CSE 421/521 - Operating Systems Fall 2011

LECTURE - XII DEADLOCKS & MAIN MEMORY MANAGEMENT

Tevfik Koşar

University at Buffalo October 11th, 2011

Deadlock Avoidance

Deadlock Prevention: prevent deadlocks by restraining resources and making sure one of 4 necessary conditions for a deadlock does not hold. (system design)

--> possible side effect: low device utilization and reduced system throughput

Deadlock Avoidance: Requires that the system has some additional *a priori* information available. (dynamic request check)

i.e. request disk and then printer..

or request at most n resources

- --> allows more concurrency
- Similar to the difference between a traffic light and a police officer directing the traffic!

Example

P1: **Request Disk Request Printer**

. . . . **Release Printer** Release Disk

P2: **Request Printer Request Disk**

. . . . Release Disk **Release Printer**

Example (cont.)

Consider a system with 3 processes and 12 disks. At t = t1;

<u>Maximum Needs</u>		<u>S</u> <u>Current Allocation</u>	
P1	10	5	
P2	4	2	
P3	9	3	
			11

Example of Banker's Algorithm

- 5 processes P₀ through P₄; 3 resource types:
 A (10 instances), B (5 instances), and C (7 instances).
- Snapshot at time T_0 :

	<u>Allocatio</u>	<u>Available</u>	
	АВС	АВС	АВС
P ₀	010	753	332
P	1 200	322	
P	2 302	902	
P	₃ 211	222	
P	4 002	433	

Example of Banker's Algorithm

• Snapshot at time T₀:

llocation	<u>Max</u>	<u>Available</u>	<u>Need</u>
ABC	ABC	A B C	ABC
010	753	332	743
200	322		122
302	902		600
211	222		011
002	433		431
	<u>Illocation</u> A B C 0 1 0 2 0 0 3 0 2 2 1 1 0 0 2	Illocation Max A B C A B C 0 1 0 7 5 3 2 0 0 3 2 2 3 0 2 9 0 2 2 1 1 2 2 2 0 0 2 4 3 3	Illocation Max Available A B C A B C A B C 0 1 0 7 5 3 3 3 2 2 0 0 3 2 2 3 0 2 9 0 2 2 1 1 2 2 2 0 0 2 4 3 3

Example

Given five memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and 600 KB (in order), how would each of the first-fit, best-fit, and worst-fit algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in order)? Which algorithm makes the most efficient use of memory?

Acknowledgements

- "Operating Systems Concepts" book and supplementary material by A. Silberschatz, P. Galvin and G. Gagne
- "Operating Systems: Internals and Design Principles" book and supplementary material by W. Stallings
- "Modern Operating Systems" book and supplementary material by A. Tanenbaum
- R. Doursat and M. Yuksel from UNR