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Abstract—One of the major drawbacks of the Map-Reduce
(MR) model is that, to simplify reliability and fault tolera nce, it
does not preserve data in memory across consecutive MR jobs:a
MR job must dump its data to the distributed file system before
they can be read by the next MR job. This restriction imposes a
high overhead to complex MR workflows and graph algorithms,
such as PageRank, which require repetitive MR jobs. The Bulk
Synchronous Parallelism (BSP) programming model, on the other
hand, has been recently advocated as an alternative to the MR
model that does not suffer from this restriction, and, under
certain circumstances, allows complex repetitive algorithms to
run entirely in the collective memory of a cluster. We present
a framework for translating complex declarative queries for
scientific and graph data analysis applications to both MR and
BSP evaluation plans, leaving the choice to be made at run-time
based on the available resources. If the resources are sufficient,
the query will be evaluated entirely in memory based on the BSP
model, otherwise, the same query will be evaluated based on the
MR model.

I. I NTRODUCTION

Recently, the Map-Reduce (MR) programming model [7]
has been emerged as a popular framework for large-scale
data analysis on the cloud. In particular, Hadoop [14],
the most prevalent implementation of this framework, has
been used extensively by many companies on a very large
scale. Currently, the majority of these MR jobs are specified
in declarative query languages, such as HiveQL [30] and
PigLatin [22]. One of the major drawbacks of the MR model
is that, to simplify reliability and fault tolerance, it does not
preserve data in memory between the map and reduce tasks
of a MR job or across consecutive MR jobs. Consequently,
using the original implementation of the MR model, to pass
data to the next job in a MR workflow, a MR job must
dump its data to the distributed file system (DFS), to be
read by the next MR job. This restriction imposes a high
overhead to complex MR workflows and graph algorithms,
such as PageRank, which require repetitive MR jobs. The Bulk
Synchronous Parallelism (BSP) programming model [32], on
the other hand, which precedes the MR model by more than
a decade, has been recently advocated as an alternative to the
MR model that does not suffer from this restriction, and, under
certain circumstances, allows complex repetitive algorithms to
run entirely in the collective memory of a cluster.

A BSP computation consists of a sequence of supersteps.
Each superstep is evaluated in parallel by every peer partici-

pating in the BSP computation. A superstep consists of three
stages: a local computation, a process communication, and
a barrier synchronization. Each peer maintains a local state
in memory, which is accessible by this peer only across all
supersteps. In addition, during the local computation stage of
a superstep, each peer has access to the messages sent by other
peers during the previous superstep. It can also send messages
to other peers during the process communication stage, to
be read at the next superstep. The barrier synchronization
stage synchronizes all peers to make sure that they have
received all the sent messages before the next superstep.
To cope with peer failures, each peer may use checkpoint
recovery, to occasionally flush the volatile part of its state
to the DFS, thus allowing to rollback to the last checkpoint
when a failure occurs. In many graph analysis problems a
large part of the state is used for storing the graph, which
is immutable and does not require checkpointing. Therefore,
the BSP model is better suited to graph analysis than the MR
model, provided that the entire graph can fit in the collective
memory of the cluster. Because of their importance and their
repetitive nature, graph analysis programs are the most likely
candidates to benefit from the BSP model, which explains why
the most important BSP implementation to date is Google’s
Pregel [20], which has been used by Google as a replacement
for the MR model for analyzing large graphs exclusively. In
addition, Apache’s Giraph [12] is an open-source alternative to
Pregel and Apache’s Hama [26] is a general BSP computation
platform built on top of Hadoop that can process any kind of
data.

When coding a parallel data analysis application in BSP,
one must make sure that the local state of each peer does not
exceed its memory capacity. This means that, since the graph
structure is needed through the BSP computation, one has to
use a sufficient number of peers to make sure that the graph
partition processed by each peer can fit in its memory. That
is, the entire graph, as well as the auxiliary data needed for
processing the graph, must fit in the collective memory of the
cluster. This imposes a minimum for the cluster size. Then,
an important question is what happens if the cluster is not
large enough to process a certain BSP application over a larger
amount of data. One solution would be to rewrite the BSP code
to process the graph in batches, but then this program would
not be that different from a MR job, since it would have to
dump the state to secondary storage before it would be able



to process the next batch from the graph. Furthermore, this
change would require a major rewriting of the BSP code. We
believe that, to be effective, a data analysis application should
not depend on the cluster size. Instead, if the cluster is large
enough, the code should be able to be evaluated entirely in
memory in BSP mode. Otherwise, the same unchanged code
should be able to be evaluated in MR mode. Supporting both
modes can be done if the application is coded in a declarative
query language, so that queries expressed in this language are
translated into both a MR workflow and a BSP job, leaving the
choice to be made at run-time based on the available resources.

Another reason for using a common declarative language
for both MR and BSP computations is that, currently, most
programmers prefer to use a higher-level query language for
their MR applications, such as HiveQL, instead of coding them
directly in an algorithmic language, such as Java (Pig is used
for over 60% of Yahoo! MR jobs, while Hive is used for
90% of Facebook MR jobs). This, we believe, will also be the
trend for BSP applications because, even though, in principle,
the BSP model is very simple to understand, it is hard to
develop, optimize, and maintain non-trivial BSP applications
coded in a general-purpose programming language. Currently,
there is no widely acceptable BSP query language. Existing
MR query languages, such as HiveQL and PigLatin, provide
a limited syntax for operating on data collections, in the
form of relational joins and group-bys. Because of these
limitations, these languages enable users to plug-in custom
MR scripts into their queries for those jobs that cannot be
declaratively coded in their query language. This nullifiesthe
benefits of using a declarative query language and may result
to suboptimal, error-prone, and hard-to-maintain code. More
importantly, these languages are inappropriate for complex
scientific applications and graph analysis, because they do
not directly support iteration or recursion in declarativeform
and are not able to handle complex, nested scientific data,
which are often semi-structured. But there are other query
languages for distributed data processing, such as MRQL [10]
and AQL [2], that are expressive enough to capture complex
data analysis applications in declarative form.

In this paper, we give semantics to BSP computations
and present translation rules from MR computations to BSP
computations. These rules allow MR workflows, produced by
compiling MR queries, to be transformed to a sequence of BSP
jobs. Consecutive BSP jobs are fused into a single BSP job by
chaining the supersteps from these jobs, thus yielding onlyone
BSP job for each query. Our goal is to support both evaluation
modes: if the input data and state fit in memory, then a query
is evaluated in memory using BSP; otherwise, it is evaluated
using MR. We have implemented our MR-to-BSP translations
for MRQL ([10], [9]). MRQL is a novel query language for
MR computations that is more powerful than existing query
languages, such as Hive and PigLatin, since it can operate on
more complex data, such as nested collections and trees, and
it supports more powerful query constructs, thus eliminating
the need for using explicit MR procedural code. Our MRQL
system can store local data collections (bags) in three ways.

If the bag is accessed only once (a property inferred statically
by our type-inference system), then the bag elements are
lazily accessed using stream iterators. Otherwise, the bagis
materialized to a memory vector. When the vector size exceeds
a threshold, it is spilled to a local file. Consequently, when
memory is not sufficient, our BSP evaluations may spill data
to local files, thus deteriorating performance.

Consider, for example, the following MRQL query that cal-
culates the k-means clustering algorithm (Lloyd’s algorithm),
by derivingk new centroids from the old:

repeat centroids = ...
step select < X: avg(s.X), Y: avg(s.Y) >

from s in Points
group by k: (select c from c in centroids

order by distance(c,s ))[0]
limit 10;

wherePoints is the input data set of points on a plane,centroids
is the current set of centroids (k cluster centers), anddistance
is a function that calculates the distance between two points.
The initial value ofcentroids (the ... value) can be a bag ofk
random points. The select-query in the group-by part assigns
the closest centroid to a points (where [0] returns the first
tuple of an ordered list). The repeat step query clusters the
data points by their closest centroid, and, for each cluster,
a new centroid is calculated from the average values of its
points. The step query repeats 10 times. Most other SQL-
like query languages do not allow subqueries in group-by
nor they allow arbitrary operations over groups and, therefore,
have insufficient expressive power to capture any arbitraryMR
computation. MRQL, on the other hand, has been proven to
be MR-complete [10]. The MRQL query optimizer generates
a single map-combine-reduce job for the select-query in the
repeat-step, which is evaluated 10 times. More specifically,
for each data point, the mapper of this job finds the closest
centroid from the bag of the current centroids (which resides
in memory) and uses it as the combine/reduce key. The mapper
of each node uses an in-memory hash table to group the
points by the key (the closest centroid) and partially aggregates
the groups incrementally from the incoming points using the
combine function. That is, the hash table hask entries, where
each entry has 4 values, which are the partial counts and sums
of avg(s.X) andavg(s.Y). Finally, the reducers perform the final
reductions from the partial aggregated results shuffled from
the nodes. Our system translates this query to a single BSP
job, since the repeat-step query is translated to a BSP job, the
repetition is done with a second BSP job, and the two BSP
jobs are fused into one. That is, the resulting BSP translation
reads the input points once and calculates the final centroids
entirely in memory. We will show in Section IX that the BSP
evaluation of this query can be an order of magnitude faster
than its MR evaluation.

There is a number of recent proposals for improving the
execution of MR workflows and repetitive MR jobs, such as,
HaLoop [3], Twister [8], and SystemML [13]. There also some
proposals for cloud computing that use distributed memory
instead of DFS for inter-node communication, such as, the



main memory MR (M3R [28]), Spark [34], Piccolo [25], and
distributed GraphLab [19]. The closest approach to ours is the
Shark [27] (Hive on Spark) sub-project of Spark [34], which
evaluates SQL-like queries using in-memory evaluation. To
the best of our knowledge, Shark does not provide a compre-
hensive query optimization framework yet, although there are
plans for doing so in the future. Our work is also related to
the Datalog query language used by the Asterix project [4],
which is used as an intermediate language for translating
and optimizing Pregel-like and iterative map-reduce-update
specifications to Hyracks physical operations. None of these
systems provide any query language, optimization technique,
or query evaluation on top of an existing BSP platform.

In summary, the key contribution of this work is in the
design of a framework for translating complex declarative
queries for scientific and graph data analysis applicationsinto
both MR and BSP evaluation plans, leaving the choice to
be made at run-time based on the available resources. If the
resources are sufficient, the query will be evaluated entirely in
memory based on the BSP model, otherwise, the same query
will be evaluated based on the MR model. Leveraging on our
earlier work on translating complex MRQL queries into MR
workflows, this work makes the following contributions:

• We present a novel BSP algebra that captures the essence
of most BSP computations. Contrary to some BSP
implementations, this algebra separates BSP supersteps
explicitly as functional arguments to a BSP operator,
thus making easier to chain together supersteps from
consecutive BSP jobs.

• We present transformation rules to map any workflow of
MR jobs into a workflow of BSP operations, thus making
possible to translate any MR query into a BSP workflow.

• We present rules for fusing cascading BSP jobs into a
single BSP job, thus deriving a single BSP job for the
entire query.

• We report on a prototype implementation of the BSP
evaluation of MRQL queries on top of Apache Hama.
We show the effectiveness of our method through exper-
iments that compare the BSP to the MR evaluation plans
for two analytical task queries: K-means clustering and
PageRank.

The rest of this paper is organized as follows. Section II
compares our approach with related work. Section III sum-
marizes our earlier work on a MR algebra, which is used
in the implementation of the MRQL language. Section IV
describes our BSP algebra and its implementation on Apache’s
Hama. Section V gives the transformation rules from the
MR algebra to the BSP algebra, thus making possible the
translation of MR queries to BSP jobs. Section VI describes
the normalization rules for fusing cascading BSP jobs into
a single BSP job, thus deriving a single BSP job from a
MR query. Section VII describes how MRQL physical plans
are translated to BSP plans. Section VIII addresses total
aggregation in BSP, which requires to summarize results across
all peers. Finally, Section IX presents experiments comparing

the BSP to the MR evaluation plans, produced by MRQL for
two analytical task queries: K-means clustering and PageRank.

II. RELATED WORK

The map-reduce (MR) model was first introduced by Google
in 2004 [7]. Several large organizations have implemented
this model, including Apache Hadoop [33] and Pig [22],
Apache/Facebook Hive [30], Google Sawzall [24], and Mi-
crosoft Dryad [16]. The most popular MR implementation is
Hadoop [14], an open-source project developed by Apache,
which is used today by Yahoo! and many other companies
to perform data analysis. There are also a number of higher-
level languages that make MR programming easier, such as
HiveQL [30], PigLatin [22], SCOPE [5], and Dryad/Linq [17].
Hive ([30], [31]) is an open-source project by Facebook that
provides a logical RDBMS environment on top of the MR
engine, well-suited for data warehousing. Using its high-
level query language, HiveQL, users can write declarative
queries, which are optimized and translated into MR jobs
that are executed using Hadoop. Yahoo!’s Pig [11] resembles
Hive as it provides a user-friendly query-like language, called
PigLatin [22], on top of MR, which allows explicit filtering,
map, join, and group-by operations. SCOPE [5], an SQL-like
scripting language for large-scale analysis, does not support
sub-queries but provides syntax to simulate sub-queries using
outer-joins.

The BSP model was introduced by Leslie G. Valiant in
1990 [32] and has been since improved and extended by
many others (eg, [29]). The best known implementations of
the BSP model for data analysis on the cloud are Google’s
Pregel [20] and Apache’s Giraph [12] and Hama ([26], [15]).
Although Pregel has already been used extensively by Google
for large graph analysis, it has not reached the popularity of
MR yet. Its open-source counterpart, Giraph, and the general
BSP platform, Hama, are still in their very early stages of
development and are not used in the same degree as Pregel.
The BSP model is compared with the MR model in [23], which
discusses how to map any MR computation to a BSP, and vice
versa.

III. B ACKGROUND: THE MR ALGEBRA

In our earlier work ([10], [9]), we have presented an algebra
for MR computations, which is summarized in this section (in
a more simplified form). It consists of the following operators:

• source(file,tag): a tagged dataset from a DFS file.
• S1 ∪ S2: the bag union of the datasetsS1 andS2.
• mapReduce(m, r)S: a MR job.
• repeat(f)S: a repetition of MR jobs.

These algebraic operators can capture most nested relational
operations, including equi-join, selection, projection,group-
by with aggregation, unnesting, intersection, etc. They cannot
capture generalθ-joins and total aggregation. We will discuss
total aggregation in Section VIII.

The operationsource(file,tag) reads an input file from DFS,
which can be a raw text or binary file, and breaks it into
data fragments, based on some specification. Every fragment



is annotated with an integertag to identify the data source.
The result is a dataset of type{ ( int, α ) }, which is a bag of
pairs, where each pair contains an integer tag and a fragment
of typeα.

The operation ‘mapReduce(m, r)S’ specifies a map-reduce
job. It transforms a datasetS of type {α} into a dataset of
type {β} using a map functionm and a reduce functionr
with types:

m : α → { (κ, γ) }
r : (κ, {γ}) → {β}

for the arbitrary typesα, β, γ, and κ. The map function
m transforms values of typeα from the input dataset into
a bag of intermediate key/value pairs of type{(κ, γ)}. The
reduce functionr merges all intermediate pairs associated
with the same key of typeκ and produces a bag of values
of typeβ, which are incorporated into themapReduce result.
The semantics ofmapReduce can be given by the following
equation:

mapReduce(m, r)S = cmap(r) (groupBy(cmap(m)S))

wherecmap and groupBy are defined as follows: Given two
arbitrary typesα andβ, the cmap(f) s operation (also known
as concat-map or flatten-map in functional programming lan-
guages) applies the functionf of type α→ {β} to each
element of the input bags of type{α} and collects the results
to form a bag of type{β}. Given two typesκ and α, for
an input bag of pairss of type bag((κ, α) ), the groupBy(s)
operation groups the elements ofs by the key of typeκ to form
a bag of type bag((κ, {α}) ). For example, groupBy({ (1,“A”),
(2,“B”), (1,“C”) } ) returns the bag{ (1,{“A”,“C” }), (2,{“B” })
}. The implementation of a dataset in a MR platform, such as
Hadoop [14], is the path name of a DFS file that contains
the data. Then,mapReduce is a MR job that reads a DFS
file as input and dumps the output into a DFS file. The union
operation is a no-op since it simply concatenates the DFS path
names.

In our earlier work [10], we have used an explicit join
algebraic operation to capture several equi-join algorithms for
the MR framework, such as reduce- and map-side joins ([18],
[33]), as well as cross products andθ-joins using distributed
block-nested loops. Here, to simplify our translations from MR
to BSP, we have used only one equi-join algorithm, the reduce-
side join, which can be expressed as a mapReduce operation
over the union of the two join inputs. For example, the join

select X.C, Y.D from X, Y where X.A=Y.B

can be evaluated using:
mapReduce( λ(n,z). if n=1 then {(z.A,(n,z))} else {(z.B,(n,z))},

λ(k,s).{ (x.C,y.D) [] (1,x)∈s, (2,y)∈s } )
( source(X,1) ∪ source(Y,2) )

where an anonymous functionλ(x, y).e specifies a binary
function f such thatf(x, y) = e. In this join specification,
the MR input is the combination of the two inputsX and Y,
under different tags, 1 and 2 respectively. For each input tuple
(either fromX or Y), the MR mapper emits the join key along
with the tuple. The reducer separates theX tuples from theY

tuples (based on their tag) and performs their cross productin
memory (since they already match the join condition).

Finally, ‘repeat(f)S’ transforms a datasetS of type {α}
to a dataset of type{α} by applying the functionf of
type {α}→ {(α, bool)} repeatedly, starting fromS, until
all returned boolean values are false. The implementation
of repeat in Hadoop does not require any additional MR
job (other than those embedded in the functionf ) as it
uses a user-defined Java counter to count the true values
resulting from the outermost physical operator inf . These
counts are accumulated across all Hadoop tasks assigned to
this outermost operator. Therepeat operator repeats thef
workflow until the counter becomes zero.

There are other operations required to capture SQL-like
queries, which are all described in our earlier work [10]. Our
earlier work also describes general methods for translating any
MRQL query into a MR algebraic plan and for optimizing and
translating this plan into a MR job workflow.

IV. T HE BSP ALGEBRA

In this section, we present our BSP algebra that captures
BSP computations. It has been implemented on Apache Hama.
The domain of our BSP algebra is{(I, V )}, whereI is the
peer id type andV is a snapshot type. More specifically, the
BSP domain is a map fromI to V , which, for each peer
participating in the BSP computation, returns its local snapshot
of typeV . This snapshot contains all the local data of the peer
I that reside in its local memory. The BSP algebra consists of
the following operators:

• source(file,tag): a tagged dataset from a DFS file.
• S1 ∪ S2: the bag union of the datasetsS1 andS2.
• bsp( tag, superstep, state ) S: the BSP operation.

Note that, as it was the case for the MR algebra, this BSP
algebra cannot capture total aggregation, which is addressed
separately in Section VIII.

As it was for the MR algebra, the operationsource(file,tag)
reads an input file from DFS and breaks it into data fragments,
based on some specification. Every fragment is annotated with
an integertag that identifies the data source. This operation
returns the map{(I, {(int, α)})}, which associates each peer
I with a dataset of type{(int, α)}, which is a bag of pairs,
where each pair contains the tag and a fragment of typeα.
This dataset is stored locally in the snapshot of peerI.

The BSP operation ‘bsp( tag, superstep, initstate ) S’ maps
a datasetS of type {(I, {(int, V )})} into a dataset of type
{(I, {(int, V )})}, using arguments of the following types:

tag : int
superstep : ({M}, V,K)→ ({(I,M)}, V,K, boolean)

initstate : K

The tag is the output value tag. Thesuperstep operation is
performed by every peer participating in the BSP computation
and can modify the peer’s local snapshotV by returning a new
local snapshotV . Since we are going to use a single BSP job
to capture a workflow of multiple, repetitive MR jobs, each
superstep must be able to execute multiple operations, one for



for I in peers do {
terminate[ I ] = false;
snapshot[I] = input[ I ];
state [ I ] = initstate [ I ];

};
msgs = { };
do {

new msgs = { };
exit = true;
for I in peers do {

(m,v,k,b) = superstep( { m [] ( i ,m) ∈ msgs, i=I },
snapshot[I ], state [ I ] );

snapshot[I] = v;
state [ I ] = k;
new msgs = new msgs ∪ m;
terminate[ I ] = terminate[I ] ∨ b;
exit = exit ∧ b;

};
msgs = new msgs;

} while (¬exit );
return snapshot;

Fig. 1. Sequential Evaluation of ‘bsp( tag, superstep, initstate ) input’

each MR job, and be able to switch between the jobs in the
MR workflow. This is done using a finite state machine (DFA)
embedded in the superstep logic, which controls the superstep
evaluation, as we will show in Section V. More specifically,
the DFA state is of typeK, which may contain data particular
to this state. Then, a superstep evaluation makes a transition
from the current stateK (in the superstep input) to a new
stateK (in the superstep output). The initial state isinitstate.
The call superstep(ms, v, k) takes a bag of messagesms of
type {M}, the current snapshotv, and the current statek,
and returns the triple(is, v′, k′, b), which contains the new
messagesis to be sent to the other peers (a bag of(I,M)
pairs), the new snapshotv′, the new statek′, and a flagb.
This flag indicates whether the peer wants to terminate this
BSP computation (b = true) or use barrier synchronization to
continue by repeating the superstep under the new snapshot,
state, and messages (b = false). Note that, only ifall peers
agree to exit (when they all returnb = true), then every peer
should exit the BSP computation. Otherwise, if there is at
least one peer who wants to continue, then every peer must
do barrier synchronization and repeat the superstep.

The meaning of the BSP operation, when simulated on a
sequential machine, is given in Figure 1. In this simulation,
each peerI, from the set of allpeers, is associated with a snap-
shot snapshot[I], a DFA statestate[I], and a flagterminate[I].
The result is stored in the mapResultState. At each step, the
superstep operation is evaluated by every peer, even when the
peer has requested to terminate. The input to thesuperstep
consists of the messages sent to this peer during the previous
step, along with the current snapshot and state. Its result
contains the messages to be sent to other peersm, the new
snapshotv, the new statek, and the termination flagb. The
BSP operation repeats until all peers want to terminate.

class IM { I peer; M message; }
class Result { Bag<IM> messages; Bag<V> snapshot;

S state; Boolean exit; }

void bsp ( BSPPeer<K,V,K,V,M> peer ) {
Bag<V> snapshot = readLocalSnapshot(input);
S state = initstate ;
Result result ;
Bag<M> msgs = new Bag<M>();
M msg = null;
boolean exit;
do {

result = superstep(msgs,snapshot,state);
snapshot = result.snapshot;
state = result . state ;
exit = synchronize(peer,result. exit );
for ( IM m: result .messages )

peer.send(m.peer,m.message);
peer.sync();
msgs = new Bag<M>();
while ((msg = peer.getCurrentMessage()) != null)

msgs.add(msg);
} while (! exit );
writeLocalSnapshot(tag,snapshot);

}

Fig. 2. Implementation of ‘bsp( tag, superstep, initstate )input’ on Hama

boolean synchronize ( BSPPeer<K,V,K,V,M> peer,
Boolean exit ) {

if ( exit == allTrue)
return true;

if ( exit == allFalse)
return false;

if (! exit )
for ( I i : peer.getAllPeerNames() )

peer.send(i, ”not ready”);
peer.sync();
return peer.getNumCurrentMessages() == 0;

}

Fig. 3. Peer Synchronization

Figure 2 gives the implementation of the BSP operation
on Apache Hama [15]. As it was done for our MR im-
plementation, the domain of the physical operations that
correspond to our BSP algebraic operators is a DFS file.
More specifically, each peer reads all those blocks from the
input file that are local to the peer (ie, those that reside in
its local disk) and stores them entirely in its memory. This
is done with the functionreadLocalSnapshot. At the end of
the BSP operation, the new state is dumped to DFS using
the functionwriteLocalSnapshot. Although the input/output is
done through DFS, the rest of the BSP computation is done
entirely in memory (if we ignore checkpointing). We will see
in Section VI that using the DFS for passing snapshots across
BSP operations is not important because consecutive BSP
operations are fused into one, thus requiring the use of DFS
only at the beginning and the end of a program. The classesIM
andResult in Figure 2 are used to store a message sent to peers



and a superstep result, respectively. The body of the Hama’s
bsp method is evaluated at each peer. Thesnapshot is the local
snapshot of the peer, accessible only by this peer throughout
its BSP computation. In Hama, there is no clear separation of
supersteps. Instead, when a peer callspeer.sync(), it waits for
the next barrier synchronization. That is, this call signals the
end of a superstep. If thebsp method exits without a call to
peer.sync(), the peer terminates. Hama requires that all peers
exit at the same time. Before the new messages that are derived
from a superstep are sent to peers, we need to check whether
all peers agree to exit. This is done by calling thesynchronize
method, shown in Figure 3. Theresult.exit flag returned by
the superstep is a Boolean object that can take four values: If
it is == to the prespecified Boolean objectallTrue, it indicates
that all peers want to exit right now, so there is no need to
poll the peers; if it is== to the prespecified Boolean object
allFalse, it indicates that all peers need to continue; otherwise,
if its value is equal totrue/false, it indicates that this particular
peer wants to exit/continue, but we still need to poll the other
peers to check if they can all exit. In the latter case, if all
peers agree to exit, then we exit. This is done insynchronize
by having those peers that are not ready to exit send messages
to other peers: if there is at least one message after sync,
then at least one peer is not ready to exit. As we will see in
Section V, in all but one case, peers agree to simultaneously
exit or continue and this decision is hardwired in the logic of
the superstep. This means that in most cases thesynchronize
method will immediately return true or false without havingto
poll the peers. The only case where polling is required is at the
BSP superstep of arepeat operation that tests the termination
condition of the loop (explained in Section V). In such a case,
some peers may want to finish the loop earlier because they
reach the termination condition sooner. Based onsynchronize,
these peers will continue their supersteps until all peers agree
to terminate. The shortcut of usingallTrue/allFalse eliminates
unnecessary message exchanges and syncs in most cases.

V. MR-TO-BSP TRANSFORMATION

It has been noted in related work [23] that any MR job can
be evaluated using a BSP job that has two supersteps: one
for the map and one for the reduce task. In this section, we
elaborate this idea by transforming our MR algebra into our
BSP algebra. First, we transform amapReduce operation:

mapReduce(m,r) S
= bsp( tag,

λ(ms, as, b).
if b
then ( cmap(λ(k, c).{(shuffle(k),(k, c))})

(cmap(λ(k, c).m(c)) as),
{ }, false, allFalse )

else ( { }, cmap(r) (groupBy(ms)), false, allTrue ),
true ) S

wheretag is a unique tag assigned to this operator. The BSP
snapshot assigned to a peer is a bag of type{(int, α)}, which
contains the input partition local to the peer. The DFA state
is a boolean flagb that indicates whether we are in map or
reduce mode. When the superstep is called withb = true, then

it evaluates the map functionm over each element in the input
partition,as. Then, it shuffles the map results to the reducers,
using the functionshuffle(k) over the keyk, which is returned
by the mapperm. Shuffle must be a function that returns the
same peer for the same key. An obvious implementation of
shuffle(k) in Hama distributes the mapped values equally to
the peers using hash partitioning:

peer.getPeerName(k.hashValue() % peer.getNumPeers())

The first superstep returns the new stateb = false, which
directs bsp to perform the reduce stage over the received
messages, which contain the shuffled data. Then, it simply
groups the data by the key and applies the reduce function
(based on themapReduce semantics in terms ofcmap and
groupBy, given in Section III). Note that, thecmap and
groupBy operations are evaluated entirely in memory. Note
also that the exit condition of the map step isallFalse, while
that of the reduce step isallTrue. They indicate that all peers
agree to continue after map and exit after reduce.

The repetition repeat(f) S is translated to BSP by first
translating the MR repetition step functionf into a BSP repeti-
tion F by recursively applying the MR-to-BSP transformation
rules. Then, the translation off should take the form:

F (x) = bsp(tag, s, k0) x

for some tagtag, superstep functions, and initstatek0, since
all MR-to-BSP transformations return absp operation. Then,
repeat(f) S is mapped to BSP as follows:

repeat(f) S
= bsp( tag,

λ(ms, vs, k). let (ts, bs, k, b)← s(ms, vs, k)
in if b

then ( { },
cmap(λ(t, (v, b)).{(t, v)}) bs,
k0,
∀(t, (v, b)) ∈ bs : ¬b )

else ( ts, bs, k, allFalse ),
k0 ) S

The state of this BSP is the same as the state of the repeat step,
which is initially k0. This BSP evaluates the superstep function
of the repeat step,s, multiple times. When thes call returns
b = false, we are in the middle of evaluating a supersteps, so
we must returnallFalse to continue until we finish evaluating
one complete repeat step. Whenb = true, we have finished
a single repeat step and, if the termination condition is false,
then we should proceed to the next repeat iteration starting
from scratch, with state equal tok0. Otherwise, we should
exit. The termination condition is checked by evaluating
∀(t, (v, b)) ∈ bs : ¬b, given that the dataset returned by a
repeat step contains the source tagt, the valuev, and the flag
b, which is true ifv satisfies the termination condition. This
termination condition is the only case where a value not==
to allFalse/allTrue is returned. As explained in Section IV, this
is handled in the BSP call by polling all peers to check the
condition across all peers.



VI. BSP NORMALIZATION

As we have seen in Section V, any MR workflow that
consists of MR algebraic forms can be mapped to a sequence
of cascadingbsp operations. Unfortunately, eachbsp operation
reads its input state from DFS and dumps its final state to
DFS, which makes the resulting BSP workflow plan not that
different from the original MR workflow in terms of wasting
resources. Our goal is to translate any such plan into a single
BSP job that uses the DFS to read the initial input and
dump the final answer only, while performing the rest of
the computation entirely in memory. More specifically, we
will give a constructive proof to the following theorem by
providing a normalization rule for fusing BSP operations in
pairs.

Theorem 1:Any algebraic term in the BSP algebra can be
normalized into a term with just one BSP job that takes the
following form:

bsp(t, s, k) (source(f1, t1) ∪ · · · ∪ source(fn, tn))

for somet, s, k, fi, andti.
Consequently, since any MR query can be translated to a MR
algebraic term (from our previous work [10]), and since any
MR algebraic operator can be translated into a BSP algebraic
operator (Section V), this theorem indicates that any MR query
can be translated into a single BSP operation.

Proof: The normalization is done by recursively applying
a single rule that fuses two cascadingbsp operations into
one. Essentially, it chains together the supersteps of the two
cascadingbsp operations into one superstep, which uses a flag
to remember which superstep is evaluating each time. Thebsp
fusion law is the following:

bsp(t2, s2, k2) ( S1 ∪ · · · ∪ Si−1

∪ bsp(t1, s1, k1)(S′

1 ∪ · · · ∪ S′

m)
∪Si+1 ∪ . . . ∪ Sn )

= bsp( t2,
λ(ms, as, (c, k)).

if c
then let (ts, bs, k′, b)← s1(ms, as, k),

exit← synchronize(b)
in ( ts, bs,

( ¬exit, if exit then k2 else k′ ),
allFalse )

else let (ts, bs, k′, b)← s2(ms, as, k)
in ( ts, bs, ( false, k′ ), b ),

(true,k1) )
( S1 ∪ · · · ∪ Si−1 ∪ S′

1 ∪ · · · ∪ S′

m ∪ Si+1 ∪ . . . ∪ Sn )
The state of the resultingbsp is extended with a flagc that
identifies which of the two supersteps (s1 or s2) to evaluate
each time. Whilec is true, the first supersteps1 is evaluated,
until it returnsb = true, in which case it synchronizes with the
other peers to check if they all agree to exit from steps1. If
they do,exit becomes true and the BSP computation switches
to c = false mode. Then, whilec is false, the second superstep
s2 is evaluated until it terminates. The call tosynchronize is
necessary since the inner BSP computation may correspond to
a repeat expression, which may not terminate at the same time
for all peers. In all other cases,synchronize will immediately
return true or false without having to poll the peers.

VII. T RANSLATING MRQL PLANS TO BSP PLANS

In Section V, we presented transformation rules from the
MR algebra to the BSP algebra that make possible the transla-
tion of MR queries to BSP jobs. The MRQL query evaluation
system though provides many specialized MR physical plans
that implement the MR algebraic operator. For example, the
Map physical operator implements the MR operation without
a reduce function. This can be trivially implemented using a
BSP operation with only one superstep. In this section, we
show how two important MR physical plans used in MRQL
are mapped to BSP plans: themapCombineReduce and the
reduce-side join,mapReduce2.

As noted in the k-means example in Section I, a map-
combine-reduce operation applies a combine function to the
data generated at each map task, thus partially reducing the
data at the map-side before they are shuffled and shipped to
the reducers. This technique, which is generally known as an
in-mapper combiner, is very effective when the reducer per-
forms aggregations only. ThemapCombineReduce(m,c, r) S

operation, in addition to the mapm and reducer functions,
provides a combine functionc. Then, this operation is mapped
to BSP as follows:

mapCombineReduce(m,c, r) S
= bsp( tag,

λ(ms, as, b).
if b
then ( cmap(λ(k, s).cmap(λx.{(shuffle(k),(k, x))})

(c(k, s)))
(groupBy(cmap(λ(k,x).m(x)) as)),

{ }, false, allFalse )
else ( { }, cmap(r) (groupBy(ms)), false, allTrue ),

true ) S
that is, the mapper groups its results by the shuffle key and
partially reduces them using the combinerc.

To join data from multiple data sources, MRQL supports
various physical join operators. The best known join algorithm
in an MR environment is the reduce-side join [33], also known
as partitioned join or COGROUP in Pig. It mixes the tuples
of two input data setsS1 andS2 at the map side, groups the
tuples by the join key, and performs a cross product between
the tuples fromS1 andS2 that correspond to the same join
key at the reduce side. We translate the reduce-side join to the
following BSP operation:

mapReduce2(m1,m2, r) (S1, S2)
= bsp( t1,

λ(ms, as, b).
if b
then ( F(m1,m2, t1, as), { }, false, allFalse )
else ( { }, G(r,ms), false, allTrue ),

true ) (S1 ∪ S2)

wheret1 is the tag ofS1, m1 andm2 are the map functions
for S1 andS2, respectively, andr is the reduce function. The
code forF andG is as follows:

F(m1,m2, t1, as)
= cmap(λ(t, c).

if t = t1
then cmap(λ(k, z).{(k, (k, (1, z)))}) (m1(c))
else cmap(λ(k, z).{(k, (k, (2, z)))}) (m2(c))) as



G(r,ms)
= cmap(λ(k, s).r( cmap(λ(t, x). if t = 1 then {x} else {}) s,

cmap(λ(t, y). if t = 2 then {y} else {}) s ))
(groupBy(ms))

VIII. H ANDLING TOTAL AGGREGATIONS

Total aggregations summarize collections into values. For
example, the MRQL query:

avg(select e.salary from e in Employees)

returns a single number. When aggregations are executed in a
distributed system, one peer must be designated as a master
to collect all partial aggregations from the other peers and
emit the final aggregation result. Our MR algebra includes the
operationaggregate(a, S), wherea is a commutative monoid
a = (⊕, z). That is,x⊕y = y⊕x andx⊕z = x, for all x andy.
It reduces a datasetS of type{T } into a valueT by applying
⊕ to the elements ofS in pairs. Our BSP algebra uses the same
operationaggregate(a, S). It is implemented with special code
in Hama that designates one of the participating peers (the
master) to collect the final result, it partially aggregatesthe
results at each peer, which sends its partial aggregation result
to the master, and, finally, the master dumps the final result to
DFS.

mapAggregateReduce(m,r, acc, zero) S
= bsp( tag,

λ(ms, as, b).
if b
then ( cmap(λ(k, c).{(shuffle(k),(k, c))})

(cmap(λ(k, c).m(c)) as),
{ }, false, allFalse )

else ( { }, aggregate( acc, zero,
cmap(r) (groupBy(ms)) ),

false, allTrue ),
true ) S

IX. PERFORMANCEEVALUATION

MRQL is implemented on top of Hadoop and Hama. It is
available at http://lambda.uta.edu/mrql/. It is an open source
project available at GitHub https://github.com/fegaras/mrql,
where other people can contribute and request changes. MRQL
can execute MRQL queries in two modes: using the MR
framework on Apache Hadoop or using the BSP framework
on Apache Hama. The MRQL query language is powerful
enough to express most common data analysis tasks over many
forms of raw data, such as XML and JSON documents, binary
files, and line-oriented text documents with comma-separated
values.

The platform used for our evaluations was a small cluster
of nine Linux servers, connected through a Gigabit Ethernet
switch. The cluster is managed by Rocks Cluster 5.4 running
CentOS-5 Linux. For our experiments, we used Hadoop 1.0.3
and Hama 0.5.0. The cluster frontend was used exclusively
as a NameNode/JobTracker, while the rest 8 compute nodes
were used as DataNodes/TaskTrackers for Hadoop MR and
as Groom servers (BSP nodes) for Hama. Each server has 4
Xeon cores at 3.2GHz with 4GB memory. That is, there were
a total of 32 cores available for MR and BSP tasks. For our
experiments, Hama’s checkpointing was turned off.

type point = < X: double, Y: double >;

function distance ( x: point, y: point ): double {
sqrt(pow(x.X−y.X,2)+pow(x.Y−y.Y,2))

};

repeat centroids = { < X: 0.0, Y: 0.0 >,
< X: 10.0, Y: 0.0 >,
< X: 0.0, Y: 10.0 >,
< X: 10.0, Y: 10.0 > }

step select ( < X: avg(s.X), Y: avg(s.Y) >, true )
from s in source(binary,”points.bin” )

group by k: (select c from c in centroids
order by distance(c,s ))[0]

limit 10;

Fig. 4. K-means Clustering Expressed as an MRQL Query

In the rest of this section, we present experiments comparing
the BSP to the MR evaluation plans, produced by MRQL for
two analytical task queries: K-means clustering and PageRank.

A. K-means Clustering

As a first example, the MRQL query in Figure 4 calcu-
lates the k-means clustering algorithm, by deriving k new
centroids from the old, where the input data set is of type
{<X:double,Y:double>}, centroids is the current set of cen-
troids (k cluster centers), anddistance calculates the distance
between two points. The query in the group-by assigns the
closest centroid to a points. This query clusters the data points
by their closest centroid, and, for each cluster, a new centroid
is calculated from the mean values of its points.

The dataset used in our experiments consists of random
(X,Y ) points in 4 squares:X ∈ [2 . . . 4, 6 . . . 8] and Y ∈
[2 . . . 4, 6 . . .8]. Thus, the 4 centroids were expected to be
(3, 3), (3, 7), (7, 3), and(7, 7). As we can see from the query,
the initial centroids were(0, 0), (10, 0), (0, 10), and(10, 10).
Figure 5 shows the results of evaluating the K-means query
in Figure 4 using MR and BSP modes forlimit (number of
iterations) equal to 5 and 10, respectively. We can see that the
BSP evaluation outperforms the MR evaluation by an order of
magnitude.

B. PageRank

The second MRQL query we evaluated was PageRank over
synthetic datasets. The complete PageRank query is given
in Figure 6. Given that our datasets represent a graph as
a flat list of edges, the first query in Figure 6 groups this
list by the edge source so that each tuple in the resulting
graph contains all the neighbors of a node in a bag. We only
measured the execution time of the last query in Figure 6,
which calculates the PageRank of the graph (this is done
by the repeat MRQL expression) and then orders the nodes
by their rank. Recall from Section III that, for therepeat
to converge, the conditionabs((n.rank-m.rank)/m.rank) > 0.1
must become false for all graph nodes. The optimized query
requires oneMapReduce per iteration. The inner select-query
in the repeat step reverses the graph by grouping the links

http://lambda.uta.edu/mrql/
https://github.com/fegaras/mrql
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Fig. 5. K-Means Clustering Using MR and BSP Modes for 5 Steps (Left) and 10 Steps (Right)

graph =select( key, n.to )
from n in source(binary,“graph.bin”)

group by key: n.id; preprocessing: 1 MR job

size = count(graph);

select( x.id, x.rank )
from x in
(repeat nodes = select< id: key, rank: 1.0/size, adjacent: al>

from (key,al) in graph init step: 1 MR job

step select(< id: m.id, rank: n.rank, adjacent: m.adjacent>,
abs((n.rank-m.rank)/m.rank)> 0.1)

from n in (select< id: key, rank: 0.25/size+0.85*sum(c.rank)>

from c in ( select< id: a, rank: n.rank/count(n.adjacent)>

from n in nodes, ain n.adjacent )
group by key: c.id),

m in nodes
where n.id = m.id) repeat step: 1 MR job

order by x.rankdesc; postprocessing: 1 MR job

Fig. 6. The PageRank Expressed as an MRQL Query

by their link destination and it equally distributes the rank of
the link sources to their destination. The outer select-query
in the repeat step recovers the graph by joining the new rank
contributions with the original graph so that it can be used in
the next iteration step. The repeat step, if evaluated naively,
requires two MR jobs: one MR job to group the nodes by
their destination (inner query), and one MR job to join the
rank contributions with the nodes (outer query). Our system
translates this query to one MR job by using the following two
algebraic laws: The first rule indicates that a group-by before
a join can be fused with the join if the group-by attribute is the
same as the corresponding join attribute. The resulting reduce-
side join nests the data during the join, thus incorporatingthe
group-by effects. The second rule indicates that a reduce-side

self-join (which joins a dataset with itself) can be simplified
to one MR job that traverses the dataset once. In essence, the
map function of this MR job sends each input element to the
reducers twice under different keys: under the left and under
the right join keys. Consequently, the group-by operation in
the repeat step is fused with the join, based on the first rule,
deriving a self-join, which, in turn, is simplified to a single
MR job, based on the second rule.

We evaluated PageRank over synthetic data generated by the
R-MAT algorithm [6] using the parameters a=0.57, b=0.19,
c=0.19, and d=0.5 for the Kronecker graph generator. The
number of distinct edges generated were 10 times the number
of nodes. We used 9 different datasets with the following
number of edges: 0.25M, 0.5M, 1M, 1.5M, 2M, 2.5M, 3M,
3.5M, and 4M. PageRank required 5-6 steps in MR mode and
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Fig. 7. PageRank Evaluation Using MR and BSP Modes

19-29 BSP supersteps to converge. Figure 7 shows our results.
We can see that, although BSP evaluation outperforms the
MR evaluation for small datasets, when the datasets cannot
fit in memory, they are spilled to local files and the BSP
performance deteriorates quickly.

X. CONCLUSION AND FUTURE WORK

We have presented a framework for translating MRQL
queries to both MR and BSP evaluation plans, leaving
the choice to be made at run-time based on the available
resources. This translation to BSP plans is performed after
MRQL queries have been translated and optimized to MR
physical plans. There are many improvements that we are
planning to add to our system. Our BSP normalization
method assumes that fusing two BSP jobs into one BSP
job avoids materialization of the intermediate data on DFS
and, consequently, improves BSP execution. This is true,
provided that the combined state of the resulting BSP job fits
in memory. This may not be necessarily true for a three-way
join, which corresponds to two BSP jobs, since it may not
be possible to fit the three input sources in memory, while
it could be possible if we do the join using two BSP jobs.
Determining whether the state of two fused BSP jobs can fit
in memory requires estimating the size of the resulting state,
which, in turn, requires data statistics. In addition, our implicit
assumption was that, if there were enough resources, the BSP
implementation beats the MR one since the former can run
entirely in memory. This may not be necessarily true and may
depend on how frequently we do checkpointing and what
amount of data we checkpoint. We plan to look at the cost of
both MR and BSP plans under various conditions, resources,
and checkpointing scenarios, to make better choices. Finally,
we would like to experiment with other in-memory/hybrid
distributed evaluation systems as a target for MRQL, such
Hyracks and Spark.
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