CSE 421/521 - Operating Systems
Fall 2011

LECTURE - XII

DEADLOCKS &
MAIN MEMORY MANAGEMENT

Tevfik Kosar

University at Buffalo
October 11th 2011

Roadmap

« Deadlocks
- Resource Allocation Graphs
- Deadlock Detection
- Deadlock Prevention
- Deadlock Avoidance
- Deadlock Recovery

* Main Memory Management

Deadlock Avoidance
Deadlock Prevention: prevent deadlocks by restraining
resources and making sure one of 4 necessary conditions
for a deadlock does not hold. (system design)

--> possible side effect: low device utilization and reduced
system throughput

Deadlock Avoidance: Requires that the system has some
additional a priori information available. (dynamic request
check)

i.e. request disk and then printer..
or request at most n resources
--> allows more concurrency

¢ Similar to the difference between a traffic light and a police officer
directing the traffic!

Deadlock Avoidance

« Simplest and most useful model requires that
each process declare the maximum number of
resources of each type that it may need.

» The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition.

« Resource-allocation state is defined by the
number of available and allocated resources, and
the maximum demands of the processes.

Example
Request Disk Request Printer
Request Printer Request Disk
Release Printer Release Disk
Release Disk Release Printer

Safe State

« Astate is safe if the system can allocate resources to
each process (upto its maximum) in some order and
can still avoid a deadlock.

* When a process requests an available resource,
system must decide if immediate allocation leaves
the system in a safe state.

« System is in safe state if there exists a safe sequence
of all processes.




Safe State

« Sequence <Py, P,, ..., P> is safe if for each P;, the
resources that P, can still request can be satisfied by
currently available resources + resources held by all
the P;, with j<i.

- If P, resource needs are not immediately available, then P;
can wait until all P; have finished.

- When P;is finished, P; can obtain needed resources,
execute, return allocated resources, and terminate.

- When P, terminates, P;,; can obtain its needed resources,
and so on.

« If no such sequence exists, the state is unsafe!

Basic Facts

« If a system is in safe state = no
deadlocks.

« If a system is in unsafe state = possibility
of deadlock.

« Avoidance => ensure that a system will
never enter an unsafe state.

Safe, Unsafe , Deadlock State

unsafe
deadlock

Example
Consider a system with 3 processes and 12 disks.
At t = t0;
Maximum Needs Current Allocation
P1 10 5
P2 4 2
P3 9 2

Example (cont.)

Consider a system with 3 processes and 12 disks.

Att=t1;
Maximum Needs Current Allocation
P1 10 5
P2 4 2
P3 9 3

Resource-Allocation Graph Algorithm

» Claim edge P; — R; indicated that process P,
may request resource R;; represented by a
dashed line.

« Claim edge converts to request edge when a
process requests a resource.

« When a resource is released by a process,
assignment edge reconverts to a claim edge.

» Resources must be claimed a priori in the
system.




Resource-Allocation Graph For Deadlock Avoidance

R;

Banker’s Algorithm
» Works for multiple resource instances.

» Each process declares maximum # of resources it
may need.

« When a process requests a resource, it may have
to wait if this leads to an unsafe state.

» When a process gets all its resources it must
return them in a finite amount of time.

Unsafe State In Resource-Allocation Graph

R,

Safety Algorithm

. Let Work and Finish be vectors of length m and n,
respectively. Initialize:
Work = Available
Finish [i] = false for i =1,2, ..., n.
. Find an i such that both:
(a) Finish [i] = false
(b) Need; < Work
If no such i exists, go to step 4.
. Work = Work + Allocation;
Finish[i] = true
go to step 2.
. If Finish [i] == true for all i, then the system is in a
safe state.

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

o Available: Vector of length m. If available [j] =
k, there are k instances of resource type R;
available.

e Max: n x m matrix. If Max [i,j] = k, then process
P; may request at most k instances of resource
type R;.

o Allocation: nx m matrix. If Allocation[i,j] = k
then P, is currently allocated k instances of R;,

« Need: nx m matrix. If Need[i,j] = k, then P; may
need k more instances of R; to complete its task.

Need [i,j] = Max[i,j] - Allocation [i,j].

Resource-Request Algorithm for Process P;

Let Request; be the request vector for process P;.

If Request; [j] = k then process P; wants k instances of
resource type R;

1. If Request; < Need,; go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.
2. If Request; < Available, go to step 3. Otherwise P, must
wait, since resources are not available.
3. Pretend to allocate requested resources to P; by
modifying the state as follows:
Available = Available - Request;;
Allocation; = Allocation; + Request;;
Need; = Need; - Request;;
® |f safe = the resources are allocated to Pi.

® If unsafe = Pi must wait, and the old resource-allocation
state is restored




Example of Banker’s Algorithm

« 5 processes P, through P,; 3 resource types:
A (10 instances), B (5 instances), and C (7 instances).

« Snapshot at time T:
Allocation Max Available
ABC ABC ABC
P, 010 753 332

P, 200 322
P, 302 902
Py 211 222
P, 002 433

Example of Banker’s Algorithm

« The content of the matrix. Need is defined to be
Max - Allocation.

Need

ABC
P, 743
P, 122
P, 600
P, 011
P, 431

20

Example of Banker’s Algorithm

« Snapshot at time T:
Allocation Max Available Need
ABC ABC ABC ABC
Ppb 010 753 332 743

P, 200 322 122
P, 302 902 600
011

P, 211 222

431
P, 002 433 3

21

Example of Banker’s Algorithm

« Snapshot at time T:
Allocation Max Available Need
ABC ABC ABC ABC
Ppb 010 753 332 743

P, 200 322 122
P, 302 902 600
011

P, 211 222 431
P, 002 433

» The system is in a safe state since the sequence
< P,, P5, P,, P,, P> satisfies safety criteria.
22

Example: P, Requests (1,0,2)
« Check that Request < Available (that is, (1,0,2) <
(3,3,2) = true.
Allocation Need Available

ABC ABC ABC

P, 010 743 230

P, 302 020

P, 301 600

P, 211 011

P, 002 431

» Executing safety algorithm shows that sequence
<P1, P3, P4, PO, P2> satisfies safety requirement.
« Can request for (3,3,0) by P4 be granted?
« Can request for (0,2,0) by PO be granted? 23

Recovery from Deadlock: Process Termination

» Abort all deadlocked processes. --> expensive

» Abort one process at a time until the deadlock cycle is
eliminated. --> overhead of deadlock detection alg.

« In which order should we choose to abort?
- Priority of the process.
- How long process has computed, and how much longer to
completion.
- Resources the process has used.
- Resources process needs to complete.
- How many processes will need to be terminated.
- Is process interactive or batch?

24




Recovery from Deadlock: Resource Preemption

» Selecting a victim - minimize cost.

» Rollback - return to some safe state, restart
process for that state.

« Starvation - same process may always be picked
as victim, include number of rollback in cost
factor.

25

Main Memory Management

26

) d

Memory Management Requirements
The O/S must fit multiple processes in memory

¥ memory needs to be subdivided to accommodate multiple processes

v" memory needs to be allocated to ensure a reasonable supply of ready processes so
that the CPU is never idle

ion task under cc

¥" memory management is an optimi

Fitting processes into memory is like fitting boxes into a fixed amount of space

27

Memory Allocation

- Fixed-partition allocation

- Divide memory into fixed-size partitions 0s
- Each partition contains exactly one process process 5
- The degree of multi programming is bound by process 9
the number of partitions m
- When a process terminates, the partition
becomes available for other processes process 2

=no longer in use

28

Memory Allocation (Cont.)

 Variable-partition Scheme (Dynamic)
- When a process arrives, search for a hole large enough
for this process
- Hole - block of available memory; holes of various size
are scattered throughout memory
Allocate only as much memory as needed

Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

os 0os os
process 5 process 5 process 5
process 9 process 9
—> >/ process 10
process 2 process 2 process 2

29

Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes

» First-fit: Allocate the first hole that is big
enough

» Best-fit: Allocate the smallest hole that is big
enough; must search entire list, unless ordered
by size. Produces the smallest leftover hole.

» Worst-fit: Allocate the largest hole; must also
search entire list. Produces the largest leftover
hole.

First-fit is faster.

Best-fit is better in terms of storage utilization.

Worst-fit may lead less fragmentation. "




Example

Given five memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and
600 KB (in order), how would each of the first-fit, best-fit, and worst-fit
algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in
order)? Which algorithm makes the most efficient use of memory?

31

Acknowledgements

» “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

« “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

» “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

o R. Doursat and M. Yuksel from UNR

33

* De

Summary

adlocks

Resource Allocation Graphs
Deadlock Detection
Deadlock Prevention
Deadlock Avoidance
Deadlock Recovery

* Main Memory Management




