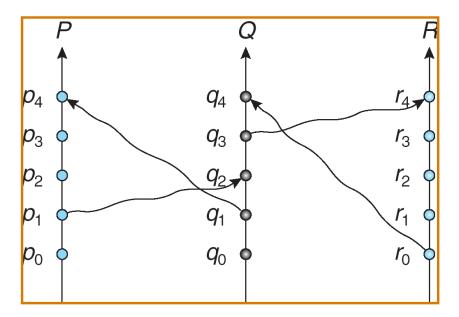
CSE 421/521 - Operating Systems Fall 2011

LECTURE - XXIV

DISTRIBUTED SYSTEMS - II


Tevfik Koşar

University at Buffalo November 29th, 2011

Event Ordering

- Happened-before relation (denoted by →)
 - If A and B are events in the same process (assuming sequential processes), and A was executed before B, then $A \rightarrow B$
 - If A is the event of sending a message by one process and B is the event of receiving that message by another process, then $A \rightarrow B$
 - If $A \rightarrow B$ and $B \rightarrow C$ then $A \rightarrow C$
 - If two events A and B are not related by the → relation, then these events are executed concurrently.

Relative Time for Three Concurrent Processes

Which events are concurrent and which ones are ordered?

Distributed Mutual Exclusion (DME)

- Assumptions
 - The system consists of n processes; each process P_i resides at a different processor
 - Each process has a critical section that requires mutual exclusion
- Requirement
 - If P_i is executing in its critical section, then no other process P_j is executing in its critical section
- We present two algorithms to ensure the mutual exclusion execution of processes in their critical sections

DME: Centralized Approach

- One of the processes in the system is chosen to coordinate the entry to the critical section
- A process that wants to enter its critical section sends a request message to the coordinator
- The coordinator decides which process can enter the critical section next, and its sends that process a reply message
- When the process receives a reply message from the coordinator, it enters its critical section
- After exiting its critical section, the process sends a release message to the coordinator and proceeds with its execution
- This scheme requires three messages per critical-section entry:
 - request
 - reply
 - release

DME: Fully Distributed Approach

- When process P_i wants to enter its critical section, it generates a new timestamp, TS, and sends the message request (P_i, TS) to all processes in the system
- When process P_j receives a request message, it may reply immediately or it may defer sending a reply back
- When process P_i receives a *reply* message from all other processes in the system, it can enter its critical section
- After exiting its critical section, the process sends reply messages to all its deferred requests

DME: Fully Distributed Approach (Cont.)

- The decision whether process P_j replies immediately to a request(P_i, TS) message or defers its reply is based on three factors:
 - If P_i is in its critical section, then it defers its reply to P_i
 - If P_j does not want to enter its critical section, then it sends a reply immediately to P_i
 - If P_j wants to enter its critical section but has not yet entered it, then it compares its own request timestamp with the timestamp TS
 - If its own request timestamp is greater than TS, then it sends a reply immediately to P_i (P_i asked first)
 - · Otherwise, the reply is deferred
 - Example: P1 sends a request to P2 and P3 (timestamp=10)
 P3 sends a request to P1 and P2 (timestamp=4)

Token-Passing Approach

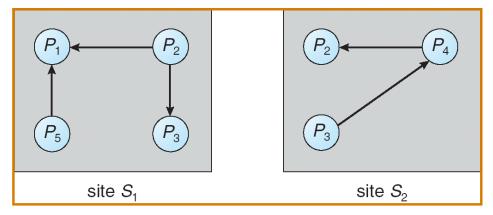
- Circulate a token among processes in system
 - **Token** is special type of message
 - Possession of token entitles holder to enter critical section
- Processes logically organized in a ring structure
- Unidirectional ring guarantees freedom from starvation
- Two types of failures
 - Lost token election must be called
 - Failed processes new logical ring established

Distributed Deadlock Handling

- Resource-ordering deadlock-prevention
 - =>define a *global* ordering among the system resources
 - Assign a unique number to all system resources
 - A process may request a resource with unique number i only if it is not holding a resource with a unique number grater than i
 - Simple to implement; requires little overhead
- Timestamp-ordering deadlock-prevention
 - =>unique Timestamp assigned when each process is created
 - 1. wait-die scheme -- non-reemptive
 - 2. wound-wait scheme -- preemptive

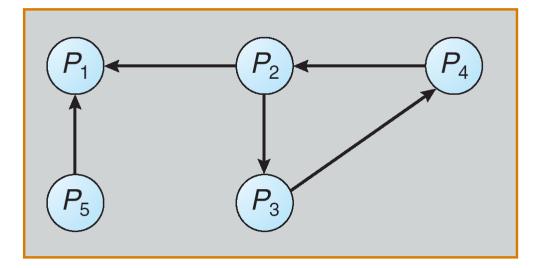
Prevention: Wait-Die Scheme

- non-preemptive approach
- If P_i requests a resource currently held by P_j , P_i is allowed to wait only if it has a smaller timestamp than does P_i (P_i is older than P_i)
 - Otherwise, P_i is rolled back (dies releases resources)
- Example: Suppose that processes P_1 , P_2 , and P_3 have timestamps 5, 10, and 15 respectively
 - if P_1 request a resource held by P_2 , then P_1 will wait
 - If P₃ requests a resource held by P₂, then P₃ will be rolled back
- The older the process gets, the more waits


Prevention: Wound-Wait Scheme

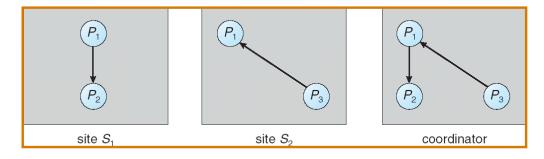
- Preemptive approach, counterpart to the wait-die system
- If P_i requests a resource currently held by P_j , P_i is allowed to wait only if it has a larger timestamp than does P_j (P_i is younger than P_j). Otherwise P_j is rolled back (P_i is wounded by P_i)
- Example: Suppose that processes P_1 , P_2 , and P_3 have timestamps 5, 10, and 15 respectively
 - If P_1 requests a resource held by P_2 , then the resource will be preempted from P_2 and P_2 will be rolled back
 - If P_3 requests a resource held by P_2 , then P_3 will wait
- The rolled-back process eventually gets the smallest timestamp.

Comparison


- Both avoid starvation, provided that when a process is rolled back, it is not assigned a new timestamp
- In wait-die, older process must wait for the younger one to release its resources. In wound-wait, an older process never waits for a younger process.
- There are fewer roll-backs in wound-wait.
 - Pi->Pj; Pi dies, requests the same resources; Pi dies again...
 - Pj->Pi; Pi wounded. requests the same resources; Pi waits...

Deadlock Detection

Two Local Wait-For Graphs


Global Wait-For Graph

Deadlock Detection - Centralized Approach

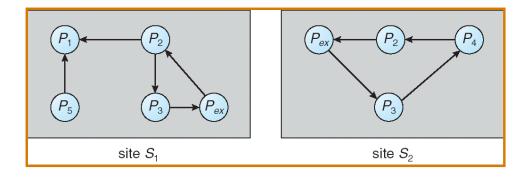
- Each site keeps a local wait-for graph
 - The nodes of the graph correspond to all the processes that are currently either holding or requesting any of the resources local to that site
- A global wait-for graph is maintained in a single coordination process; this graph is the union of all local wait-for graphs
- There are three different options (points in time) when the wait-for graph may be constructed:
 - 1. Whenever a new edge is inserted or removed in one of the local wait-for graphs
 - 2. Periodically, when a number of changes have occurred in a wait-for graph
 - 3. Whenever the coordinator needs to invoke the cycle-detection algorithm
- Option1: unnecessary rollbacks may occur as a result of false cycles

Local and Global Wait-For Graphs

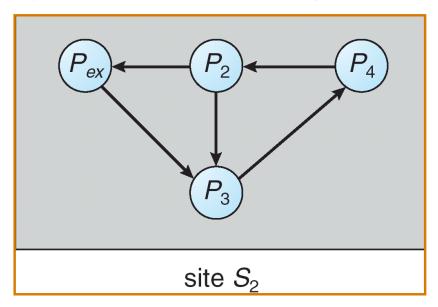
Detection Algorithm Based on Option 3

- Append unique identifiers (timestamps) to requests form different sites
- When process P_i , at site A, requests a resource from process P_j , at site B, a request message with timestamp TS is sent
- The edge P_i → P_j with the label TS is inserted in the local wait-for of A. The edge is inserted in the local wait-for graph of B only if B has received the request message and cannot immediately grant the requested resource

Algorithm: Option 3


- The controller sends an initiating message to each site in the system
- 2. On receiving this message, a site sends its local wait-for graph to the coordinator
- 3. When the controller has received a reply from each site, it constructs a graph as follows:
 - (a) The constructed graph contains a vertex for every process in the system
 - (b) The graph has an edge $Pi \rightarrow Pj$ if and only if
- there is an edge $Pi \rightarrow Pj$ in one of the wait-for graphs, or If the constructed graph contains a cycle \Rightarrow deadlock

*To avoid report of false deadlocks, requests from different sites appended with unique ids (timestamps)


Fully Distributed Approach

- All controllers share equally the responsibility for detecting deadlock
- Every site constructs a wait-for graph that represents a part of the total graph
- We add one additional node P_{ex} to each local wait-for graph
 - P_i -> P_{ex} exists if P_i is waiting for a data item at another site being held by any process
- If a local wait-for graph contains a cycle that does not involve node P_{ex} , then the system is in a deadlock state
- A cycle involving P_{ex} implies the possibility of a deadlock
 - To ascertain whether a deadlock does exist, a distributed deadlockdetection algorithm must be invoked

Augmented Local Wait-For Graphs

Augmented Local Wait-For Graph in Site S2

Distributed File Systems

- Distributed file system (DFS) a distributed implementation of the classical time-sharing model of a file system, where multiple users share files and storage resources over a network
- A DFS manages set of dispersed storage devices
- Overall storage space managed by a DFS is composed of different, remotely located, smaller storage spaces
- There is usually a correspondence between constituent storage spaces and sets of files

DFS Structure

- Service software entity running on one or more machines and providing a particular type of function to a priori unknown clients
- Server service software running on a particular machine
- Client process that can invoke a service using a set of operations that forms its client interface
- A client interface for a file service is formed by a set of primitive file operations (create, delete, read, write)
- Client interface of a DFS should be transparent, i.e., not distinguish between local and remote files

Naming and Transparency

- Naming mapping between logical and physical objects
- Multilevel mapping abstraction of a file that hides the details of how and where on the disk the file is actually stored
- A transparent DFS hides the location where in the network the file is stored
- For a file being replicated in several sites, the mapping returns a set of the locations of this file's replicas; both the existence of multiple copies and their location are hidden

Naming Structures

- Location transparency file name does not reveal the file's physical storage location
 - File name still denotes a specific, although hidden, set of physical disk blocks
 - Convenient way to share data
 - Can expose correspondence between component units and machines
- Location independence file name does not need to be changed when the file's physical storage location changes
 - Better file abstraction
 - Promotes sharing the storage space itself
 - Separates the naming hierarchy form the storage-devices hierarchy