
1

CSE 421/521 - Operating Systems
Fall 2012

Tevfik Koşar

University at Buffalo
September 27th, 2012

Lecture - IX

Process Synchronization - II

2

Roadmap

• Semaphores
• Classic Problems of Synchronization

– Bounded Buffer Problem
– Readers and Writers Problem

– Dining-Philosophers Problem

• Monitors
• Conditional Variables
• Sleeping Barber Problem

Mutual Exclusion

3

! Summary of these implementations of mutual exclusion

this will be the
basis for “mutexes”

" Impl. 1 — disabling hardware interrupts
NO: race condition avoided, but can crash the system!

" Impl. 2 — simple lock variable (unprotected)
NO: still suffers from race condition

" Impl. 3 — indivisible lock variable (TSL)
$ YES: works, but requires hardware

" Impl. 4 — no-TSL toggle for two threads
NO: race condition avoided inside, but lockup outside

" Impl. 5 — Peterson’s no-TSL, no-alternation
$ YES: works in software, but processing overhead

Mutual Exclusion

4

! Problem?! Problem: all implementations (2-5) rely on busy waiting
" “busy waiting” means that the process/thread continuously

executes a tight loop until some condition changes

" busy waiting is bad:
% waste of CPU time — the busy process is not doing

anything useful, yet remains “Ready” instead of “Blocked”

% paradox of inversed priority — by looping indefinitely, a
higher-priority process B may starve a lower-priority
process A, thus preventing A from exiting CR and . . .
liberating B! (B is working against its own interest)

--> we need for the waiting process to block, not keep idling!

5

Synchronization Hardware

• Many systems provide hardware support for
critical section code

• Uniprocessors – could disable interrupts
– Currently running code would execute without

preemption
– Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic
hardware instructions

• Atomic = non-interruptable
– Either test memory word and set value
– Or swap contents of two memory words

6

Semaphores
• Synchronization tool for critical section problem
• Semaphore S – integer variable
• Can only be accessed through two standard operations:

• wait() and signal()
• (or P() and V())

• Classical implementation (using busy-waiting)
• wait (S) {

 while S <= 0
 ; // no-op

 S--;
 }

• signal (S) {
 S++;

 }

7

Semaphores as Synchronization Tool

• Counting semaphore – integer value can range over an
unrestricted domain

• Binary semaphore – integer value can range only
between 0 and 1; can be simpler to implement
– Also known as mutex locks

• Provides mutual exclusion
– Semaphore S; // initialized to 1
– wait (S);

 Critical Section
 signal (S);

8

Semaphores without Busy-Waiting

 wait (S){
 S.value--;
 if (S.value < 0) {
 add this process to waiting queue;

 block();
 }
 }

Signal (S){
 S.value++;
 if (S.value <= 0) {
 remove a process P from the waiting queue;
 wakeup(P);
 }
 }

9

Deadlock and Starvation
• Deadlock – two or more processes are waiting indefinitely for an

event that can be caused by only one of the waiting processes
• Let S and Q be two semaphores initialized to 1
 P0 P1

 wait (S); wait (Q);
 . .

 wait (Q); wait (S);
 . .
 . .
 signal (S); signal (Q);
 signal (Q); signal (S);

• Starvation – indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

10

Classical Problems of Synchronization

• Bounded-Buffer Problem
• Readers and Writers Problem
• Dining-Philosophers Problem

11

Bounded-Buffer Problem

• Shared buffer with N slots to store at most N
items

• Producer processes data items and puts into the
buffer

• Consumer gets the data items from the buffer
• Variable empty keeps number of empty slots in

the butter
• Variable full keeps number of full items in the

buffer

12

Bounded Buffer – 1 Semaphore Soln
• The structure of the producer process

 int empty=N, full=0;

 do {
 // produce an item

 wait (mutex);

 if (empty> 0){

 // add the item to the buffer

 empty --; full++;

 }

 signal (mutex);

 } while (true);

13

Bounded Buffer – 1 Semaphore Soln
• The structure of the consumer process

 do {

 wait (mutex);
 if (full>0){
 // remove an item from buffer
 full--; empty++;
 }
 signal (mutex);

 // consume the removed item

 } while (true);

consume non-existing item!
14

Bounded Buffer – 1 Semaphore Soln - II
• The structure of the producer process

 int empty=N, full=0;

 do {
 // produce an item

 while (empty == 0){}

 wait (mutex);

 // add the item to the buffer

 empty --; full++;

 signal (mutex);

 } while (true);

15

Bounded Buffer – 1 Semaphore Soln - II
• The structure of the consumer process

 do {

 while (full == 0){}

 wait (mutex);

 // remove an item from buffer

 full--; empty++;

 signal (mutex);

 // consume the removed item

 } while (true);

* Mutual Exclusion not preserved!
16

Bounded Buffer – 2 Semaphore Soln
• The structure of the producer process

 do {

 // produce an item

 wait (empty);

 // add the item to the buffer

 signal (full);

 } while (true);

17

Bounded Buffer – 2 Semaphore Soln
• The structure of the consumer process

 do {

 wait (full);

 // remove an item from buffer

 signal (empty);

 // consume the removed item

 } while (true);

* Mutual Exclusion not preserved!
18

Bounded Buffer - 3 Semaphore Soln

• Semaphore mutex for access to the buffer,
initialized to 1

• Semaphore full (number of full buffers)
initialized to 0

• Semaphore empty (number of empty buffers)
initialized to N

19

Bounded Buffer - 3 Semaphore Soln
• The structure of the producer process

 do {

 // produce an item

 wait (empty);

 wait (mutex);

 // add the item to the buffer

 signal (mutex);

 signal (full);

 } while (true);

20

Bounded Buffer - 3 Semaphore Soln
• The structure of the consumer process

 do {

 wait (full);

 wait (mutex);

 // remove an item from buffer

 signal (mutex);

 signal (empty);

 // consume the removed item

 } while (true);

21

Readers-Writers Problem

•Multiple Readers and writers concurrently accessing
the same database.

•Multiple Readers accessing at the same time --> OK

•When there is a Writer accessing, there should be no
other processes accessing at the same time.

22

Readers-Writers Problem

• The structure of a writer process

 do {
 wait (wrt) ;

 // writing is performed

 signal (wrt) ;
 } while (true)

23

Readers-Writers Problem (Cont.)
• The structure of a reader process

 do {
 wait (mutex) ;
 readercount ++ ;
 if (readercount == 1) wait (wrt) ;
 signal (mutex)

 // reading is performed

 wait (mutex) ;
 readercount - - ;
 if readercount == 0) signal (wrt) ;
 signal (mutex) ;
 } while (true)

24

Dining Philosophers Problem
• Five philosophers spend their time eating and
thinking.

• They are sitting in front of a round table with
spaghetti served.

•There are five plates at the table and five
chopsticks set between the plates.

• Eating the spaghetti requires the use of two
chopsticks which the philosophers pick up one
at a time.

•Philosophers do not talk to each other.

•Semaphore chopstick [5] initialized to 1

25

Dining-Philosophers Problem (Cont.)

• The structure of Philosopher i:

Do {
 wait (chopstick[i]);
 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);
 signal (chopstick[(i + 1) % 5]);

 // think

} while (true) ;

26

To Prevent Deadlock

• Ensures mutual exclusion, but does not prevent
deadlock

• Allow philosopher to pick up her chopsticks only if both
chopsticks are available (i.e. in critical section)

• Use an asymmetric solution: an odd philosopher picks
up first her left chopstick and then her right chopstick;
and vice versa

• Exercise: Write the algorithms for the above solutions

27

Problems with Semaphores
• Wrong use of semaphore operations:

– semaphores A and B, initialized to 1
 P0 P1

wait (A); wait(B)
wait (B); wait(A)

&Deadlock

– signal (mutex) …. wait (mutex)
& violation of mutual exclusion

– wait (mutex) … wait (mutex)
&Deadlock

– Omitting of wait (mutex) or signal (mutex) (or both)
& violation of mutual exclusion or deadlock

28

Semaphores

• inadequate in dealing with deadlocks
• do not protect the programmer from the easy mistakes

of taking a semaphore that is already held by the same
process, and forgetting to release a semaphore that has
been taken

• mostly used in low level code, eg. operating systems
• the trend in programming language development,

though, is towards more structured forms of
synchronization, such as monitors

29

Monitors
• A high-level abstraction that provides a convenient and effective

mechanism for process synchronization
• Only one process may be active within the monitor at a time

monitor monitor-name
{
 // shared variable declarations
 procedure P1 (…) { …. }
 …
 procedure Pn (…) {……}

 Initialization code (….) { … }
 …
 }
}

• A monitor procedure takes the lock before doing anything else, and
holds it until it either finishes or waits for a condition

30

Monitor - Example

As a simple example, consider a monitor for performing transactions on a bank account.

monitor account {
 int balance := 0

 function withdraw(int amount) {
 if amount < 0 then error "Amount may not be negative"
 else if balance < amount then error "Insufficient funds"
 else balance := balance - amount
 }

 function deposit(int amount) {
 if amount < 0 then error "Amount may not be negative"
 else balance := balance + amount
 }
}

31

Condition Variables

• Provide additional synchronization mechanism
• condition x, y;

• Two operations on a condition variable:
– x.wait () – a process invoking this operation is

 suspended
– x.signal () – resumes one of processes (if any) that

 invoked x.wait ()

If no process suspended, x.signal() operation has no
effect.

32

Solution to Dining Philosophers using Monitors

monitor DP
 {
 enum { THINKING; HUNGRY, EATING) state [5] ;
 condition self [5]; //to delay philosopher when he is

 hungry but unable to get chopsticks

initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }

void pickup (int i) {
 state[i] = HUNGRY;
 test(i);//only if both neighbors are not eating
 if (state[i] != EATING) self [i].wait;
 }

33

Solution to Dining Philosophers (cont)

 void test (int i) {
 if ((state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING) &&
 (state[(i + 4) % 5] != EATING)) {
 state[i] = EATING ;
 self[i].signal () ;
 }
 }

 void putdown (int i) {
 state[i] = THINKING;
 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);
 }
}
➡ No two philosophers eat at the same time
➡ No deadlock
➡ But starvation can occur!

34

Sleeping Barber Problem

• Based upon a hypothetical barber shop with one barber,
one barber chair, and a number of chairs for waiting
customers

• When there are no customers, the barber sits in his
chair and sleeps

• As soon as a customer arrives, he either awakens the
barber or, if the barber is cutting someone else's hair,
sits down in one of the vacant chairs

• If all of the chairs are occupied, the newly arrived
customer simply leaves

35

Solution

• Use three semaphores: one for any waiting customers, one for the barber
(to see if he is idle), and a mutex

• When a customer arrives, he attempts to acquire the mutex, and waits
until he has succeeded.

• The customer then checks to see if there is an empty chair for him (either
one in the waiting room or the barber chair), and if none of these are
empty, leaves.

• Otherwise the customer takes a seat – thus reducing the number available
(a critical section).

• The customer then signals the barber to awaken through his semaphore,
and the mutex is released to allow other customers (or the barber) the
ability to acquire it.

• If the barber is not free, the customer then waits. The barber sits in a
perpetual waiting loop, being awakened by any waiting customers. Once
he is awoken, he signals the waiting customers through their semaphore,
allowing them to get their hair cut one at a time.

36

Implementation:

+ Semaphore Customers
+ Semaphore Barber
+ Semaphore accessSeats (mutex)
+ int NumberOfFreeSeats

The Barber(Thread):

while(true) //runs in an infinite loop
{
 Customers.wait() //tries to acquire a customer - if none is available he's going to

sleep
 accessSeats.wait() //at this time he has been awaken -> want to modify the number

of available seats
 NumberOfFreeSeats++ //one chair gets free
 Barber.signal() // the barber is ready to cut
 accessSeats.signal() //we don't need the lock on the chairs anymore //here the

barber is cutting hair
}

37

The Customer(Thread):

while (notCut) //as long as the customer is not cut
{
 accessSteats.wait() //tries to get access to the chairs
 if (NumberOfFreeSeats>0) { //if there are any free seats

NumberOfFreeSeats -- //sitting down on a chair
 Customers.signal() //notify the barber, who's waiting that there is

a customer
 accessSeats.signal() // don't need to lock the chairs anymore
 Barber.wait() // now it's this customers turn, but wait if the barber

is busy
 notCut = false
 } else // there are no free seats //tough luck
 accessSeats.signal() //but don't forget to release the lock on the

seats }

38

Summary

Hmm.
.

• HW-2 out next Tuesday!
• Next Lecture: Deadlocks - I

• Semaphores
• Classic Problems of Synchronization

– Bounded Buffer Problem
– Readers and Writers Problem

– Dining-Philosophers Problem

• Monitors
• Conditional Variables
• Sleeping Barber Problem

39

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

