CSE 421/521 - Operating Systems
Fall 2012

LECTURE - Il

OS STRUCTURES

Tevfik Kosar

University at Buffalo
August 30t, 2012

Roadmap

» OS Design and Implementation
- Different Design Approaches
« Major OS Components
Processes
Memory management
CPU Scheduling
1/0 Management

OS DESIGN APPROACHES

Operating System Design and Implementation

« Start by defining goals and specifications

Affected by choice of hardware, type of system
- Batch, time shared, single user, multi user, distributed

User goals and System goals
- User goals - operating system should be convenient to use, easy
to learn, reliable, safe, and fast
System goals - operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-
free, and efficient
» No unique solution for defining the requirements of an
(0
—> Large variety of solutions
- Large variety of OS

Operating System Design and Implementation (Cont.)

« Important principle: to separate policies and
mechanisms
Policy: What will be done?
Mechanism: How to do something?
» Eg. to ensure CPU protection
- Use Timer construct (mechanism)
- How long to set the timer (policy)
= The separation of policy from mechanism allows
maximum flexibility if policy decisions are to be
changed later

OS Design Approaches

« Simple Structure (Monolithic)
» Layered Approach

» Microkernels

* Modules

Simple Structure

Monolithic

» No well defined structure

« Start as small, simple, limited systems, and then grow
» No Layers, not divided into modules

Layered Approach

> Monolithic operating systems
v" no one had experience in building truly large software systems

V' the problems caused by mutual dependence and interaction
were grossly underestimated

v" such lack of structure became unsustainable as O/S grew

> Enter hierarchical layers and information abstraction

v' each layer is implemented exclusively using operations
provided by lower layers

v it does not need to know how they are implemented

v" hence, lower layers hide the existence of certain data
structures, private operations and hardware from upper layers

9

Simple Structure

> Example: MS-DOS

initially written to provide o
the most functionality in IR FEEn

v

the least space

started small and grew

resident system program

beyond its original scope

levels not well separated:
programs could access I/0
devices directly

excuse: the hardware of
that time was limited (no

v-‘

MS-DOS device drivers

ROM BIOS device drivers

dual user/kernel mode) MS-DOS pseudolayer structure

Layered Approach

>

v

Simple Layered Approach

The original UNIX

enormous amount of
functionality crammed

into the kernel -

. (the users)
everything below
system call interface shells and commands
compilers and interpreters
“The Big Mess": a system libraries
collection of system-call interface to the kernel

procedures that can

call any of the other

procedures whenever
they need to

signals terminal

terminal drivers

file system
handling swapping block I/O page replacement
character I/O system system demand paging
disk and tape drivers

kernel interface to the hardware

CPU scheduling

virtual memory

no encapsulation, total

ViSib”iT\/ across the terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

system

very minimal layering UNIX system structure

made of thick,
monolithic layers

« The operating system is divided e
into a number of layers (levels),
each built on top of lower
layers. [
- The bottom layer (layer 0), is the 1 - narmaro | |
hardware; SR N /
- The highest (layer N) is the user '
interface.

« With modularity, layers are

layer 1

selected such that each uses
functions (operations) and
services of only lower-level
layers

- GLUnix, Multics, VAX/VMS

Layered Approach

> Layers can be debugged and replaced independently
without bothering the other layers above and below

v' famous example of

strictly layered

architecture: the

TCP/IP networking — N o

stack k N offers services
- uses services
S~ N-1

Theoretical model of operating system design hierarchy
Level Name Objects Example Operations
shell 13 Shell User programming. Statements in shell language
environment
12 User processes User processes Quit, kill, suspend, resume
11 Directories Directories Create, destroy, attach,
detach, search, list
10 Devices External devices, such as Open, close, read. write

printers, displays, and
keyboards

oIS 9 File system Files Create, destroy, open, close,
read, write
3 Communications Pipes Create, destroy, open, close
read, write
Virtual memory Segments, pages Read, wrie, fetch

o

Local secondary store Blocks of data, device channels Read, write, allocate, free

5 Primiive processes Primitive processes. Suspend, resume, wai, signal
semaphores, ready list
4 Interrupts Interrupt-handling programs Invoke, mask, unmask, retry
3 Procedures Procedures, call stack, display Mark stack, call, return
2 Instruction set Evaluation stack, Load, store, add, subtract,
hardware ‘microprogram interpreter, branch
scalar and array data
1 Electronic circuits Registers, gates, buses, etc. Clear, transfer, activate,
complement

Layered Approach

> Major difficulty with layering
v’ ... appropriately defining the various layers!
v' layering is only possible if all function dependencies can be
sorted out into a Directed Acyclic Graph (DAG)
v"however there might be conflicts in the form of circular
dependencies (“cycles”)

Circular dependency on top of a DAG

Layered Approach
» Circular dependencies in an O/S organization

v' example: disk driver routines vs. CPU scheduler routines
= the device driver for the backing store (disk space used by
virtual memory) may need to wait for 1/O, thus invoke the
CPU-scheduling layer
= the CPU scheduler may need the backing store driver for
swapping in and out parts of the table of active processes

> Other difficulty: efficiency
v" the more layers, the more indirections from function to function
and the bigger the overhead in function calls
v" backlash against strict layering: return to fewer layers with

more functionality
15

Microkernel System Structure

» The microkernel approach

v" amicrokernel is a reduced operating system core that contains
only essential O/S functions

v’ the idea is to minimize the kernel by moving up as much
functionality as possible from the kernel into user space

v'many services traditionally included in the O/S are now external
subsystems running as user processes

= device drivers
= file systems
= virtual memory manager
= windowing system
= security services, etc.
o Examples: QNX, Trué64 UNIX, Mach (CMU), Windows NT 16

Layered OS vs Microkernel

User
Jsers
Mode Users

File System

5 User

Interprocess Communication ser
Mode

Kernel
Mode

/0 and Device Management

Virtual Memory

.

HARDWARE

HARDWARE

(a) Layered kernel (b) Microkernel

Microkernel System Structure

> Benefits of the microkernel approach
v' extensibility — it is easier to extend a microkernel-based O/S as new
services are added in user space, not in the kernel
v’ portability — it is easier to port to a new CPU, as changes are needed only
in the microkernel, not in the other services
v' reliability & security — much less code is running in kernel mode; failures
in user-space services don't affect kernel space

» Detriments of the microkernel approach
v" again, performance overhead due to communication from user space to
kernel space
v" not always realistic: some functions (I/0) must remain in kernel space,
forcing a separation between “policy” and “mechanism’

Modular Approach
» The modular approach

v" many modern operating systems implement kemel modules
v this is similar to the object-oriented approach:

= each core component is separate

= each talks to the others over known interfaces

= each is loadable as needed within the kernel
v" overall, modules are similar to layers but with more flexibility

v modules are also similar to the microkernel approach, except
they are inside the kernel and don’t need message passing

Modular Approach

> Modules are used in Solaris, Linux and Mac OS X
scheduling
device and classes
bus drivers
core solaris
miscellaneous kernel
modules
STREAMS E xecutable
modules formats

The Solaris loadable modules

loadable
system calls

20

Mac OS X Structure - Hybrid

application environments
and common services

A 3

A A 4

kernel BSD

environment

Mach

BSD: provides support for command line interface, networking, file
system, POSIX API and threads

« Mach: memory management, RPC, IPC, message passing

21

MAJOR OS COMPONENTS

22

Major OS Components

Processes

Memory management
CPU Scheduling

I/0 Management

23

Processes

» A process is the activity of executing a program

ion

= Seyve.

Program Process

Processes

> It can be interrupted to let the CPU execute a higher-priorit:

process
Pd ol i CPU (changes hat to “doctor")
- boil — Get the firgf aid kit
wad _ Check pulSgrread of exection
- stir| - Clean wound with
alcohol

input data
cooj .
wndl — Apply band aid

Process

Program
25

Processes

> Multitasking gives the illusion of parallel processing
(independent virtual program counters) on one CPU

« | job1 job 3

job 2

o
=

job 2

job 4

™
a
=

job 1

(a) Multitasking from the CPU’s viewpoint

process 1

...
>

job 1 ‘

job 1

job 2

job 2

process 2

‘ job 3 ‘ process 3

process 4

job 4 ’
(b) Multitasking from the processes’ viewpoint = 4 virtual program counters

Pseudoparallelism in multitasking
27

Processes
> _..and then resumed exactly where the CPU left off
.': hmm... now
PWW s where was

- boil1 ql_ﬁam'tmlty

: CPU (back t
water ithread of execution (back to

“chef")
- stur i th pastov

- cookonw

wntill “al e .
input data

= seyve.

Process

Program
26

Processes

» Qperating System Responsibilities:

The O/S is responsible for managing processes

V' the O/S creates & deletes processes

the O/S suspends & resumes processes
the O/S schedules processes
the O/S provides mechanisms for process synchronization

SRR

the O/S provides mechanisms for interprocess
communication

<

the O/S provides mechanisms for deadlock handling

29

Processes

» Timesharing is logical extension in which CPU switches
jobs so frequently that users can interact with each job
while it is running, creating interactive computing

- Response time should be < 1 second

- Each user has at least one program loaded in memory and
executing = process

28

Memory Management

> Operating System Responsibilities:

The O/S is responsible for an efficient and orderly
control of storage allocation

v ensures process isolation: it keeps track of which parts of
memory are currently being used and by whom

v adllocates and deallocates memory space as heeded: it
decides which processes to load or swap out

V' regulates how different processes and users can
sometimes share the same portions of memory

V' transfers data between main memory and disk and ensures
long-term storage

30

Memory Management

> Main memory

v large array of s, P
words or bytes,
each with its own T
address

v' repository of % : fk g
quickly accessible m‘fi
data shared by aptieacisk D
the CPU and I/0 - t 1
devlces ‘magnetic tapes

v" volatile storage
that loses its
contents in case
of system failure 31

The storage hierarchy

Caching

» Important principle, performed at many levels in a
computer (in hardware, operating system, software)
« Information in use copied from slower to faster storage
temporarily
» Faster storage (cache) checked first to determine if
information is there
- If it is, information used directly from the cache (fast)
- If not, data copied to cache and used there
« If cache is smaller than storage being cached
- Cache management - important design problem
- Cache size and replacement policy

33

Performance of Various Levels of Storage

» Movement between levels of storage hierarchy can be
explicit or implicit

Level 1 2 3 4

Name registers cache main memory disk storage
Typical size <1KB >16 MB >16GB >100 GB
Implementation custom memory with | on-chip or off-chip| CMOS DRAM magnetic disk
technology multiple ports, CMOS | CMOS SRAM

Access time (ns) 0.25-05 05-25 80-250 5,000.000

Bandwidth (MB/sec) | 20,000 - 100,000 5000 - 10,000 1000 - 5000 20-150

Managed by compiler hardware operating system | operating system

Backed by cache main memory disk CD or tape

32

CPU Scheduling

> Operating System Responsibilities:

The O/S is responsible for efficiently using the CPU
and providing the user with short response times

v decides which available processes in memory are to be
executed by the processor

V' decides what process is executed when and for how long,
also reacting to external events such as I/0 interrupts

v relies on a scheduling algorithm that attempts to optimize
CPU utilization, throughput, latency, and/or response time,
depending on the system requirements

35

Migration of Integer A from Disk to Register

o Multitasking environments must be careful to use most
recent value, not matter where it is stored in the
storage hierarchy

magnetic main hardware
disk memory g j register

» Multiprocessor environment must provide cache
coherency in hardware such that all CPUs have the
most recent value in their cache

 Distributed environment situation even more complex
- Several copies of a datum can exist

34

0S Scheduling
> Long-term scheduling

V' the decision to add a program to the pool of
processes to be executed (job scheduling)

> Medium-term scheduling
v" the decision to add to the number of processes that
are partially or fully in main memory (“swapping")

> Short-term scheduling = CPU scheduling
V" the decision as to which available processes in

memory are to be executed by the processor
("dispatching")

fine- to coarse-grain level

> 1/ scheduling

V" the decision to handle a process's pending I/0
request

frequency of intervention

/0 Management

> Operating System Responsibilities:

The O/S is responsible for controlling access to all
the I/0 devices

v hides the peculiarities of specific hardware devices from
the user

v issues the low-level commands to the devices, catches
interrupts and handles errors

v relies on software modules called "device drivers"

v' provides a device-independent API to the user programs,
which includes buffering

37

Two 1/0 Methods

o After 1/0 starts, control returns to user program only
upon 1/0 completion =» synchronous
- Wait instruction idles the CPU until the next interrupt
- Wait loop (contention for memory access).

- At most one I/0 request is outstanding at a time, no
simultaneous 1/0 processing.

o After 1/0 starts, control returns to user program
without waiting for 1/0 completion =»asynchronous

- System call - request to the operating system to allow user
to wait for I/0 completion.

- Device-status table contains entry for each 1/0 device

39

/0 Management

User process

ser User
rogram
space prog
]
Rest of the operating system
Kernel Device-independent software
space
Printer Camcorder CD-ROM
driver driver driver
|
Y Y Y
Hardware [Printer controller | [Camcorder controller] [CD-ROM controller]
—»
e =
&S

Layers of the I/O subsystem
38

Two 1/0 Methods

Summary

« OS Design Approaches
- Monolithic Systems,
- Layered Approach, Microkernels, Modules
* Major OS Components
Processes
Memory management
CPU Scheduling
/0O Management

Questions? —

» Reading Assighment: Chapter 2 from Silberschatz.

41

Synchronous Asynchronous
user \JL Sy I requesting process } user
waiting
device driver device driver
I [
kernel 1 interrupt handler 1 1 interrupt handler kernel
X L
| hardware |-l hardware
data transfer — - - data transfer ——|
time — time —»
(@) (b)
40
Acknowledgements

“Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

“Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

“Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

42

