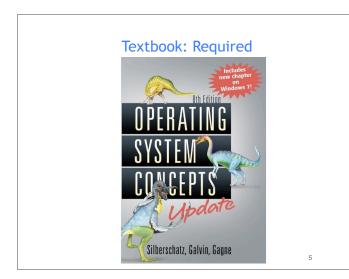
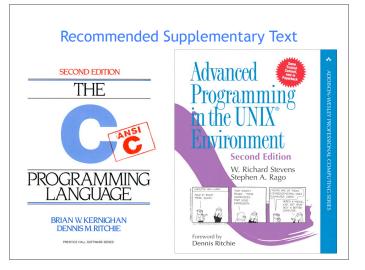


3

Recitations

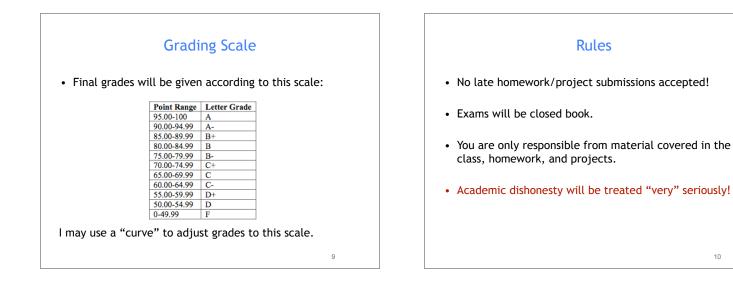

- You need to attend one of the following recitations: - Tue 10:00am-11:50am (Talbert 115)
 - Wed 10:00am-10:50am (Copen 10)
 - Fri 3:00pm-3:50pm (Knox 04)

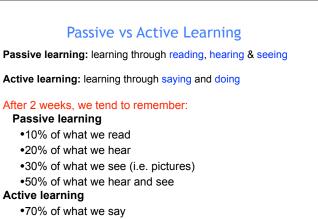

• Recitations will include:

- Clarification of some important course material
- Solutions of some exercise questions
- -Project & HW guidance
- Programming tips

Course Web Page Course web page: http://www.cse.buffalo.edu/faculty/tkosar/cse421-521/ - All lecture notes will be available online As well as homework assignments, projects and other important course information Lect. Title Date Notes Introduction Operating System Structures Read Ch. Aug 3(Sep 1 Sep 6 Sep 8 Sep 13 Sep 15 Sep 20 Sep 22 Sep 27 Sep 29 Oct 4 Oct 6 Oct 11 Oct 13 Oct 18 Oct 25 Oct 27 Threads CPU Scheduling - I CPU Scheduling - II Project-I Discussion Process Synchronizati Process Synchro Deadlocks – I Deadlocks – II Main Memory – I Main Memory – II Midterm Review @ 9:30am-10:50am Project-II Discussie Virtual Memory –

4




Grade Components

• The end-of-semester grades will be composed of:

- Pop Quizzes	: 5%	(4-5)
- Homework	: 10%	(4)
 Projects 	: 30%	(3)
- Midterm	: 25%	(1)
- Final	: 30%	(1)

You are expected to attend the classes and actively contribute via asking and/or answering questions.

•90% of what we say and do

11

How to Become an Active Learner

- · Recall prior materials
- Answer a question
- · Guess the solution first (even guessing wrong will help you to remember the right approach)
- · Work out the next step before you have to read on
- · Think of an application
- Imagine that you were the professor and think about how ٠ you would give a test on the subject material so that key concepts and results will be checked.
- Summarize a lecture, a set of homework or a lab in your own words concisely.

8

10

What Expect to Learn?

- Key Concepts of Operating Systems - Design, Implementation, and Optimization
- Topics will include:
 - Processes, Threads and Concurrency
 - CPU and I/O Scheduling
 - Memory and Storage Management
 - File System Structures
 - Synchronization and Deadlocks
 - Protection and Security
 - Distributed Computing & Related Issues

13

What is an Operating System?

- A program that manages the computer hardware.
- An intermediary between the computer user and the computer hardware.
- Manages hardware and software resources of a computer.

INTRODUCTION

Computer System Overview A computer system consists of (bottom-up): 1. hardware 2. firmware (BIOS) 3. operating system 4. system programs 5. application programs 6. users

15

17

Computer System Overview

1. <u>Hardware</u>

- ✓ provides basic computing resources
- ✓ CPU, memory, disk, other I/O devices
- 2. <u>Firmware (BIOS)</u>
 - ✓ software permanently stored on chip (but upgradable)
 - loads the operating system during boot

3. **Operating system**

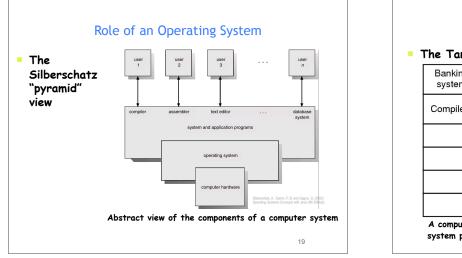
 controls and coordinates the use of the hardware among the various application programs for the various users

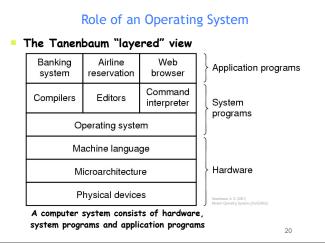
Computer System Overview

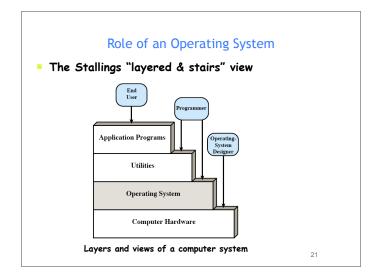
4. System programs

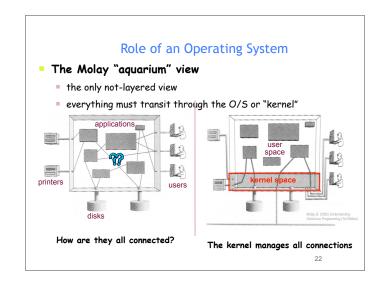
- ✓ basic development tools (shells, compilers, editors, etc.)
- \checkmark not strictly part of the core of the operating system

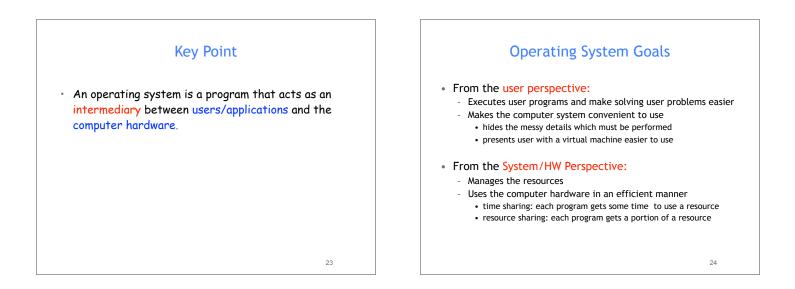
5. Application programs


- ✓ define the logic in which the system resources are used to solve the computing problems of the users
- ✓ database systems, video games, business programs, etc.


6. <u>Users</u>


✓ people, other computers, machines, etc.


14


16

OS Services for Users

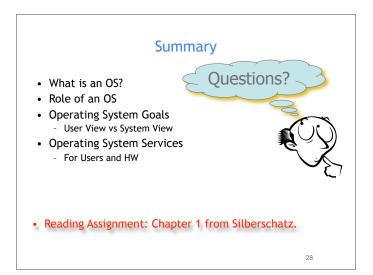
Program Execution

The OS loads programs and data into memory, initializes I/O devices and files, schedules the execution of programs

- Access to I/O Devices
 - The OS hides I/O device details from applications (direct I/O access is forbidden) and offers a simplified I/O interface
- Controlled Access to Files & Directories
 - The OS organizes data into files and directories, controls access to them (i.e. create, delete, read, write) and preserves their integrity

25

OS Services for Users


- Communications
 - The OS allows exchange of information between processes, which are possibly executing on different computers
- Error Detection and Response
 - The OS properly handles HW failures and SW errors with the least impact to running applications (i.e. terminating, retrying, or reporting)

26

OS Services for System/HW

- Resource Allocation
 The OS allocates resources to multiple users and multiple jobs running at the same time
- Operation Control
 The OS controls the execution of user programs and operations of I/O devices
- System Access
 - The OS ensures that all access to resources is protected, including authorization, conflict resolution etc.
- Accounting and Usage Statistics
 - The OS keeps performance monitoring data

27

Acknowledgements

- "Operating Systems Concepts" book and supplementary material by A. Silberschatz, P. Galvin and G. Gagne
- "Operating Systems: Internals and Design Principles" book and supplementary material by W. Stallings
- "Modern Operating Systems" book and supplementary material by A. Tanenbaum
- R. Doursat and M. Yuksel from UNR