
1

CSE 421/521 - Operating Systems
Fall 2012

Tevfik Koşar

University at Buffalo
October 2nd, 2012

Lecture - X

Deadlocks - I

2

Roadmap

• Synchronization structures
– Problems with Semaphores

– Monitors
– Condition Variables

• The Deadlock Problem
– Characterization of Deadlock

– Resource Allocation Graph
– Deadlock Prevention

– Deadlock Detection

3

Problems with Semaphores
• Wrong use of semaphore operations:

– semaphores A and B, initialized to 1
 P0 P1

wait (A); wait(B)

wait (B); wait(A)

!Deadlock

– signal (mutex) …. wait (mutex)
! violation of mutual exclusion

– wait (mutex) … wait (mutex)
!Deadlock

– Omitting of wait (mutex) or signal (mutex) (or both)
! violation of mutual exclusion or deadlock

4

Semaphores

• inadequate in dealing with deadlocks
• do not protect the programmer from the easy mistakes

of taking a semaphore that is already held by the same
process, and forgetting to release a semaphore that has
been taken

• mostly used in low level code, eg. operating systems
• the trend in programming language development,

though, is towards more structured forms of
synchronization, such as monitors

5

Monitors
• A high-level abstraction that provides a convenient and effective

mechanism for process synchronization
• Only one process may be active within the monitor at a time

monitor monitor-name
{
 // shared variable declarations
 procedure P1 (…) { …. }
 …
 procedure Pn (…) {……}

 Initialization code (….) { … }
 …
 }
}

• A monitor procedure takes the lock before doing anything else, and
holds it until it either finishes or waits for a condition

6

Monitor - Example

As a simple example, consider a monitor for performing transactions on a bank account.

monitor account {
 int balance := 0

 function withdraw(int amount) {
 if amount < 0 then error "Amount may not be negative"
 else if balance < amount then error "Insufficient funds"
 else balance := balance - amount
 }

 function deposit(int amount) {
 if amount < 0 then error "Amount may not be negative"
 else balance := balance + amount
 }
}

7

Condition Variables

• Provide additional synchronization mechanism
• condition x, y;

• Two operations on a condition variable:
– x.wait () – a process invoking this operation is

 suspended
– x.signal () – resumes one of processes (if any) that

 invoked x.wait ()

If no process suspended, x.signal() operation has no
effect.

8

Solution to Dining Philosophers using Monitors

monitor DP
 {
 enum { THINKING; HUNGRY, EATING) state [5] ;
 condition self [5]; //to delay philosopher when he is

 hungry but unable to get chopsticks

initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }

void pickup (int i) {
 state[i] = HUNGRY;
 test(i);//only if both neighbors are not eating
 if (state[i] != EATING) self [i].wait;
 }

9

Solution to Dining Philosophers (cont)

 void test (int i) {
 if ((state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING) &&
 (state[(i + 4) % 5] != EATING)) {
 state[i] = EATING ;
 self[i].signal () ;
 }
 }

 void putdown (int i) {
 state[i] = THINKING;
 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);
 }
}
➡ No two philosophers eat at the same time
➡ No deadlock
➡ But starvation can occur!

10

Sleeping Barber Problem

• Based upon a hypothetical barber shop with one barber,
one barber chair, and a number of chairs for waiting
customers

• When there are no customers, the barber sits in his
chair and sleeps

• As soon as a customer arrives, he either awakens the
barber or, if the barber is cutting someone else's hair,
sits down in one of the vacant chairs

• If all of the chairs are occupied, the newly arrived
customer simply leaves

11

Solution

• Use three semaphores: one for any waiting customers, one for the barber
(to see if he is idle), and a mutex

• When a customer arrives, he attempts to acquire the mutex, and waits
until he has succeeded.

• The customer then checks to see if there is an empty chair for him (either
one in the waiting room or the barber chair), and if none of these are
empty, leaves.

• Otherwise the customer takes a seat – thus reducing the number available
(a critical section).

• The customer then signals the barber to awaken through his semaphore,
and the mutex is released to allow other customers (or the barber) the
ability to acquire it.

• If the barber is not free, the customer then waits. The barber sits in a
perpetual waiting loop, being awakened by any waiting customers. Once
he is awoken, he signals the waiting customers through their semaphore,
allowing them to get their hair cut one at a time.

12

Implementation:

+ Semaphore Customers
+ Semaphore Barber
+ Semaphore accessSeats (mutex)
+ int NumberOfFreeSeats

The Barber(Thread):

while(true) //runs in an infinite loop
{
 Customers.wait() //tries to acquire a customer - if none is available he's going to

sleep
 accessSeats.wait() //at this time he has been awaken -> want to modify the number

of available seats
 NumberOfFreeSeats++ //one chair gets free
 Barber.signal() // the barber is ready to cut
 accessSeats.signal() //we don't need the lock on the chairs anymore //here the

barber is cutting hair
}

13

The Customer(Thread):

while (notCut) //as long as the customer is not cut
{
 accessSteats.wait() //tries to get access to the chairs
 if (NumberOfFreeSeats>0) { //if there are any free seats

NumberOfFreeSeats -- //sitting down on a chair
 Customers.signal() //notify the barber, who's waiting that there is

a customer
 accessSeats.signal() // don't need to lock the chairs anymore
 Barber.wait() // now it's this customers turn, but wait if the barber

is busy
 notCut = false
 } else // there are no free seats //tough luck
 accessSeats.signal() //but don't forget to release the lock on the

seats }

14

The Deadlock Problem

• A set of blocked processes each holding a resource and
waiting to acquire a resource held by another process
in the set.

• Example
– System has 2 disk drives.

– P1 and P2 each hold one disk drive and each needs another one.

• Example
– semaphores A and B, initialized to 1

 P0 P1

wait (A); wait(B)

wait (B); wait(A)

15

Bridge Crossing Example

• Traffic only in one direction.
• Each section of a bridge can be viewed as a

resource.
• If a deadlock occurs, it can be resolved if

one car backs up (preempt resources and
rollback).

• Several cars may have to be backed up if a
deadlock occurs.

16

Deadlock vs Starvation

• Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

• Starvation – indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

17

Deadlock Characterization

1. Mutual exclusion: nonshared resources;
only one process at a time can use a specific
resource

2. Hold and wait: a process holding at least
one resource is waiting to acquire additional
resources held by other processes

3. No preemption: a resource can be released
only voluntarily by the process holding it,
after that process has completed its task

Deadlock can arise if four conditions hold simultaneously.

18

Deadlock Characterization (cont.)

4. Circular wait: there exists a set {P0, P1, …,
P0} of waiting processes such that P0 is
waiting for a resource that is held by P1, P1
is waiting for a resource that is held by

 P2, …, P
n–1 is waiting for a resource that is

held by
Pn, and Pn is waiting for a resource that is
held by P0.

Deadlock can arise if four conditions hold simultaneously.

19

Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• P
i
 requests instance of R

j

• P
i
 is holding an instance of R

j
Pi

Pi

Rj

Rj

20

Example of a Resource Allocation Graph

21

Basic Facts

• If graph contains no cycles ⇒ no deadlock.

• If graph contains a cycle ⇒ there may be a
deadlock
– if only one instance per resource type, then deadlock.

– if several instances per resource type, possibility of
deadlock.

22

Resource Allocation Graph – Example 1

! No Cycle, no Deadlock

23

Resource Allocation Graph – Example 2

! Cycle, but no Deadlock

24

Resource Allocation Graph – example 3

! Deadlock

Which Processes
deadlocked?

! P1 & P2 & P3

(Silberschatz pp.249-251)
to

Exercise

25 26

Rule of Thumb

• A cycle in the resource allocation graph
– Is a necessary condition for a deadlock

– But not a sufficient condition

27

Methods for Handling Deadlocks

• Ensure that the system will never enter a
deadlock state.
!deadlock prevention or avoidance

• Allow the system to enter a deadlock state and
then recover.
!deadlock detection

• Ignore the problem and pretend that deadlocks
never occur in the system
! Programmers should handle deadlocks (UNIX, Windows)

28

Deadlock Prevention

• Mutual Exclusion – not required for sharable resources; must hold
for nonsharable resources.
– Eg. read-only files

• Hold and Wait – must guarantee that whenever a process requests
a resource, it does not hold any other resources.
1. Require process to request and be allocated all its resources before it

begins execution
2. or allow process to request resources only when the process has

none.
Example: Read from DVD to memory, then print.
 1. holds printer unnecessarily for the entire execution

• Low resource utilization
 2. may never get the printer later

• starvation possible

! Ensure one of the deadlock conditions cannot hold
!Restrain the ways request can be made.

29

Deadlock Prevention (Cont.)

• No Preemption –
– If a process that is holding some resources requests

another resource that cannot be immediately allocated to
it, then all resources currently being held are released.

– Preempted resources are added to the list of resources for
which the process is waiting.

– Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

• Circular Wait – impose a total ordering of all
resource types, and require that each process
requests resources in an increasing order of
enumeration.

(Silberschatz pp.249-251)
to

Exercise

30

31

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

32

Single Instance of Each Resource Type

• Maintain wait-for graph
– Nodes are processes.

– P
i
 → P

j
if P

i
 is waiting for P

j
.

Resource-Allocation Graph Corresponding wait-for graph

33

Single Instance of Each Resource Type

• Periodically invoke an algorithm that
searches for a cycle in the graph.

• An algorithm to detect a cycle in a graph
requires an order of n2 operations, where n
is the number of vertices in the graph.

• Only good for single-instance resource
allocation systems.

34

Several Instances of a Resource Type

• Available: A vector of length m indicates the
number of available resources of each type.

• Allocation: An n x m matrix defines the number
of resources of each type currently allocated to
each process.

• Request: An n x m matrix indicates the current
request of each process. If Request [i

j
] = k, then

process P
i
 is requesting k more instances of

resource type. R
j
.

35

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:
(a) Work = Available

(b) For i = 0,2, …, n-1, if Allocation
i
 ≠ 0, then

Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:
(a) Finish[i] == false

(b) Request
i
 ≤ Work

If no such i exists, go to step 4.

36

Detection Algorithm (Cont.)

3. Work = Work + Allocation
i

Finish[i] = true

go to step 2.

4. If Finish[i] == false, for some i, 0 ≤ i ≤ n-1, then the
system is in deadlock state. Moreover, if Finish[i] ==
false, then P

i
 is deadlocked.

Algorithm requires an order of O(m x n2) operations to detect whether the
system is in deadlocked state.

37

Example of Detection Algorithm
• Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances).

• Snapshot at time T0:

 Allocation Request Available

 A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] =
true for all i.

38

Example (Cont.)

• P2 requests an additional instance of type C.

 Request

 A B C

 P0 0 0 0

 P1 2 0 1

 P2 0 0 1

 P3 1 0 0

 P4 0 0 2

• State of system?
– Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests.

– Deadlock exists, consisting of processes P1, P2, P3, and P4.

39

Summary

Hmm.
.

• Next Lecture: Deadlocks - II

• Synchronization structures
– Problems with Semaphores

– Monitors
– Condition Variables

• The Deadlock Problem
– Characterization of Deadlock

– Resource Allocation Graph
– Deadlock Prevention

– Deadlock Detection

40

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

