CSE 421/521 - Operating Systems Fall 2011

LECTURE - XXVI

PROTECTION & SECURITY

Tevfik Koşar

University at Buffalo December 6th, 2011

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Program Threats (Cont.)

- Virus dropper inserts virus onto the system
 - Many categories of viruses, literally many thousands of viruses:
 - File (appends itself to a file, changes start pointer, returns to original code)
 - Boot (writes to the boot sector, gets exec before OS)
 - Macro (runs as soon as document containing macro is opened)
 - Source code (modifies existing source codes to spread)
 - Polymorphic (changes each time to prevent detection)
 - Encrypted (first decrypts, then executes)
 - Stealth (modify parts of the system to prevent detection, eg read system call)
 - Tunneling (installs itself as interrupt handler or device driver)
 - Multipartite (can infect multiple parts of the system, eg. Memory, bootsector, files)
 - Armored (hidden and compressed virus files)

Asymmetric Encryption (Cont.)

- Formally, it is computationally infeasible to derive D(k_d, N) from E(k_e, N), and so E(k_e, N) need not be kept secret and can be widely disseminated
 - $E(k_e, N)$ (or just k_e) is the **public key**
 - $D(k_d, N)$ (or just k_d) is the **private key**
 - *N* is the product of two large, randomly chosen prime numbers *p* and *q* (for example, *p* and *q* are 512 bits each)
 - Select k_e and k_d , where k_e satisfies $k_e k_d \mod (p-1)(q-1) = 1$
 - Encryption algorithm is $E(k_e, N)(m) = m^{k_e} \mod N$,
 - Decryption algorithm is then $D(k_d, N)(c) = c^{k_d} \mod N$

Cryptography (Cont.)

- Note symmetric cryptography based on transformations, asymmetric based on mathematical functions
 - Asymmetric much more compute intensive
 - Typically not used for bulk data encryption
 - Used for authentication, confidentiality, key distribution

Key Distribution Delivery of symmetric key is huge challenge Sometimes done out-of-band, via paper documents or conversation Asymmetric keys can proliferate - stored on key ring Even asymmetric key distribution needs care - man-in-the-middle attack

Acknowledgements

- "Operating Systems Concepts" book and supplementary material by A. Silberschatz, P. Galvin and G. Gagne
- "Operating Systems: Internals and Design Principles" book and supplementary material by W. Stallings
- "Modern Operating Systems" book and supplementary material by A. Tanenbaum
- R. Doursat and M. Yuksel from UNR

25