ m[ (i,m) € msgs, i=I }, boolean exit;
snapshot[l], state[I] ); do {
snapshot[l] =v; result = superstep(msgs,snapshot,state);
state[1] =k; snapshot = result.snapshot;
new_msgs = new_msgs U m; state = result.state;
terminate[l] = terminate[l] V b; exit = synchronize(peer,result. exit);
exit = exit A b; for ( IM m: result.messages )
N peer.send(m.peer,m.message);
msgs = new_msgs; peer.sync();
} while (—exit); msgs = new Bag<M>();
return snapshot; while ((msg = peer.getCurrentMessage()) != null)
msgs.add(msg);
) ] ) ] ] } while (! exit);
Fig. 1. Sequential Evaluation of ‘bsp( tag, superstepstaié ) input’ writeLocalSnapshot(tag,snapshot);
}

. . . . Fig. 2. Implementation of ‘bsp( tag, superstep, initstateput’ on Hama
each MR job, and be able to switch between the jobs in the® P P( tag, superstep Pu

MR workflow. This is done using a finite state machine (DFA) .
embedded in the superstep logic, which controls the sugrst | Poolean synchronize ( BSPPeer<K,V,K,V,M> peer,
evaluation, as we will show in Sectidrl V. More specifically, Boolean exit ) {

: . . : if (exit == allTrue
the DFA state is of typd(, which may contain data particular ! (rext'um true: ue)

to this state. Then, a superstep evaluation makes a ti@msiti if (exit == allFalse)
from the current statd( (in the superstep input) to a new ~ return false;
state X’ (in the superstep output). The initial stateirigstate. if (! exit)

for (| i: peer.getAllPeerNames() )
peer.send(i,"not ready”);
peer.sync();

The call superstep(ms, v, k) takes a bag of messagess of
type {M}, the current snapshat, and the current staté,

and returns the trip|€{i8,vl,/€17b), which contains the new return peer.getNumCurrentMessages() == 0;
messagess to be sent to the other peers (a bag(éf M) }

pairs), the new snapshet, the new state:’, and a flagb.

This flag indicates whether the peer wants to terminate this Fig. 3. Peer Synchronization

BSP computationi(= true) or use barrier synchronization to
continue by repeating the superstep under the new snapshot,

state, and r_nessagels(: false). Note that, only il peers Figure[2 gives the implementation of the BSP operation
agree to exit (when they all retutn= true), then every peer on Apache Hamal[[15]. As it was done for our MR im-

should exit the BSP computanon._ Otherwise, if there is ﬁementation, the domain of the physical operations that
least one peer Who, Wa_nts to continue, then every peer m 3Frespond to our BSP algebraic operators is a DFS file.
do barrier synchronization and repeat the superstep. More specifically, each peer reads all those blocks from the
The meaning of the BSP operation, when simulated onirgout file that are local to the peer (ie, those that reside in
sequential machine, is given in Figurk 1. In this simulatioits local disk) and stores them entirely in its memory. This
each peet, from the set of alpeers, is associated with a shap-is done with the functioneadLocalSnapshot. At the end of
shotsnapshot[l], a DFA statestate[l], and a flagterminate[l]. the BSP operation, the new state is dumped to DFS using
The result is stored in the magesultState. At each step, the the functionwriteLocalSnapshot. Although the input/output is
superstep operation is evaluated by every peer, even when tdene through DFS, the rest of the BSP computation is done
peer has requested to terminate. The input todingerstep entirely in memory (if we ignore checkpointing). We will see
consists of the messages sent to this peer during the peeviouSection V) that using the DFS for passing snapshots across
step, along with the current snapshot and state. Its redBBP operations is not important because consecutive BSP
contains the messages to be sent to other paerthe new operations are fused into one, thus requiring the use of DFS
shapshot, the new stat&, and the termination flag. The only at the beginning and the end of a program. The classes
BSP operation repeats until all peers want to terminate.  andResult in Figure[2 are used to store a message sent to peers



and a superstep result, respectively. The body of the Hami'svaluates the map function over each element in the input
bsp method is evaluated at each peer. Bhapshot is the local partition,as. Then, it shuffles the map results to the reducers,
shapshot of the peer, accessible only by this peer throughasing the functiorshuffle(k) over the keyk, which is returned

its BSP computation. In Hama, there is no clear separationtf the mapper. Shuffle must be a function that returns the
supersteps. Instead, when a peer gadlsr.sync(), it waits for same peer for the same key. An obvious implementation of
the next barrier synchronization. That is, this call signle shuffle(k) in Hama distributes the mapped values equally to
end of a superstep. If thesp method exits without a call to the peers using hash partitioning:

peer.sync(), the peer terminates. Hama requires that all peers

exit at the same time. Before the new messages that are derivePeer.getPeerName(k.hashValue() % peer.getNumPeers())

from a superstep are senF t(.) peers, we ne_ed o check Whecheer first superstep returns the new state= false, which

all peers agree to exit. This is done by calling tyachronize directs bsp to perform the reduce stage over the received
method, shown in Figurg] 3. Thesult.exit flag returned by

the superstep is a Boolean object that can take four Vamesmessagehs, \éVhICthOEtaIE the sdhufflelcj da’;]a. Thden, 'tf 5|mply
it is == to the prespecified Boolean objedfTrue, it indicates groups the data by the key and applies the reduce function

that all peers want to exit right now, so there is no need {(t))ased on thenapReduce semantics in terms ofmap and

poll the peers; if it is== to the prespecified Boolean objectgrOUpBy’ given in Section[Ill). Note that, themap and

S . . By operations are evaluated entirely in memory. Note
allFalse, it indicates that all peers need to continue; otherwisg =Py OP y Y

e . o . : also that the exit condition of the map stepalfralse, while
if its value is equal tarue/false, it indicates that this particular . N

: ; . that of the reduce step wiTrue. They indicate that all peers
peer wants to exit/continue, but we still need to poll theeoth : .

. ; .. _agree to continue after map and exit after reduce.
peers to check if they can all exit. In the latter case, if aﬁ
peers agree to exit, then we exit. This is doneynchronize The repetitionrepeat(f) S is translated to BSP by first
by having those peers that are not ready to exit send messdtgsslating the MR repetition step functigrinto a BSP repeti-
to other peers: if there is at least one message after sytien F' by recursively applying the MR-to-BSP transformation
then at least one peer is not ready to exit. As we will see inles. Then, the translation ¢f should take the form:
Section[Y, in all but one case, peers agree to simultaneously
exit or continue and this decision is hardwired in the lodic o '(z) =bsp(tag, s, k0) x

the superstep. This means that in most casesyheronize for some tagag, superstep function, and initstatek0, since

me”trtlr(])d will |mr_rr1ﬁd|atelly return :]rue or fI?Ise.thou_t hg\_/;mgt tall MR-to-BSP transformations returntap operation. Then,
pot the peers. The only case where potling IS required 15 repeat(f) S is mapped to BSP as follows:
BSP superstep of @epeat operation that tests the termination

condition of the loop (explained in Sectibn V). In such a ¢ase repeat(f) S
some peers may want to finish the loop earlier because they bsp( tag,

reach the termination condition sooner. Basedythronize, A(ms, vs, k).let (ts, bs, k,b) <= s(ms,vs, k)
these peers will continue their supersteps until all pegreea in if fhen (0}
to terminate. The shortcut of usirTrue/allFalse eliminates cmap(A(t, (v, b)). {(t, v)}) bs,
unnecessary message exchanges and syncs in most cases. kO,
Y(t, (v,b)) € bs: —b)
V. MR-TO-BSP TRANSFORMATION else ( ts, bs, k, allFalse ),

k0) S
It has been noted in related work [23] that any MR job can )

be evaluated using a BSP job that has two supersteps: die state of this BSP is the same as the state of the repeat step
for the map and one for the reduce task. In this section, wéhich is initially £0. This BSP evaluates the superstep function
elaborate this idea by transforming our MR algebra into o@f the repeat step;, multiple times. When the call returns

BSP algebra. First, we transformnapReduce operation: b = false, we are in the middle of evaluating a superstego
mapReduce(m,r) S we must returrallFalse to continue until we finish evglgatlng
= bsp( tag, one complete repeat step. Whén= true, we have finished
A(ms, as, b). a single repeat step and, if the termination condition isefal
it b then we should proceed to the next repeat iteration starting

then (.cmap(A(k, c). {(shuffle(k), (k, c))}) from scratch, with state equal te0. Otherwise, we should
(cmap(A(k, ¢).m(c)) as),

{1, false, allFalse ) exit. The termination gondition is checked by evaluating
else ({ }, cmap(r) (groupBy(ms)), false, allTrue ), V(t, (’U,b)) € bs : —b, given that the dataset returned by a
true) S repeat step contains the source tathe valuev, and the flag
wheretag is a unique tag assigned to this operator. The BSP which is true ifv satisfies the termination condition. This
snapshot assigned to a peer is a bag of t@e, o)}, which termination condition is the only case where a value ot
contains the input partition local to the peer. The DFA state allFalse/allTrue is returned. As explained in SectibnllV, this
is a boolean flag that indicates whether we are in map ois handled in the BSP call by polling all peers to check the
reduce mode. When the superstep is called Wwithtrue, then condition across all peers.



VI. BSP NORMALIZATION VIl. TRANSLATING MRQL PLANS TO BSP R.ANS

As we have seen in Sectidn] V, any MR workflow that | section[, we presented transformation rules from the
consists of MR algebraic forms can be mapped to a sequUeRgR algebra to the BSP algebra that make possible the transla-
of cascadingsp operations. Unfortunately, eabhp operation jon of MR queries to BSP jobs. The MRQL query evaluation
reads |ts_ input state from DI_:S and dumps its final state é?stem though provides many specialized MR physical plans
DFS, which makes the resulting BSP workflow plan not thghat implement the MR algebraic operator. For example, the
different from the onglnal MR workflow in terms o_f wasting\ap physical operator implements the MR operation without
resources. Our goal is to translate any such plan into aesingl reqyce function. This can be trivially implemented using a
BSP job that uses the DFS to read the initial input an§sp gperation with only one superstep. In this section, we
dump the final answer only, while performing the rest ofhow how two important MR physical plans used in MRQL

the computation entirely in memory. More specifically, wgq mapped to BSP plans: theapCombineReduce and the
will give a constructive proof to the following theorem byequce-side joinmapReduce?.

providing a normalization rule for fusing BSP operations in As noted in the k-means example in Sectldn I, a map-
pairs. _ ) combine-reduce operation applies a combine function to the
Theorem 1:Any algebraic term in the BSP algebra can bg,is generated at each map task, thus partially reducing the
normghzed into a term with just one BSP job that takes the i, ot the map-side before they are shuffled and shipped to
following form: the reducers. This technique, which is generally known as an
bsp(t, s, k) (source(fi,t1) U---U source(fn,tn)) in-mapper combiner, is very effective when the reducer per-
for somet, s, k, fi, andt;. forms aggregations only. TheapCombineReduce(m,c,r) S
Consequently, since any MR query can be translated to a MReration, in addition to the mam and reduce- functions,
algebraic term (from our previous work [10]), and since a ovides a combine function Then, this operation is mapped
MR algebraic operator can be translated into a BSP algebrficBSP as follows:
operator (SectiofV), this theorem indicates that any MRgue MapCombineReduce(m,c,r) S
can be translated into a single BSP operation. = bsp(tag,

T . . A(ms,as,b).
Proof: The normalization is done by recursively applying it b
a single rule that fuses two cascadihgp operations into then (cmap(A(k, s).cmap(Ax. {(shuffle(k),(k, z))})
one. Essentially, it chains together the supersteps ofwioe t (c(k, 5)))
cascadingsp operations into one superstep, which uses a flag . (lgrourl)lllazygcmap(/\(k,x).m(x)) as)),
to r.emembgr which superstep is evaluating each time.bspe else ( {{ }]: C?nz%(i) (grzﬁgBy(ms)), false, allTrue ),
fusion law is the following: true ) S
bsp(tz, s2,k2) (S1U---USia that is, the mapper groups its results by the shuffle key and
U bsp(tr, s1,k1)(S1 U -+ U Sp) partially reduces them using the combiner
= bsp( ts, USir1 ... U Sn) To join data from multiple data sources, MRQL supports
Xms, as, (c, k). various physical join operators. The best known join aldponi
if ¢ in an MR environment is the reduce-side jdin][33], also known
then let (ts,bs, k', b) < s1(ms, as, k), as partitioned join or COGROUP in Pig. It mixes the tuples

exit «— synchronize(b)
in (ts, bs,
( —exit, if exit then k- else k'),

of two input data set$; and S, at the map side, groups the
tuples by the join key, and performs a cross product between

allFalse ) the tuples fromS; and Sy that correspond to the same join
else let (ts, bs, k', b) <+ s2(ms, as, k) key at the reduce side. We translate the reduce-side joimeto t
ek in (ts, bs, (false, k"), b), following BSP operation:
( ES’ZUS'- -1-)L)J S US,U---US,L USii1U...US) TEpReducez(mh ma,r) (51, 52)

The state of the resultingsp is extended with a flag that = bsp( f\l(’ms as,b)
identifies which of the two supersteps; (or s») to evaluate ity
each time. Whilec is true, the first supersteq is evaluated, then ( F(m1, ma, t1,as), { }, false, allFalse )
until it returnsb = true, in which case it synchronizes with the else ({ }, G(r,ms), false, allTrue ),

other peers to check if they all agree to exit from steplf t_r”e) (51U 52) _
they do,exit becomes true and the BSP computation switch¥§1€7€?1 i the tag ofS;, my andm, are the map functions
to ¢ = false mode. Then, whileis false, the second superstefio" 51 and.Sz, respectively, and is the reduce function. The
s, is evaluated until it terminates. The call $gnchronize is c0de forF andG is as follows:

necessary since the inner BSP computation may correspond tb(71, m2, t1, as)

a repeat expression, which may not terminate at the same timé Cmap(k(’iff’ f)': ”

for all peers. In all other casesynchronize will immediately then cmap(\(k, 2). {(k, (k, (1, 2)))}) (ma(c))
return true or false without having to poll the peers. = else cmap(A(k, z).{(k, (k, (2,2)))}) (m2(c))) as



G(r, ms) . type point = < X: double, Y: double >;
=cmap(A(k, s).r( cmap(A(t,z).if t = 1 then {z} else {}) s,

cmap(A(t, y).if t = 2 then {y} else {}) s)) function distance ( x: point, y: point ): double {
(groupBy(ms)) sqrt(pow(x.X—y.X,2)+pow(X.Y—y.Y,2))

VIIl. HANDLING TOTAL AGGREGATIONS
Total aggregations summarize collections into values. Forrepeat centroids = { < X: 0.0, Y: 0.0 >,

. < X:10.0, Y: 0.0 >,
example, the MRQL query: 2% 00, Y: 100 >,
avg(select e.salary from e in Employees) < X:10.0, Y: 10.0 > }

. . . step select ( < X: avg(s.X), Y: avg(s.Y) >, true)
returns a single number. When aggregations are executed in|a from s in source(binary,”points. bin”)
distributed system, one peer must be designated as a master group by k: (select ¢ from cin centroids
to collect all partial aggregations from the other peers and order by distance(c,s))[0]

limit 10;

emit the final aggregation result. Our MR algebra includes th
operationaggregate(a, S), wherea is a commutative monoid
a=(®,z). Thatis,x®y = y®x andx®z = z, for all x andy. Fig. 4. K-means Clustering Expressed as an MRQL Query

It reduces a datasét of type {T'} into a valueT' by applying

@ to the elements aof in pairs. Our BSP algebra uses the same ) ) ) )
operatioraggregate(a, S). It is implemented with special code In the rest of this section, we present experiments comgarin

in Hama that designates one of the participating peers (¢ BSP to the MR evaluation plans, produced by MRQL for
master) to collect the final result, it partially aggregaties two analytical task queries: K-means clustering and PagkRa

results at each peer, which sends its partial aggregatguitre A, K-means Clustering
to the master, and, finally, the master dumps the final result t

As a first example, the MRQL query in Figuié 4 calcu-

DFS. lates the k-means clustering algorithm, by deriving k new

r:nggg(gtgargegateReduce(m,r, ace, zero) S centroids from the old, where the input data set is of type
A(ﬁ,;w,as,b)_ {<X:double,Y:double>}, centroids is the current set of cen-
if b troids (k cluster centers), andistance calculates the distance

then (cmap(A(, c). {(shuffle(k),(k, c))}) between two points. The query in the group-by assigns the
(cmap(A(k, c).m(c)) as), closest centroid to a poist This query clusters the data points

{ }, false, allFalse )

else ({ }. aggregate( ace, zero, !oy their closest centroid, and, for each .clustelzr, a new oghtr
cmap(r) (groupBy(ms)) ), is calculated from the_mean valueg of its points.
false, allTrue ), The dataset used in our experiments consists of random
true) S (X,Y) points in 4 squaresX € [2...4,6...8] andY €

[2...4,6...8]. Thus, the 4 centroids were expected to be
o (3,3),(3,7), (7,3), and(7,7). As we can see from the query,
MRQL is implemented on top of Hadoop and Hama. It ighe initial centroids werg0, 0), (10,0), (0,10), and (10, 10).
available at http://lambda.uta.edu/mrgl/. It is an opeuorse Figure[B shows the results of evaluating the K-means query
project available at GitHub https://github.com/fegamasyl, i Figure[2 using MR and BSP modes famit (number of
where other people can contribute and request changes. MRi@Fations) equal to 5 and 10, respectively. We can see ltieat t

can execute MRQL queries in two modes: using the MBsp evaluation outperforms the MR evaluation by an order of
framework on Apache Hadoop or using the BSP framewopkagnitude.

on Apache Hama. The MRQL query language is powerful
enough to express most common data analysis tasks over mgny>ageRank
forms of raw data, such as XML and JSON documents, binaryThe second MRQL query we evaluated was PageRank over
files, and line-oriented text documents with comma-sepdrasynthetic datasets. The complete PageRank query is given
values. in Figure[®. Given that our datasets represent a graph as
The platform used for our evaluations was a small clustarflat list of edges, the first query in Figuré 6 groups this
of nine Linux servers, connected through a Gigabit Ethernlett by the edge source so that each tuple in the resulting
switch. The cluster is managed by Rocks Cluster 5.4 runniggaph contains all the neighbors of a node in a bag. We only
CentOS-5 Linux. For our experiments, we used Hadoop 1.0v&asured the execution time of the last query in Figure 6,
and Hama 0.5.0. The cluster frontend was used exclusivelpich calculates the PageRank of the graph (this is done
as a NameNode/JobTracker, while the rest 8 compute nodgsthe repeat MRQL expression) and then orders the nodes
were used as DataNodes/TaskTrackers for Hadoop MR amg their rank. Recall from Section 11l that, for thepeat
as Groom servers (BSP nodes) for Hama. Each server ha® 4£onverge, the conditioabs((n.rank-m.rank)/m.rank) > 0.1
Xeon cores at 3.2GHz with 4GB memory. That is, there weraust become false for all graph nodes. The optimized query
a total of 32 cores available for MR and BSP tasks. For omequires oneMapReduce per iteration. The inner select-query
experiments, Hama’s checkpointing was turned off. in the repeat step reverses the graph by grouping the links

IX. PERFORMANCEEVALUATION


http://lambda.uta.edu/mrql/
https://github.com/fegaras/mrql
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Fig. 5. K-Means Clustering Using MR and BSP Modes for 5 Stégst and 10 Steps (Right)
graph =select( key, n.to)
from nin source(binary,“graph.bin”)
group by key: n.id; preprocessing: 1 MR joF

size = count(graph);

select( x.id, x.rank )

from x in

(repeat nodes 5 select< id: key, rank: 1.0/size, adjacent: al

from (key,al)in graph init step: 1 MR job{

step select(< id: m.id, rank: n.rank, adjacent: m.adjacent
abs((n.rank-m.rank)/m.rankj 0.1)
from nin (select< id: key, rank: 0.25/size+0.85*sum(c.rarnk)
from cin ( select< id: a, rank: n.rank/count(n.adjacent)
from nin nodes, an n.adjacent)
group by key: c.id),

m in nodes
where n.id = m.id) ‘repeat step: 1 MR joF
order by x.rankdescg ‘ postprocessing: 1 MR jo{b

Fig. 6. The PageRank Expressed as an MRQL Query

by their link destination and it equally distributes thekasf self-join (which joins a dataset with itself) can be simplifi
the link sources to their destination. The outer selecrgueto one MR job that traverses the dataset once. In essence, the
in the repeat step recovers the graph by joining the new ramlap function of this MR job sends each input element to the
contributions with the original graph so that it can be used reducers twice under different keys: under the left and unde
the next iteration step. The repeat step, if evaluated haivehe right join keys. Consequently, the group-by operation i
requires two MR jobs: one MR job to group the nodes bthe repeat step is fused with the join, based on the first rule,
their destination (inner query), and one MR job to join théeriving a self-join, which, in turn, is simplified to a siegl
rank contributions with the nodes (outer query). Our systemR job, based on the second rule.
translates this query to one MR job by using the following two We evaluated PageRank over synthetic data generated by the
algebraic laws: The first rule indicates that a group-by efoR-MAT algorithm [€] using the parameters a=0.57, b=0.19,
a join can be fused with the join if the group-by attributehie t ¢=0.19, and d=0.5 for the Kronecker graph generator. The
same as the corresponding join attribute. The resultingaed number of distinct edges generated were 10 times the number
side join nests the data during the join, thus incorporattiey of nodes. We used 9 different datasets with the following
group-by effects. The second rule indicates that a redigee-snumber of edges: 0.25M, 0.5M, 1M, 1.5M, 2M, 2.5M, 3M,
3.5M, and 4M. PageRank required 5-6 steps in MR mode and
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We can see that, although BSP evaluation outperforms the
MR evaluation for small datasets, when the datasets canfidt
fit in memory, they are spilled to local files and the BSP
performance deteriorates quickly.
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X. CONCLUSION AND FUTURE WORK [14]

We have presented a framework for translating MRQES]
queries to both MR and BSP evaluation plans, leaving
the choice to be made at run-time based on the availablél
resources. This translation to BSP plans is performed af 4
MRQL queries have been translated and optimized to MR
physical plans. There are many improvements that we dtél
planning to add to our system. Our BSP normalization
method assumes that fusing two BSP jobs into one B$i9)
job avoids materialization of the intermediate data on DFS
and, consequently, improves BSP execution. This is tr
provided that the combined state of the resulting BSP job fits
in memory. This may not be necessarily true for a three-wéal
join, which corresponds to two BSP jobs, since it may n
be possible to fit the three input sources in memory, while
it could be possible if we do the join using two BSP jobd25]
Determining whether the state of two fused BSP jobs can [%
in memory requires estimating the size of the resultingestat
which, in turn, requires data statistics. In addition, auaplicit  [27]
assumption was that, if there were enough resources, the
implementation beats the MR one since the former can rm)
entirely in memory. This may not be necessarily true and ma
depend on how frequently we do checkpointing and wh
amount of data we checkpoint. We plan to look at the cost pf]
both MR and BSP plans under various conditions, resources
and checkpointing scenarios, to make better choices.liﬁinaPz]
we would like to experiment with other in-memory/hybridss]
distributed evaluation systems as a target for MRQL, sué¥!
Hyracks and Spark.

] A. Thusoo,et al
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