
1

CSE 421/521 - Operating Systems
Fall 2012

Tevfik Koşar

University at Buffalo
August 30th, 2012

Lecture - II

OS Structures

2

Roadmap

• OS Design and Implementation
– Different Design Approaches

• Major OS Components
! Processes
! Memory management
! CPU Scheduling
! I/O Management

3

OS Design Approaches

4

Operating System Design and Implementation

• Start by defining goals and specifications
• Affected by choice of hardware, type of system

– Batch, time shared, single user, multi user, distributed

• User goals and System goals
– User goals – operating system should be convenient to use, easy

to learn, reliable, safe, and fast
– System goals – operating system should be easy to design,

implement, and maintain, as well as flexible, reliable, error-
free, and efficient

• No unique solution for defining the requirements of an
OS
"Large variety of solutions
"Large variety of OS

5

Operating System Design and Implementation (Cont.)

• Important principle: to separate policies and
mechanisms

 Policy: What will be done?
Mechanism: How to do something?

• Eg. to ensure CPU protection
– Use Timer construct (mechanism)
– How long to set the timer (policy)

• The separation of policy from mechanism allows
maximum flexibility if policy decisions are to be
changed later

6

OS Design Approaches

• Simple Structure (Monolithic)
• Layered Approach
• Microkernels
• Modules

7

Simple Structure

• Monolithic
• No well defined structure
• Start as small, simple, limited systems, and then grow
• No Layers, not divided into modules

8

Simple Structure
Example: MS-DOS Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)

Operating Systems Concepts with Java (6th Edition).

MS-DOS pseudolayer structure

$ initially written to provide
the most functionality in
the least space

$ started small and grew
beyond its original scope

$ levels not well separated:
programs could access I/O
devices directly

$ excuse: the hardware of
that time was limited (no
dual user/kernel mode)

9

Layered Approach

Monolithic operating systems
$ no one had experience in building truly large software systems
$ the problems caused by mutual dependence and interaction

were grossly underestimated
$ such lack of structure became unsustainable as O/S grew

Enter hierarchical layers and information abstraction
$ each layer is implemented exclusively using operations

provided by lower layers
$ it does not need to know how they are implemented
$ hence, lower layers hide the existence of certain data

structures, private operations and hardware from upper layers

10

Simple Layered Approach

UNIX system structure

The original UNIX
$ enormous amount of

functionality crammed
into the kernel -
everything below
system call interface

$ “The Big Mess”: a
collection of
procedures that can
call any of the other
procedures whenever
they need to

$ no encapsulation, total
visibility across the
system

$ very minimal layering
made of thick,
monolithic layers

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

11

Layered Approach

• The operating system is divided
into a number of layers (levels),
each built on top of lower
layers.
– The bottom layer (layer 0), is the

hardware;
– The highest (layer N) is the user

interface.

• With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level
layers
– GLUnix, Multics, VAX/VMS

12

Layered Approach

$ famous example of
strictly layered
architecture:

Layers can be debugged and replaced independently
without bothering the other layers above and below

uses services
N

N–1

N+1
offers services

$ famous example of
strictly layered
architecture: the
TCP/IP networking
stack

13

Layered Approach
Theoretical model of operating system design hierarchy

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

O/S

hardware

shell

14

Layered Approach

Major difficulty with layering
$. . . appropriately defining the various layers!
$ layering is only possible if all function dependencies can be

sorted out into a Directed Acyclic Graph (DAG)
$ however there might be conflicts in the form of circular

dependencies (“cycles”)

Circular dependency on top of a DAG

15

Layered Approach

Circular dependencies in an O/S organization
$ example: disk driver routines vs. CPU scheduler routines

% the device driver for the backing store (disk space used by
virtual memory) may need to wait for I/O, thus invoke the
CPU-scheduling layer

% the CPU scheduler may need the backing store driver for
swapping in and out parts of the table of active processes

Other difficulty: efficiency
$ the more layers, the more indirections from function to function

and the bigger the overhead in function calls
$ backlash against strict layering: return to fewer layers with

more functionality

16

Microkernel System Structure
The microkernel approach

$ a microkernel is a reduced operating system core that contains
only essential O/S functions

$ the idea is to minimize the kernel by moving up as much
functionality as possible from the kernel into user space

$ many services traditionally included in the O/S are now external
subsystems running as user processes
% device drivers
% file systems
% virtual memory manager
% windowing system
% security services, etc.

• Examples: QNX, Tru64 UNIX, Mach (CMU), Windows NT

 Layered OS vs Microkernel

17

18

Microkernel System Structure

Benefits of the microkernel approach
$ extensibility — it is easier to extend a microkernel-based O/S as new

services are added in user space, not in the kernel
$ portability — it is easier to port to a new CPU, as changes are needed only

in the microkernel, not in the other services
$ reliability & security — much less code is running in kernel mode; failures

in user-space services don’t affect kernel space

Detriments of the microkernel approach
$ again, performance overhead due to communication from user space to

kernel space
$ not always realistic: some functions (I/O) must remain in kernel space,

forcing a separation between “policy” and “mechanism”

19

Modular Approach

The modular approach
$ many modern operating systems implement kernel modules
$ this is similar to the object-oriented approach:

% each core component is separate
% each talks to the others over known interfaces
% each is loadable as needed within the kernel

$ overall, modules are similar to layers but with more flexibility
$ modules are also similar to the microkernel approach, except

they are inside the kernel and don’t need message passing

20

Modular Approach

Modules are used in Solaris, Linux and Mac OS X

The Solaris loadable modules

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

21

Mac OS X Structure - Hybrid

• BSD: provides support for command line interface, networking, file
system, POSIX API and threads

• Mach: memory management, RPC, IPC, message passing

22

Major OS Components

23

Major OS Components

! Processes
! Memory management
! CPU Scheduling
! I/O Management

24

Processes

A process is the activity of executing a program

Pasta for six

– boil 1 quart salty
water

– stir in the pasta

– cook on medium
until “al dente”

– serve
Program Process

CPU

input data

thread of execution

25

Processes

Pasta for six

– boil 1 quart salty
water

– stir in the pasta

– cook on medium
until “al dente”

– serve

It can be interrupted to let the CPU execute a higher-priority
process

Program
Process

First aid

– Get the first aid kit
– Check pulse

– Clean wound with
alcohol

– Apply band aid

CPU (changes hat to “doctor”)

input data

thread of execution

26

Processes

. . . and then resumed exactly where the CPU left off

Pasta for six

– boil 1 quart salty
water

– stir in the pasta

– cook on medium
until “al dente”

– serve

Program
Process

CPU (back to
“chef”)

input data

thread of execution

hmm... now
where was

I?

27

Processes

job 3

job 1

jo
b

1

jo
b

2

jo
b

2

job 4

jo
b

3

job 1.

job 3job 1

jo
b

1

jo
b

2

jo
b

2.job 4

jo
b

3

job 1

Multitasking gives the illusion of parallel processing
(independent virtual program counters) on one CPU

(a) Multitasking from the CPU’s viewpoint

Pseudoparallelism in multitasking

jo
b

2

jo
b

2
job 3

jo
b

3

job 1

jo
b

1

job 1

job 4

(b) Multitasking from the processes’ viewpoint = 4 virtual program counters

process 1

process 2

process 3

process 4

Processes

28

• Timesharing is logical extension in which CPU switches
jobs so frequently that users can interact with each job
while it is running, creating interactive computing
– Response time should be < 1 second
– Each user has at least one program loaded in memory and

executing ! process

29

Processes

Operating System Responsibilities:

 The O/S is responsible for managing processes
$ the O/S creates & deletes processes
$ the O/S suspends & resumes processes
$ the O/S schedules processes
$ the O/S provides mechanisms for process synchronization
$ the O/S provides mechanisms for interprocess

communication
$ the O/S provides mechanisms for deadlock handling

30

Memory Management

Operating System Responsibilities:

 The O/S is responsible for an efficient and orderly
control of storage allocation
$ ensures process isolation: it keeps track of which parts of

memory are currently being used and by whom
$ allocates and deallocates memory space as needed: it

decides which processes to load or swap out
$ regulates how different processes and users can

sometimes share the same portions of memory
$ transfers data between main memory and disk and ensures

long-term storage

31

Memory Management

Main memory

The storage hierarchy

Main memory
$ large array of

words or bytes,
each with its own
address

$ repository of
quickly accessible
data shared by
the CPU and I/O
devices

$ volatile storage
that loses its
contents in case
of system failure

32

Performance of Various Levels of Storage

• Movement between levels of storage hierarchy can be
explicit or implicit

33

Caching

• Important principle, performed at many levels in a
computer (in hardware, operating system, software)

• Information in use copied from slower to faster storage
temporarily

• Faster storage (cache) checked first to determine if
information is there
– If it is, information used directly from the cache (fast)
– If not, data copied to cache and used there

• If cache is smaller than storage being cached
– Cache management - important design problem
– Cache size and replacement policy

34

Migration of Integer A from Disk to Register

• Multitasking environments must be careful to use most
recent value, not matter where it is stored in the
storage hierarchy

• Multiprocessor environment must provide cache
coherency in hardware such that all CPUs have the
most recent value in their cache

• Distributed environment situation even more complex
– Several copies of a datum can exist

35

CPU Scheduling

Operating System Responsibilities:

 The O/S is responsible for efficiently using the CPU
and providing the user with short response times
$ decides which available processes in memory are to be

executed by the processor
$ decides what process is executed when and for how long,

also reacting to external events such as I/O interrupts
$ relies on a scheduling algorithm that attempts to optimize

CPU utilization, throughput, latency, and/or response time,
depending on the system requirements

OS Scheduling
Long-term scheduling

Medium-term scheduling

Short-term scheduling = CPU scheduling

I/O scheduling

Long-term scheduling
$ the decision to add a program to the pool of

processes to be executed (job scheduling)

Medium-term scheduling
$ the decision to add to the number of processes that

are partially or fully in main memory (“swapping”)

Short-term scheduling = CPU scheduling
$ the decision as to which available processes in

memory are to be executed by the processor
(“dispatching”)

I/O scheduling
$ the decision to handle a process’s pending I/O

request

fr
eq

ue
nc

y
of

 in
te

rv
en

ti
on

fi
ne

-
to

 c
oa

rs
e-

gr
ai

n
le

ve
l

37

I/O Management

Operating System Responsibilities:

 The O/S is responsible for controlling access to all
the I/O devices
$ hides the peculiarities of specific hardware devices from

the user
$ issues the low-level commands to the devices, catches

interrupts and handles errors
$ relies on software modules called “device drivers”
$ provides a device-independent API to the user programs,

which includes buffering

38

I/O Management

Device-independent software

Layers of the I/O subsystem

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

Device-independent software

39

Two I/O Methods
• After I/O starts, control returns to user program only

upon I/O completion & synchronous
– Wait instruction idles the CPU until the next interrupt
– Wait loop (contention for memory access).
– At most one I/O request is outstanding at a time, no

simultaneous I/O processing.

• After I/O starts, control returns to user program
without waiting for I/O completion &asynchronous
– System call – request to the operating system to allow user

to wait for I/O completion.
– Device-status table contains entry for each I/O device

40

Two I/O Methods

Synchronous Asynchronous

Summary

• OS Design Approaches
– Monolithic Systems,
– Layered Approach, Microkernels, Modules

• Major OS Components
! Processes
! Memory management
! CPU Scheduling
! I/O Management

41

• Reading Assignment: Chapter 2 from Silberschatz.

Questions?

42

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

