
1

CSE 421/521 - Operating Systems
Fall 2011

Tevfik Koşar

University at Buffalo
September 6th, 2011

Lecture - III

Processes

2

Roadmap

• Processes
– Basic Concepts

– Process Creation
– Process Termination

– Context Switching

– Process Queues
– Process Scheduling

– Interprocess Communication

3

Process Concept
• a Process is a program in execution;

Typical process image implementation

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

! A process image consists of
three components
1. an executable program
2. the associated data

needed by the program
3. the execution context of the

process, which contains all
information the O/S needs
to manage the process (ID,
state, CPU registers, stack,
etc.)

user
address
space

Process Control Block

4

! The Process Control Block (PCB) Typical process image implementation
" is included in the context,

along with the stack
" is a “snapshot” that contains

all necessary and sufficient
data to restart a process
where it left off (ID, state,
CPU registers, etc.)

" is one entry in the operating
system’s process table
(array or linked list)

PCB 1 PCB 2 PCB 3
. . .

context

user
address
space program

code

data

stack

process
control block

(PCB)

Process Control Block

5
Illustrative contents of a process image in

(virtual) memory

! Example of process and PCB location in memory

O/S

process 2

process 1

context

program
code

data

program
code

data

stack

process
control block

(PCB)

identification

program
code

data

stack

CPU state info
control info

stack

• numeric identifier
• parent identifier
• user identifier
• etc.

• user-visible registers
• control & status

registers
• program counter
• stack pointers, etc.
•• schedulg & state info
• links to other proc’s
• memory limits
• open files
• etc.

6

Process State
• As a process executes, it changes state

– new: The process is being created
– ready: The process is waiting to be assigned to a processor

– running: Instructions are being executed
– waiting: The process is waiting for some event to occur

– terminated: The process has finished execution

Process Creation

7

! Some events that lead to process creation (enter)! Some events that lead to process creation (enter)
" the system boots

when a system is initialized, several background
processes or “daemons” are started (email, logon, etc.)

" a user requests to run an application
by typing a command in the CLI shell or double-clicking in

the GUI shell, the user can launch a new process
" an existing process spawns a child process

for example, a server process (print, file) may create a
new process for each request it handles

the init daemon waits for user login and spawns a shell
" a batch system takes on the next job in line

all
 ca

se
s o

f p
ro

ce
ss

 sp
aw

nin
g

Process Creation

8

! Process creation by spawning

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

A tree of processes on a typical
UNIX system

Process Creation

9

...
int main(...)
{
 ...
 if ((pid = fork()) == 0) // create a process
 {
 fprintf(stdout, "Child pid: %i\n", getpid());
 err = execvp(command, arguments); // execute child
 // process
 fprintf(stderr, "Child error: %i\n", errno);
 exit(err);
 }
 else if (pid > 0) // we are in the
 { // parent process
 fprintf(stdout, "Parent pid: %i\n", getpid());
 pid2 = waitpid(pid, &status, 0); // wait for child
 ... // process
 }
 ...

 return 0;
}

Implementing a shell command interpreter by process spawning

Process Creation

10

O/S

P1 context

P1 program

P1 data

1. Clone child process
" pid = fork()

pr
oc

es
s

1

O/S

P1 context

P1 program

P1 data

P2 context

P2 program

P2 data

2. Replace child’s image
" execve(name, ...)

≈ P1 context

P1 program

P1 data

O/S

P1 context

P1 program

P1 data

pr
oc

es
s

2

Fork Example 1
#include! <stdio.h>

main()
{
! int!ret_from_fork, mypid;

! mypid = getpid();! ! ! /* who am i? ! */
! printf("Before: my pid is %d\n", mypid); /* tell pid */

! ret_from_fork = fork();

! sleep(1);
! printf("After: my fork returns pid : %d, said %d\n",
! ! ! ret_from_fork, getpid());
}

11

Fork Example 2

#include! <stdio.h>

main()
{
! fork();
! fork();
! fork();
! printf("my pid is %d\n", getpid());
}

How many lines of output will this produce?

12

Process Termination

13

! Some events that lead to process termination (exit)! Some events that lead to process termination (exit)
" regular completion, with or without error code

the process voluntarily executes an exit(err)
system call to indicate to the O/S that it has finished

" fatal error (uncatchable or uncaught)
service errors: no memory left for allocation, I/O error, etc.
total time limit exceeded
arithmetic error, out-of-bounds memory access, etc.

" killed by another process via the kernel
the process receives a SIGKILL signal
in some systems the parent takes down its children with it

O/S-triggered
(following system

call or preemption)

process-
triggered

hardware interrupt-
triggered

software interrupt-
triggered

Process Pause/Dispatch

14

! Some events that lead to process pause / dispatch! Some events that lead to process pause / dispatch
" I/O wait

a process invokes an I/O system call that blocks waiting
for the I/O device: the O/S puts the process in “Waiting”
mode and dispatches another process to the CPU

" preemptive timeout
the process receives a timer interrupt and relinquishes

control back to the O/S dispatcher: the O/S puts the
process in “Ready” mode and dispatches another process
to the CPU

not to be confused with “total time limit exceeded”, which
leads to process termination

O/S-triggered
(following system call)

hardware interrupt-
triggered (timer)

15

Process “Context” Switching

• When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process

• Context-switch time is overhead; the system does no
useful work while switching

• Switching time is dependent on hardware support

16

CPU Switch From Process to Process

Process “Context” Switching

17

! How does a full process switch happen, step by step?
1. save CPU context, including PC and registers (the only step

needed in a simple mode switch)
2. update process state (to “Ready”, “Blocked”, etc.) and other

related fields of the PCB
3. move the PCB to the appropriate queue
4. select another process for execution: this decision is made by the

CPU scheduling algorithm of the O/S
5. update the PCB of the selected process (state = “Running”)
6. update memory management structures
7. restore CPU context to the values contained in the new PCB

Process “Context” Switching

18

! What events trigger the O/S to switch processes?
" interrupts — external, asynchronous events, independent of the

currently executed process instructions
clock interrupt → O/S checks time and may block process
I/O interrupt → data has come, O/S may unblock process
memory fault → O/S may block process that must wait for

a missing page in memory to be swapped in
" exceptions — internal, synchronous (but involuntary) events

caused by instructions → O/S may terminate or recover process
" system calls — voluntary synchronous events calling a specific

O/S service → after service completed, O/S may either resume
or block the calling process, depending on I/O, priorities, etc.

traps

19

Process Scheduling Queues

• Job queue – set of all jobs in the system
• Ready queue – set of all processes residing in main

memory, ready and waiting to execute

• Device queues – set of processes waiting for an
I/O device

• Processes migrate among the various queues

Process Queues

20

! The process table can be split into per-state queues
" PCBs can be linked together if they contain a pointer field

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

Structure of process lists or queues

21

Ready Queue And Various I/O Device Queues

22

Representation of Process Scheduling

Three-level scheduling

LONG-TERM MID-TERM

SHORT-TERM

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

Three Level CPU Scheduling

23

24

Schedulers

• Long-term scheduler (or job scheduler) –
selects which processes should be brought into
the ready queue

• Short-term scheduler (or CPU scheduler) –
selects which process should be executed next
and allocates CPU

25

Schedulers (Cont.)

• Short-term scheduler is invoked very frequently
(milliseconds) ⇒ (must be fast)

• Long-term scheduler is invoked very infrequently
(seconds, minutes) ⇒ (may be slow)

• The long-term scheduler controls the degree of

multiprogramming

• Processes can be described as either:
– I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts
– CPU-bound process – spends more time doing computations;

few very long CPU bursts

 $long-term schedulers need to make careful decision

26

Addition of Medium Term Scheduling

• In time-sharing systems: remove processes from
memory “temporarily” to reduce degree of
multiprogramming.

• Later, these processes are resumed $ Swapping

27

Cooperating Processes

• Independent process cannot affect or be affected by
the execution of another process

• Cooperating process can affect or be affected by the
execution of another process

• Advantages of process cooperation
– Information sharing

– Computation speed-up

– Modularity
– Convenience

• Disadvantage
– Synchronization issues and race conditions

28

Interprocess Communication (IPC)

• Mechanism for processes to communicate and to
synchronize their actions

• Shared Memory: by using the same address space and
shared variables

• Message Passing: processes communicate with each
other without resorting to shared variables

29

Communications Models

a) Message Passing b) Shared Memory

Message Passing

• Message Passing facility provides two operations:
– send(message) – message size fixed or variable
– receive(message)

• If P and Q wish to communicate, they need to:
– establish a communication link between them
– exchange messages via send/receive

• Two types of Message Passing
– direct communication
– indirect communication

30

31

Message Passing – direct communication
• Processes must name each other explicitly:

– send (P, message) – send a message to process P
– receive(Q, message) – receive a message from process Q

• Properties of communication link
– Links are established automatically

– A link is associated with exactly one pair of communicating processes

– Between each pair there exists exactly one link
– The link may be unidirectional, but is usually bi-directional

• Symmetrical vs Asymmetrical direct communication
– send (P, message) – send a message to process P

– receive(id, message) – receive a message from any process

• Disadvantage of both: limited modularity, hardcoded

32

Message Passing - indirect communication

• Messages are directed and received from mailboxes
(also referred to as ports)
– Each mailbox has a unique id

– Processes can communicate only if they share a mailbox

• Primitives are defined as:
 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from mailbox A

33

Indirect Communication (cont.)

• Operations
– create a new mailbox
– send and receive messages through mailbox
– destroy a mailbox

• Properties of communication link
– Link established only if processes share a common

mailbox
– A link may be associated with many processes
– Each pair of processes may share several communication

links
– Link may be unidirectional or bi-directional

34

Indirect Communication (cont.)

• Mailbox sharing
– P

1
, P

2
, and P

3
 share mailbox A

– P
1
, sends; P

2
 and P

3
 receive

– Who gets the message?

• Solutions
– Allow a link to be associated with at most two processes

– Allow only one process at a time to execute a receive
operation

– Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

35

Synchronization

• Message passing may be either blocking or non-blocking
• Blocking is considered synchronous

– Blocking send has the sender block until the message is
received

– Blocking receive has the receiver block until a message is
available

• Non-blocking is considered asynchronous
– Non-blocking send has the sender send the message and

continue
– Non-blocking receive has the receiver receive a valid message

or null

36

Buffering

• Queue of messages attached to the link; implemented
in one of three ways
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

37

Summary

Hmm.
.

• Reading Assignment: Chapter 3 from Silberschatz.

• Next Lecture: Threads

• HW 1 will be out next class, due 1 week

• Processes
– Basic Concepts

– Process Creation
– Process Termination

– Context Switching

– Process Queues
– Process Scheduling

– Interprocess Communication

38

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

