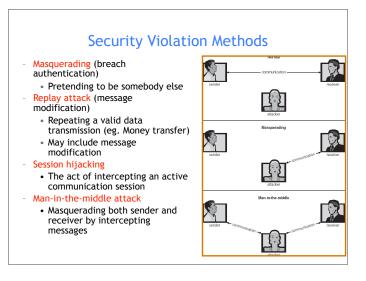
CSE 421/521 - Operating Systems Fall 2011

#### LECTURE - XXVI

#### **PROTECTION & SECURITY**

Tevfik Koşar

University at Buffalo December 6<sup>th</sup>, 2011


#### The Security Problem

- Protecting your system resources, your files, identity, confidentiality, or privacy
- Intruders (crackers) attempt to breach security
- Threat is potential security violation
- Attack is attempt to breach security
- Attack can be accidental or malicious
- Easier to protect against accidental than malicious misuse

#### **Security Violations**

- Categories

  - Breach of integrity
  - unauthorized modification of data
  - Breach of availability
  - unauthorized destruction of data
  - Theft of service
  - unauthorized use of resources
  - Denial of service
    - crashing web servers



#### **Program Threats**

#### Trojan Horse

- Code segment that misuses its environment
- Exploits mechanisms for allowing programs written by users to be executed by other users
- Spyware, pop-up browser windows, covert channels
- Trap Door
- A hole in the security of a system deliberately left in place by designers or maintainers
- Specific user identifier or password that circumvents normal security procedures
- Logic Bomb
- Program that initiates a security incident under certain circumstances
   Stack and Buffer Overflow
  - Exploits a bug in a program (overflow either the stack or memory buffers)

#### Program Threats (Cont.)

#### Viruses

- Code fragment embedded in legitimate program
- Very specific to CPU architecture, operating system,
  - applications
- Usually borne via email or as a macro

• Visual Basic Macro to reformat hard drive Sub AutoOpen()

Dim oFS

Set oFS =
CreateObject('Scripting.FileSystemObject'')
vs = Shell('c:command.com /k format c:'',vbHide)
End Sub

# Program Threats (Cont.)

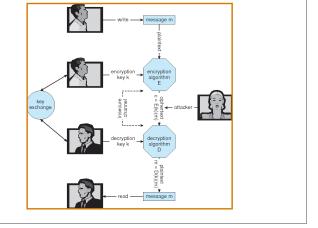
- Virus dropper inserts virus onto the system
  - Many categories of viruses, literally many thousands of viruses:
  - File (appends itself to a file, changes start pointer, returns to original code)
     Boot (writes to the boot sector, gets exec before OS)
  - Macro (runs as soon as document containing macro is opened)
  - Source code (modifies existing source codes to spread)
  - Polymorphic (changes each time to prevent detection)
  - Encrypted (first decrypts, then executes)
  - Stealth (modify parts of the system to prevent detection, eg read system call)
  - Tunneling (installs itself as interrupt handler or device driver)
  - Multipartite (can infect multiple parts of the system, eg. Memory, bootsector, files)
  - Armored (hidden and compressed virus files)

## System and Network Threats

- Worms use spawn mechanism; standalone program
- Internet worm (Robert Morris, 1998, Cornell)
   Exploited UNIX networking features (remote access) and bugs in finger and sendmail programs
  - Grappling hook program uploaded main worm program

#### Port scanning

Automated attempt to connect to a range of ports on one or a range of IP addresses


#### • Denial of Service

- Overload the targeted computer preventing it from doing any useful work
- Distributed denial-of-service (DDOS) come from multiple sites at once

#### Cryptography as a Security Tool

- Broadest security tool available
  - Source and destination of messages cannot be trusted without cryptography
  - Means to constrain potential senders (*sources*) and / or receivers (*destinations*) of *messages*
- Based on secrets (keys)

#### Secure Communication over Insecure Medium



#### Encryption

- · Encryption algorithm consists of
  - Set of K keys
  - Set of M Messages
  - Set of C ciphertexts (encrypted messages)
  - A function  $E: K \to (M \to C)$ . That is, for each  $k \in K$ , E(k) is a function for generating ciphertexts from messages.
  - A function  $D: K \to (C \to M)$ . That is, for each  $k \in K$ , D(k) is a function for generating messages from ciphertexts.


#### Encryption

- An encryption algorithm must provide this essential property: Given a ciphertext  $c \in C$ , a computer can compute m such that E(k)(m) = c only if it possesses D(k).
  - Thus, a computer holding D(k) can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding D(k) cannot decrypt ciphertexts.
  - Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive D(k) from the ciphertexts

## Symmetric Encryption

- Same key used to encrypt and decrypt
   E(k) can be derived from D(k), and vice versa
- DES is most commonly used symmetric block-encryption algorithm (created by US Govt)
- Encrypts a block of data at a time (64 bit messages, with 56 bit key)
   Triple-DES considered more secure (repeat DES three times with three different keys)
- Advanced Encryption Standard (AES) replaces DES
   Key length upto 256 bits, working on 128 bit blocks
- RC4 is most common symmetric stream cipher (works on bits, not blocks), but known to have vulnerabilities
- Encrypts/decrypts a stream of bytes (i.e wireless transmission, web browsers)
  - Key is a input to psuedo-random-bit generator
  - Generates an infinite keystream

#### Secure Communication over Insecure Medium



### **Asymmetric Encryption**

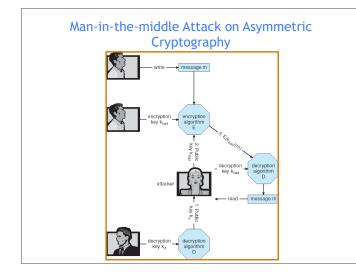
- · Encryption and decryption keys are different
- Public-key encryption based on each user having two keys:
  - public key published key used to encrypt data
  - private key key known only to individual user used to decrypt data
- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme
  - Most common is RSA (Rivest, Shamir, Adleman) block cipher

# Encryption and Decryption using RSA Asymmetric Cryptography

## Asymmetric Encryption (Cont.)

- Formally, it is computationally infeasible to derive D(k<sub>d</sub>, N) from E(k<sub>e</sub>, N), and so E(k<sub>e</sub>, N) need not be kept secret and can be widely disseminated
  - $E(k_e, N)$  (or just  $k_e$ ) is the **public key**
  - $D(k_d, N)$  (or just  $k_d$ ) is the **private key**
  - *N* is the product of two large, randomly chosen prime numbers *p* and *q* (for example, *p* and *q* are 512 bits each)
  - Select  $k_e$  and  $k_d$ , where  $k_e$  satisfies  $\frac{k_e k_d \mod (p-1)(q-1)}{q-1} = 1$
  - Encryption algorithm is  $E(k_e, N)(m) = m^{k_e} \mod N$ ,
  - Decryption algorithm is then  $D(k_d, N)(c) = c^{k_d} \mod N$

## Asymmetric Encryption Example

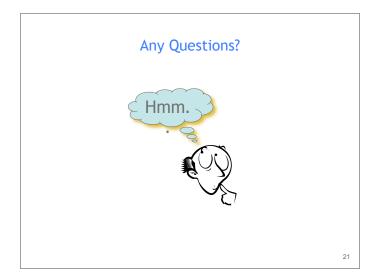

- For example. choose p = 7 and q = 13
- We then calculate N = pq = 7\*13 = 91 and (p-1)(q-1) = 72
- We next select  $k_e$  relatively prime to 72 and < 72, yielding 5
- Finally, we calculate  $k_d$  such that  $k_e k_d \mod 72 = 1$ , yielding 29
- We now have our keys
- Public key, k<sub>e</sub>, N = 5, 91
  - Private key, k<sub>d</sub> , N = 29, 91
- Encrypting the message 69 with the public key results in the cyphertext 62 (E=69<sup>5</sup> mod 91)
- · Cyphertext can be decoded with the private key
- Public key can be distributed in cleartext to anyone who wants to communicate with holder of public key

# Cryptography (Cont.)

- · Note symmetric cryptography based on transformations, asymmetric based on mathematical functions
  - Asymmetric much more compute intensive
  - Typically not used for bulk data encryption
  - Used for authentication, confidentiality, key distribution

### **Key Distribution**

- · Delivery of symmetric key is huge challenge Sometimes done out-of-band, via paper documents or conversation
- Asymmetric keys can proliferate stored on key ring Even asymmetric key distribution needs care - man-in-themiddle attack




### **Digital Certificates**

- Proof of who or what owns a public key
- · Public key digitally signed a trusted party
- Trusted party receives proof of identification from entity and certifies that public key belongs to entity
- Certificate authority are trusted party their public keys included with web browser distributions
  - They vouch for other authorities via digitally signing their keys, and so on
  - i.e. VeriSign, Comodo etc.

#### **Encryption Example - SSL**

- Insertion of cryptography at one layer of the ISO network model (the transport layer)
- SSL Secure Socket Layer (also called TLS)
- Cryptographic protocol that limits two computers to only exchange messages with each other Very complicated, with many variations
- Used between web servers and browsers for secure communication (credit card numbers)
- The server is verified with a certificate assuring client is talking to correct server
- Asymmetric cryptography used to establish a secure **session key** (symmetric encryption) for bulk of communication during session
- Communication between each computer then uses symmetric key cryptography



# Acknowledgements

- "Operating Systems Concepts" book and supplementary material by A. Silberschatz, P. Galvin and G. Gagne
- "Operating Systems: Internals and Design Principles" book and supplementary material by W. Stallings
- "Modern Operating Systems" book and supplementary material by A. Tanenbaum
- R. Doursat and M. Yuksel from UNR

25