
1

CSE 421/521 - Operating Systems
Fall 2011

Tevfik Koşar

University at Buffalo
October 11th, 2011

Lecture - XII

Deadlocks &
Main Memory Management

2

Roadmap

• Deadlocks
– Resource Allocation Graphs
– Deadlock Detection
– Deadlock Prevention
– Deadlock Avoidance

– Deadlock Recovery

• Main Memory Management

3

Deadlock Avoidance
Deadlock Prevention: prevent deadlocks by restraining
resources and making sure one of 4 necessary conditions
for a deadlock does not hold. (system design)
--> possible side effect: low device utilization and reduced
system throughput
Deadlock Avoidance: Requires that the system has some
additional a priori information available. (dynamic request
check)
i.e. request disk and then printer..
or request at most n resources
--> allows more concurrency
• Similar to the difference between a traffic light and a police officer

directing the traffic!

4

Deadlock Avoidance

• Simplest and most useful model requires that
each process declare the maximum number of
resources of each type that it may need.

• The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition.

• Resource-allocation state is defined by the
number of available and allocated resources, and
the maximum demands of the processes.

5

Example

P1:

Request Disk
Request Printer

....
Release Printer
Release Disk

P2:

Request Printer
Request Disk

....
Release Disk
Release Printer

6

Safe State

• A state is safe if the system can allocate resources to
each process (upto its maximum) in some order and
can still avoid a deadlock.

• When a process requests an available resource,
system must decide if immediate allocation leaves
the system in a safe state.

• System is in safe state if there exists a safe sequence

of all processes.

7

Safe State

• Sequence <P
1
, P

2
, …, P

n
> is safe if for each P

i
, the

resources that P
i
can still request can be satisfied by

currently available resources + resources held by all
the P

j
, with j<i.

– If P
i
 resource needs are not immediately available, then P

i

can wait until all P
j
 have finished.

– When P
j
 is finished, P

i
 can obtain needed resources,

execute, return allocated resources, and terminate.
– When P

i
 terminates, P

i+1
 can obtain its needed resources,

and so on.

• If no such sequence exists, the state is unsafe!

8

Basic Facts

• If a system is in safe state ⇒ no
deadlocks.

• If a system is in unsafe state ⇒ possibility
of deadlock.

• Avoidance ⇒ ensure that a system will
never enter an unsafe state.

9

Safe, Unsafe , Deadlock State

Example

Consider a system with 3 processes and 12 disks.
At t = t0;
 Maximum Needs Current Allocation

P1 10 5

P2 4 2

P3 9 2

10

Example (cont.)

Consider a system with 3 processes and 12 disks.
At t = t1;
 Maximum Needs Current Allocation

P1 10 5

P2 4 2

P3 9 3

11

12

Resource-Allocation Graph Algorithm

• Claim edge P
i
 → R

j
 indicated that process P

j

may request resource R
j
; represented by a

dashed line.

• Claim edge converts to request edge when a
process requests a resource.

• When a resource is released by a process,
assignment edge reconverts to a claim edge.

• Resources must be claimed a priori in the
system.

13

Resource-Allocation Graph For Deadlock Avoidance

14

Unsafe State In Resource-Allocation Graph

15

Banker’s Algorithm

• Works for multiple resource instances.

• Each process declares maximum # of resources it
may need.

• When a process requests a resource, it may have
to wait if this leads to an unsafe state.

• When a process gets all its resources it must
return them in a finite amount of time.

16

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] =
k, there are k instances of resource type R

j

available.
• Max: n x m matrix. If Max [i,j] = k, then process

P
i
 may request at most k instances of resource

type R
j
.

• Allocation: n x m matrix. If Allocation[i,j] = k
then P

i
 is currently allocated k instances of R

j.

• Need: n x m matrix. If Need[i,j] = k, then P
i
 may

need k more instances of R
j
to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types.

17

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available

Finish [i] = false for i = 1,2, …, n.

2. Find an i such that both:
(a) Finish [i] = false

(b) Need
i
 ≤ Work

If no such i exists, go to step 4.

3. Work = Work + Allocation
i

Finish[i] = true

go to step 2.
4. If Finish [i] == true for all i, then the system is in a

safe state.

18

Resource-Request Algorithm for Process P
i

Let Request
i
be the request vector for process P

i
.

If Request
i
[j] = k then process P

i
 wants k instances of

resource type R
j.

1. If Request
i
 ≤ Need

i
 go to step 2. Otherwise, raise error

condition, since process has exceeded its maximum claim.
2. If Request

i
 ≤ Available, go to step 3. Otherwise P

i
 must

wait, since resources are not available.
3. Pretend to allocate requested resources to P

i
 by

modifying the state as follows:
 Available = Available - Request

i
;

 Allocation
i
= Allocation

i
 + Request

i
;

 Need
i
 = Need

i
 – Request

i
;

 If safe ⇒ the resources are allocated to Pi.

 If unsafe ⇒ Pi must wait, and the old resource-allocation

state is restored

19

Example of Banker’s Algorithm

• 5 processes P
0
through P

4
; 3 resource types:

A (10 instances), B (5 instances), and C (7 instances).

• Snapshot at time T
0
:

 Allocation Max Available

 A B C A B C A B C

 P
0

0 1 0 7 5 3 3 3 2

 P
1

2 0 0 3 2 2

 P
2
 3 0 2 9 0 2

 P
3
 2 1 1 2 2 2

 P
4
 0 0 2 4 3 3

20

• The content of the matrix. Need is defined to be
Max – Allocation.

 Need

 A B C

 P
0

7 4 3

 P
1

1 2 2

 P
2
 6 0 0

 P
3
 0 1 1

 P
4
 4 3 1

Example of Banker’s Algorithm

21

Example of Banker’s Algorithm

• Snapshot at time T
0
:

 Allocation Max Available
 A B C A B C A B C
 P

0
0 1 0 7 5 3 3 3 2

 P
1

2 0 0 3 2 2

 P
2
 3 0 2 9 0 2

 P
3
 2 1 1 2 2 2

 P
4
 0 0 2 4 3 3

Need

A B C

7 4 3
1 2 2
6 0 0
0 1 1
4 3 1

22

Example of Banker’s Algorithm

• Snapshot at time T
0
:

 Allocation Max Available
 A B C A B C A B C
 P

0
0 1 0 7 5 3 3 3 2

 P
1

2 0 0 3 2 2

 P
2
 3 0 2 9 0 2

 P
3
 2 1 1 2 2 2

 P
4
 0 0 2 4 3 3

Need

A B C

7 4 3
1 2 2
6 0 0
0 1 1
4 3 1

• The system is in a safe state since the sequence
< P

1
, P

3
, P

4
, P

2
, P

0
> satisfies safety criteria.

23

Example: P
1
 Requests (1,0,2)

• Check that Request ≤ Available (that is, (1,0,2) ≤
(3,3,2) ⇒ true.

 Allocation Need Available

 A B C A B C A B C

 P
0
 0 1 0 7 4 3 2 3 0

 P
1
 3 0 2 0 2 0

 P
2
 3 0 1 6 0 0

 P
3
 2 1 1 0 1 1

 P
4
 0 0 2 4 3 1

• Executing safety algorithm shows that sequence
<P1, P3, P4, P0, P2> satisfies safety requirement.

• Can request for (3,3,0) by P4 be granted?
• Can request for (0,2,0) by P0 be granted?

Recovery from Deadlock: Process Termination

• Abort all deadlocked processes. --> expensive

• Abort one process at a time until the deadlock cycle is
eliminated. --> overhead of deadlock detection alg.

• In which order should we choose to abort?
– Priority of the process.
– How long process has computed, and how much longer to

completion.
– Resources the process has used.
– Resources process needs to complete.
– How many processes will need to be terminated.
– Is process interactive or batch?

24

Recovery from Deadlock: Resource Preemption

• Selecting a victim – minimize cost.

• Rollback – return to some safe state, restart
process for that state.

• Starvation – same process may always be picked
as victim, include number of rollback in cost
factor.

25

Main Memory Management

26

27

! The O/S must fit multiple processes in memory

" memory needs to be subdivided to accommodate multiple processes

" memory needs to be allocated to ensure a reasonable supply of ready processes so
that the CPU is never idle

Fitting processes into memory is like fitting boxes into a fixed amount of space

" memory management is an optimization task under constraints

Memory Management Requirements

28

Memory Allocation

• Fixed-partition allocation
– Divide memory into fixed-size partitions
– Each partition contains exactly one process
– The degree of multi programming is bound by

the number of partitions
– When a process terminates, the partition

becomes available for other processes

#no longer in use

OS

process 5
process 9

process 2

process 10

29

Memory Allocation (Cont.)

• Variable-partition Scheme (Dynamic)
– When a process arrives, search for a hole large enough

for this process
– Hole – block of available memory; holes of various size

are scattered throughout memory
– Allocate only as much memory as needed
– Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

OS

process 5

process 2

OS

process 5

process 2

OS

process 5
process 9

process 2

process 9

process 10

30

Dynamic Storage-Allocation Problem

• First-fit: Allocate the first hole that is big
enough

• Best-fit: Allocate the smallest hole that is big
enough; must search entire list, unless ordered
by size. Produces the smallest leftover hole.

• Worst-fit: Allocate the largest hole; must also
search entire list. Produces the largest leftover
hole.

How to satisfy a request of size n from a list of free holes

First-fit is faster.
Best-fit is better in terms of storage utilization.
Worst-fit may lead less fragmentation.

Example

31

32

Summary

Hmm.
.

• Deadlocks
– Resource Allocation Graphs
– Deadlock Detection
– Deadlock Prevention
– Deadlock Avoidance

– Deadlock Recovery

• Main Memory Management

33

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

