
1

CSE 421/521 - Operating Systems
Fall 2011

Tevfik Koşar

University at Buffalo
September 22nd, 2011

Lecture - VIII

Process Synchronization - I

2

Roadmap

• Process Synchronization
• Race Conditions

• Critical-Section Problem
– Solutions to Critical Section

– Different Implementations

• Semaphores
• Classic Problems of Synchronization



3

Background

• Concurrent access to shared data may result in data 
inconsistency

• Maintaining data consistency requires mechanisms 
to ensure the orderly execution of cooperating 
processes

• Consider consumer-producer problem: 
– Initially, count is set to 0

– It is incremented by the producer after it produces a new 
buffer 

– and is decremented by the consumer after it consumes a 
buffer.

4

Producer: 

while (true){  /* produce an item and put in nextProduced

   while (count == BUFFER_SIZE)

    ; // do nothing

   buffer [in] = nextProduced;

   in = (in + 1) % BUFFER_SIZE;

   count++;

 }   

      while (1) {

   while (count == 0)

    ; // do nothing

   nextConsumed =  buffer[out];

   out = (out + 1) % BUFFER_SIZE;

   count--;

      } /*  consume the item in nextConsumed

Consumer: 

Shared Variables: count=0, buffer[] 



Race Condition

✦ Race condition: The situation where several processes access and 
manipulate shared data concurrently. The final value of the shared 
data depends upon which process finishes last. 

✦ To prevent race conditions, concurrent processes must be 
synchronized. 

– Ensure that only one process at a time is manipulating the 
variable counter. 

✦   The statements 
• count++; 
• count--; 

must be performed atomically. 
 

✦ Atomic operation means an operation without interruption.

5

6

Race Condition

• count++ could be implemented as
     register1 = count
     register1 = register1 + 1
     count = register1

• count-- could be implemented as
     register2 = count
     register2 = register2 - 1
     count = register2

• Consider this execution interleaving with “count = 5” initially:
 S0: producer execute register1 = count   {register1 = 5}

S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = count   {register2 = 5} 
S3: consumer execute register2 = register2 - 1   {register2 = 
4} 
S4: producer execute count = register1   {count = 6 } 
S5: consumer execute count = register2   {count = 4}



Race Condition

7

char chin, chout;//shared

void echo()
{
  do {
    chin = getchar();
    chout = chin;
    putchar(chout);
  }
  while (...);
}

A

char chin, chout; //shared

void echo()
{
  do {
    chin = getchar();
    chout = chin;
    putchar(chout);
  }
  while (...);
}

B

> ./echo
Hello world!
Hello world!

Single-threaded echo Multithreaded echo (lucky)

> ./echo
Hello world!
Hello world!

1
2
3

4
5
6

lucky
CPU

scheduling

!

" Significant race conditions in I/O & variable sharing

Race Condition

8

char chin, chout;//shared

void echo()
{
  do {
    chin = getchar();
    chout = chin;
    putchar(chout);
  }
  while (...);
}

A

> ./echo
Hello world!
Hello world!

Single-threaded echo

char chin, chout; //shared

void echo()
{
  do {
    chin = getchar();
    chout = chin;
    putchar(chout);
  }
  while (...);
}

B

" Significant race conditions in I/O & variable sharing

1
5
6

2
3
4

unlucky
CPU

scheduling

#

Multithreaded echo (unlucky)

> ./echo
Hello world!
ee....



Race Condition

9

void echo()
{
  char chin, chout;
 

  do {
    chin = getchar();
    chout = chin;
    putchar(chout);
  }
  while (...);
}

B

void echo()
{
  char chin, chout;
  

  do {
    chin = getchar();
    chout = chin;
    putchar(chout);
  }
  while (...);
}

A

> ./echo
Hello world!
Hello world!

Single-threaded echo

" Significant race conditions in I/O & variable sharing

1
5
6

2
3
4

unlucky
CPU

scheduling

#

Multithreaded echo (unlucky)

> ./echo
Hello world!
eH....

Race Condition

10

" Significant race conditions in I/O & variable sharing
$ in this case, replacing the global variables with local variables 

did not solve the problem
$ we actually had two race conditions here:

% one race condition in the shared variables and the order of 
value assignment

% another race condition in the shared output stream: which 
thread is going to write to output first (this race persisted 
even after making the variables local to each thread)

==> generally, problematic race conditions may occur whenever 
resources and/or data are shared (by processes unaware of each 
other or processes indirectly aware of each other) 



11

Critical Section/Region

• Critical section/region: segment of code in which the 
process may be changing shared data (eg. common 
variables)

• No two processes should be executing in their critical 
sections at the same time --> prevents race conditions

• Critical section problem: design a protocol that the 
processes use to cooperate

Critical Section

12

" The “indivisible” execution blocks are critical regions
$ a critical region is a section of code that may be executed by 

only one process or thread at a time

B
A

common critical region

B
A A’s critical region

B’s critical region

$ although it is not necessarily the same region of memory or 
section of program in both processes

==> but physically different or not, what matters is that these regions 
cannot be interleaved or executed in parallel (pseudo or real)



13

Solution to Critical-Section Problem

A solution to the critical-section problem must satisfy 
the following requirements:

1. Mutual Exclusion - If process Pi is executing in its 
critical section, then no other processes can be 
executing in their critical sections

2. Progress - If no process is executing in its critical 
section and there exist some processes that wish to 
enter their critical section, then the selection of the 
processes that will enter the critical section next 
cannot be postponed indefinitely

14

Solution to Critical-Section Problem

3. Bounded Waiting -  A bound must exist on the number 
of times that other processes are allowed to enter their 
critical sections after a process has made a request to 
enter its critical section and before that request is 
granted
! Assume that each process executes at a nonzero speed 

! No assumption concerning relative speed of the N processes



Critical Section

15

            enter critical region?
 

            exit critical region

            enter critical region?
 

            exit critical region

$ critical regions can be protected from concurrent access by 
padding them with entrance and exit gates (we’ll see how later): 
a thread must try to check in, then it must check out 

" We need mutual exclusion from critical regions

void echo()
{
 char chin, chout;
   do {

    chin = getchar();
    chout = chin;
    putchar(chout);

  }
  while (...);
}

BA

void echo()
{
 char chin, chout;
   do {

    chin = getchar();
    chout = chin;
    putchar(chout);

  }
  while (...);
}

Mutual Exclusion

16

critical region
1. thread A reaches the gate 

to the critical region (CR) 
before B

2. thread A enters CR first, 
preventing B from entering 
(B is waiting or is blocked)

3. thread A exits CR; thread 
B can now enter

4. thread B enters CR

" Desired effect: mutual exclusion from the critical region

B
A

B
A

B
A

B
A

H
O

W
 is

 th
is

ac
hi

ev
ed

??



Mutual Exclusion

17

" Implementation 1 — disabling hardware interrupts

critical region

B

1. thread A reaches the gate 
to the critical region (CR) 
before B

2. as soon as A enters CR, it 
disables all interrupts, 
thus B cannot be 
scheduled 

3. as soon as A exits CR, it 
enables interrupts; B can 
be scheduled again

4. thread B enters CR

B
A

B
A

A

B
A

Mutual Exclusion

18

" Implementation 1 — disabling hardware interrupts  &
$ it works, but not reasonable!
$ what guarantees that the user 

process is going to ever exit the 
critical region?

$ meanwhile, the CPU cannot 
interleave any other task, even 
unrelated to this race condition

$ the critical region becomes one 
physically indivisible block, not 
logically

$ also, this is not working in multi-
processors

            disable hardware interrupts
 

            enable hardware interrupts

void echo()
{
 char chin, chout;
   do {

    chin = getchar();
    chout = chin;
    putchar(chout);

  }
  while (...);
}



Mutual Exclusion

19

" Implementation 2 — simple lock variable

critical region
1. thread A reaches CR and 

finds a lock at 0, which 
means that A can enter

2. thread A sets the lock to 1 
and enters CR, which 
prevents B from entering

3. thread A exits CR and 
resets lock to 0; thread B 
can now enter

4. thread B sets the lock to 1 
and enters CR

B
A

B
A

B
A

B
A

Mutual Exclusion

20

            test lock,  then set lock
 

            reset lock

" Implementation 2 — simple lock variable
$ the “lock” is a shared variable
$ entering the critical region means 

testing and then setting the lock
$ exiting means resetting the lock

bool lock = FALSE;

void echo()
{
 char chin, chout;
   do {

    chin = getchar();
    chout = chin;
    putchar(chout);

  }
  while (...);
}

while (lock);
 /* do nothing: loop */
lock = TRUE;

lock = FALSE;



Mutual Exclusion

21

" Implementation 2 — simple lock variable  &
1. thread A reaches CR and 

finds a lock at 0, which 
means that A can enter

1.1 but before A can set the 
lock to 1, B reaches CR 
and finds the lock is 0, too

1.2 A sets the lock to 1 and 
enters CR but cannot 
prevent the fact that . . .

1.3 . . . B is going to set the 
lock to 1 and enter CR, too

critical regionB
A

B
A

B
A

B
A

Mutual Exclusion

22

            test lock,  then set lock
 

            reset lock

" Implementation 2 — simple lock variable  &
$ suffers from the very flaw we want 

to avoid: a race condition
$ the problem comes from the small 

gap between testing that the lock 
is off and setting the lock

 while (lock);   lock = TRUE;

$ it may happen that the other 
thread gets scheduled exactly in 
between these two actions (falls 
in the gap)

$ so they both find the lock off and 
then they both set it and enter

bool lock = FALSE;

void echo()
{
 char chin, chout;
   do {

    chin = getchar();
    chout = chin;
    putchar(chout);

  }
  while (...);
}



Mutual Exclusion

23

" Implementation 3 — “indivisible” lock variable  '
1. thread A reaches CR and 

finds the lock at 0 and sets 
it in one shot, then enters

1.1’ even if B comes right 
behind A, it will find that the 
lock is already at 1

2. thread A exits CR, then 
resets lock to 0

3. thread B finds the lock at 0 
and sets it to 1 in one shot, 
just before entering CR

critical regionB
A

B
A

B
A

B
A

Mutual Exclusion

24

            test-and-set-lock
 

            set lock off

" Implementation 3 — “indivisible” lock variable  '
$ the indivisibility of the “test-lock-

and-set-lock” operation can be 
implemented with the hardware 
instruction TSL

void echo()
{
 char chin, chout;
   do {

    chin = getchar();
    chout = chin;
    putchar(chout);

  }
  while (...);
}

TSL

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 



Mutual Exclusion

25

" Implementation 3 — “indivisible” lock ⇔ one key  '
1. thread A reaches CR and 

finds a key and takes it

1.1’ even if B comes right 
behind A, it will not find a 
key

2. thread A exits CR and puts 
the key back in place

3. thread B finds the key and 
takes it, just before 
entering CR

critical regionB
A

B
A

B
A

B
A

Mutual Exclusion

26

            take key and run
 

            return key

" Implementation 3 — “indivisible” lock ⇔ one key  '
$ “holding” a unique object, like a 

key, is an equivalent metaphor for 
“test-and-set”

$ this is similar to the “speaker’s 
baton” in some assemblies: only 
one person can hold it at a time

$ holding is an indivisible action: 
you see it and grab it in one shot

$ after you are done, you release 
the object, so another process 
can hold on to it

void echo()
{
 char chin, chout;
   do {

    chin = getchar();
    chout = chin;
    putchar(chout);

  }
  while (...);
}



27

Summary

Hmm.
.

• Reading Assignment: Chapter 6 from Silberschatz.

• Next Lecture: Synchronization - II

• Process Synchronization
• Race Conditions

• Critical-Section Problem
– Solutions to Critical Section

– Different Implementations

28

Acknowledgements

• “Operating Systems Concepts” book and supplementary 
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles” 
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary 
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR


