CSE 421/521 - Operating Systems
Fall 2012

LECTURE - VIII
PROCESS SYNCHRONIZATION - |

Tevfik Kosar

University at Buffalo
September 25th, 2012

Roadmap

» Process Synchronization
» Race Conditions

e Critical-Section Problem
- Solutions to Critical Section
- Different Implementations

Background

« Concurrent access to shared data may result in data
inconsistency

« Maintaining data consistency requires mechanisms
to ensure the orderly execution of cooperating
processes

« Consider consumer-producer problem:
- Initially, count is set to 0

- It is incremented by the producer after it produces a new
buffer

- and is decremented by the consumer after it consumes a
buffer.

Shared Variables: count=0, buffer[]
Producer:

while (true){ /* produce an item and put in nextProduced
while (count == BUFFER_SIZE)
; // do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

3

Consumer:
while (1) {

while (count == 0)

; // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

} /* consume the item in nextConsumed 4

Race Condition

4+ Race condition: The situation where several processes access and

manipulate shared data concurrently. The final value of the shared
data depends upon which process finishes last.

4+ To prevent race conditions, concurrent processes must be
synchronized.

- Ensure that only one process at a time is manipulating the
variable counter.

4 The statements
i count++;
* count--;

must be performed atomically.

4 Atomic operation means an operation without interruption.

Race Condition

« count++ could be implemented as
register1 = count
register1 = register1 + 1
count = register1

« count-- could be implemented as
register2 = count
register2 = register2 - 1
count = register2

- Consider this execution interleaving with “count = 5” initially:

SO: producer execute register1 = count {register1 = 5}

: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 =

S4: producer execute count = register1t {count =6}
S5: consumer execute count = register2 {count = 4}

Race Condition
> Significant race conditions in 1/0 & variable sharing

char chin, chout;//shared char chin, chout; //shared
void echo() void echo()
{ A Bl

do { do {

4 chin = getchar() ; Q| 1§ 4 chin = getchar() ;

chout = chin; R chout = chin;

3 putchar (chout) ; : 6 putchar (chout) ;

s J

while (...); while (...);
} }

scheduling

> ./echo (D > ./echo

Hello world!

Hello world!

Single-threaded echo Multithreaded echo (lucky)

7

Race Condition
> Significant race conditions in 1/0 & variable sharing

char chin, chout;//shared char chin, chout; //shared
void echo() void echo ()
{ A Bl

do { g do {

4 chin = getchar() ; 5 chin = getchar() ;

chout = chin; ., chout = chin;

6 putchar (chout) ; E 4 putchar (chout) ;

6 | g

while (...); unlucky while (...);
} CPU }

scheduling

> ./echo C> > ./echo

Hello world! Hello world!

Single-threaded echo Multithreaded echo (unlucky)
8

Race Condition
> Significant race conditions in I/O & variable sharing

void echo () void echo()
{ {
.—-’ char chin, chout; A B char chin, chout;
do { 3 do {
1 chin = getchar(); 2 chin = getchar()
chout = chin; chout = chin;
6 putchar (chout) ; 4 putchar (chout) ;
s R DA
while (...); unlucky while (...);
} CPU }
scheduling
Hello world! gﬁ% ..
Single-threaded echo Multithreaded echo (unlucky)

9

Race Condition

» Significant race conditions in I/O & variable sharing

v"in this case, replacing the global variables with local variables
did not solve the problem

v" we actually had two race conditions here:
= one race condition in the shared variables and the order of
value assignment

= another race condition in the shared output stream: which
thread is going to write to output first (this race persisted
even after making the variables local to each thread)

==> generally, problematic race conditions may occur whenever
resources and/or data are shared (by processes unaware of each
other or processes indirectly aware of each other)

10

Critical Section/Region

« Critical section/region: segment of code in which the
process may be changing shared data (eg. common
variables)

« No two processes should be executing in their critical
sections at the same time --> prevents race conditions

« Critical section problem: design a protocol that the
processes use to cooperate

11

Critical Section

» The “indivisible” execution blocks are critical regions

v"a critical region is a section of code that may be executed by
only one process or thread at a time

A R R common critical region

v" although it is not necessarily the same region of memory or
section of program in both processes

A
B

==> put physically different or not, what matters is that these regions
cannot be interleaved or executed in parallel (pseudo or real)

K\ .J/AS c.rltlcal region

lm _\/ B’s critical region

12

Solution to Critical-Section Problem

A solution to the critical-section problem must satisfy
the following requirements:

1. Mutual Exclusion - If process P, is executing in its
critical section, then no other processes can be
executing in their critical sections

2. Progress - If no process is executing in its critical
section and there exist some processes that wish to
enter their critical section, then the selection of the
processes that will enter the critical section next
cannot be postponed indefinitely

13

Solution to Critical-Section Problem

3. Bounded Waiting - A bound must exist on the number
of times that other processes are allowed to enter their
critical sections after a process has made a request to
enter its critical section and before that request is
granted

® Assume that each process executes at a nonzero speed
® No assumption concerning relative speed of the N processes

14

Mutual Exclusion

> We need mutual exclusion from critical regions
v critical regions can be protected from concurrent access by
padding them with entrance and exit gates (we'll see how later):
a thread must try to check in, then it must check out

void echo() void echo()
{ {

char chin, chout; A B char chin, chout;
do { ° do {

chin = getchar() ; chin = getchar() ;

chout = chin; o chout = chin;
putchar (chout) ; putchar (chout) ;
while (...); while (...);

} }

HOW is this

Mutual Exclusion

> Desired effect: mutual exclusion from the critical region

&

1. thread Areaches the gate A

to the critical region (CR) B/\N\,Kl critical region

_ before B :

2. thread Aenters CRfirst, A k
& preventing B from entering g -
© . " .
g (B is waiting or is blocked) '
2 |s thread Aexits CR; thread A
S B can now enter o :

4. thread B enters CR A

16

Mutual Exclusion

> Implementation 1 — disabling hardware interrupts

1.

thread A reaches the gate A
to the critical region (CR)
before B

as soonasAenters CR, it A
disables all interrupts,

thus B cannot be

scheduled

B

. i critical region

as soon as A exits CR, it g .

enables interrupts; Bean =R

be scheduled again

thread B enters CR 5 .

17

> Implementation 1 — disabling

v

v

Mutual Exclusion

ardwarao |
CAI U Al

(D
S
-
(D
-5
in
-]
-
w
o

LA

it works, but not reasonable!

what guarantees that the user
process is going to ever exit the
critical region?

meanwhile, the CPU cannot
interleave any other task, even
unrelated to this race condition

the critical region becomes one
physically indivisible block, not
logically

also, this is not working in multi-
processors

void echo()

{

char chin, chout;

chin = getchar() ;
chout = chin;
putchar (chout) ;

18

Mutual Exclusion
> Implementation 2 — simple lock variable

1. thread Areaches CRand A
finds a lock at 0, which
means that A can enter

2. thread Asetsthelockto1 A
and enters CR, which B
prevents B from entering

3. thread A exits CR and
resets lock to 0; thread B
can now enter

4. thread B sets the lock to 1
and enters CR

B

.Y

£

. i critical region i

19

Mutual Exclusion

> Implementation 2 — simple lock variable

v the “lock” is a shared variable

v entering the critical region means
testing and then setting the lock

v exiting means resetting the lock

while (lock);
/* do nothing: loop */
lock = TRUE;

,‘m
-
-
-
’
’

’

’

’

/
/
/
/
’
’
,
/
/
e
/
/
’

bool lock = FALSE;

void echo()

{

char chin, chout;
do {

chout = chin;
putchar (chout) ;

while (...);
}

20

Mutual Exclusion

mnla
11INI\S

> Implementation 2 — si

1. thread A reaches CR and
finds a lock at 0, which
means that A can enter

A
B

1.1 but before Acansetthe A
lockto 1, BreachesCR g
and finds the lock is 0, too

1.2 A sets the lock to 1 and A
enters CR but cannot B

prevent the fact that . . .

1.3 ... Bis going to set the A
lock to 1 and enter CR, too 5

lock variable
K-ﬁ?
. critical region
/\/\/\/R < :
9

Mutual Exclusion

> Implementation 2 — si

mnla Inrk variahla &
| YAAV R AYAYIAN AL TUN T\

v

v suffers from the very flaw we want
to avoid: a race condition

v the problem comes from the small
gap between testing that the lock
is off and setting the lock

v it may happen that the other
thread gets scheduled exactly in
between these two actions (falls
in the gap)

v s0 they both find the lock off and
then they both set it and enter

’
’
,
4 7
.
.
’
/

bool lock = FALSE;

void echo()

{

char chin, chout;
do {

chout = chin;
putchar (chout) ;

while (...);
}

22

Mutual Exclusion
> Implementation 3 — “indivisible” lock variable &

1. thread Areaches CRand A ﬂ% y e
finds the lock at 0 and sets B/\N\,Kl ; critical region
it in one shot, then enters

1.1"even if B comes right A
behind A, it will find that the g :
lock is already at 1
2. thread A exits CR, then A @ R
resets lock to 0 B :
5. thread B finds the lock at0 o
and sets it to 1 in one shot, i

just before entering CR

23
Mutual Exclusion
> Implementation 3 — “indivisible” lock variable &
v the indivisibility of the “test-lock-
gnd-set-lock operatlon can be void echo()
implemented with the hardware {
instruction TSL char chin, chout;
___ . do {
ent"}rst%(l)zr‘éISTER,LOCK | copy lock to registeset lock to 1 ,W
CMP REGISTER #0 | was lock zero? / ; ’
JNE enter_region | if it was non zero, lock was set, so loop / chout = chin;
RET | return to caller; critical region entered /' putchar (chout) ;

__

S while (...);

""" leave_region: T}
MOVE LOCK#0 |store a 0in lock !
| return to caller

__

24

Mutual Exclusion

> Implementation 3 — “indivisible” lock < one key &

1.

thread A reaches CR and
finds a key and takes it

1.1 even if B comes right

behind A, it will not find a
key

thread A exits CR and puts
the key back in place

thread B finds the key and
takes it, just before
entering CR

A ¥

critical region i

25

Mutual Exclusion

> Implementation 3 — “indivisible” lock < one key &

“test-and-set”

this is similar to the “speaker’s
baton” in some assemblies: only
one person can hold it at a time

holding is an indivisible action:
you see it and grab it in one shot

after you are done, you release
the object, so another process }

can hold on to it

v *holding” a unique object, like a
key, is an equivalent metaphor for

void echo()

{
char chin, chout;
do {

take key and run
-------- chin = -getchar();

chout = chin;
putchar (chout) ;

"""" TeWINKEy ™ """
_____ B

26

Mutual Exclusion
> Implementation 4 — no-TSL toggle for two threads

1. thread Areaches CR, finds A
alock at 0, and enters

without changing the lock
however, the lock has an
opposite meaning for B:
“off” means do not enter
only when A exits CR does
it change the lock to 1;
thread B can now enter
thread B enters CR: it will
reset it to 0 for A after
exiting

A
B

A

B

.Y

R

. critical region i

27

Mutual Exclusion

> Implementation 4 — no-TSL toggle for two threads

v the “toggle lock” is a shared
variable used for strict alternation

v here, entering the critical region
means only testing the toggle: it
must be at 0 for A, and 1 for B

v exiting means switching the
toggle: Asetsitto1,andBto0 //

A's code B’s code

while (toggle); E while (!toggle) ;
/* loop */ ; /* loop */

__

bool toggle = FALSE;
void echo()
{
char chin, chout;
do {
lestloodle . o
-------- chin’*=-getchar ()}
chout = chin;
putchar (chout) ;
""‘J“”swncrrroggle """"""""
""" while (...);
}

28

Mutual Exclusion

> Implementation 4 — no-TSL toggle for two threads ¢
- @ ;e
5. thread B exits CR and A~~~ R
switches the lock backto 0 B f K
to allow A to enter next o ’

9.1 but scheduling happensto A
make B faster than A and
come back to the gate first

5.2 aslong as Ais still busy or 5
interrupted in its noncritical
region, B is barred access
toits CR

® this violates item 2. of the
chart of mutual exclusion

=> this implementation avoids TSL by
splitting test & set and putting them in

enter & exit; nice try... but flaweqd!
29

Mutual Exclusion

> Implementation 5 — Peterson’s no-TSL. no-alternation

1. Aand B each have theirown A
lock; an extra toggle is also BNWKK
masking either lock

.| 5
k@ critical region

2. Aarrives first, sets its lock, A Kx
pushes the mask to the other BW
lock and may enter 5
3. then, B also sets its lock & A R
pushes the mask, but must BW
wait until A's lock is reset
s+ Aexits the CR and resets its | . .

lock; B may now enter QMW\NW)

30

Mutual Exclusion

> Implementation 5 — Peterson’s no-TSL. no-alternation

v the mask & two locks are shared | Pool lock[2];
' . int mask;
v entering means: setting one’s

lock, pushing the mask and ‘{’°id echo ()
tetsing the other’s combination char chin, chout;
v exiting means resetting thelock | ¢
.~ K, _DU. est
A's code B's code R %i%éag_ggfﬁlfa@ﬂ)(f"
Rt Ittty oo F chout = chin;
;ZEE[Z:]B? TRUE ; | i:csﬂ]:[z]p; TRUE ; ; e (e &
while (lock[B] && | while (lock[A] && / fo_ S —
mask == B) ;! mask == A); / /|00 } .
/* loop */ E /* loop */ / S while (...);
__________________________ Y B }
lock[A] = FALSE; lock[B] = FALSE;

31

Mutual Exclusion

> Implementation 5 — Peterson’s no-TSL., no-alternation®

1. Aand B each have their A
own lock; an extra toggle BMNKI
is also masking either lock

2.1 Ais interrupted between A
setting the lock & pushing

the mask; B sets its lock

2.2 now, both Aand B race to A l k
push the mask: whoever BW
does it last will allow the pushed last, allowing A

Other one inSide CR pushed last, allowing B &

® mutual exclusion holds!! NWWV\E@% .
(no bad race condition) ~R

oY :
R@ critical region

32

Mutual Exclusion

» Summary of these implementations of mutual exclusion

v" Impl. 1 — disabling hardware interrupts

¢ NO: race condition avoided, but can crash the system!
v Impl. 2 — simple lock variable (unprotected)

¢ NO: still suffers from race condition
v Impl. 3 — indivisible lock variable (TSL) this will be the

& YES: works, but requires hardware ~ basis for ‘mutexes”
v Impl. 4 — no-TSL toggle for two threads

¢ NO: race condition avoided inside, but lockup outside
v Impl. 5 — Peterson’s no-TSL, no-alternation

& YES: works in software, but processing overhead

33

Mutual Exclusion

» Problem: all implementations (2-5) rely on busy waiting

v “busy waiting” means that the process/thread continuously
executes a tight loop until some condition changes

V" busy waiting is bad:

= waste of CPU time — the busy process is not doing
anything useful, yet remains “Ready” instead of “Blocked”

= paradox of inversed priority — by looping indefinitely, a
higher-priority process B may starve a lower-priority
process A, thus preventing A from exiting CR and . . .
liberating B! (B is working against its own interest)

--> we need for the waiting process to block, not keep idling!

34

Synchronization Hardware

« Many systems provide hardware support for
critical section code

« Uniprocessors - could disable interrupts

- Currently running code would execute without
preemption

- Generally too inefficient on multiprocessor systems
» Operating systems using this not broadly scalable
e Modern machines provide special atomic
hardware instructions
o Atomic = non-interruptable
- Either test memory word and set value
- Or swap contents of two memory words

35

Summary

 Process Synchronization
« Race Conditions

e Critical-Section Problem
- Solutions to Critical Section
- Different Implementations E\

o0

* Next Lecture: Synchronization - I
« Reading Assignment: Chapter 6 from Silberschatz.

Acknowledgements

“Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

“Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

“Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

37

