CSE 421/521 - Operating Systems Fall 2012

> Lecture - XI DEADLOCKS - II

> > Tevfik Koşar

University at Buffalo October 4th, 2012

Detection Algorithm (Cont.)

- 3. Work = Work + Allocation_i
 Finish[i] = true
 go to step 2.
- 4. If Finish[i] == false, for some $i, 0 \le i \le n-1$, then the system is in deadlock state. Moreover, if Finish[i] == false, then P_i is deadlocked.

Algorithm requires an order of $O(m \ge n^2)$ operations to detect whether the system is in deadlocked state.

11

Example (Cont.)

• P_2 requests an additional instance of type C.

<u>All</u>	<u>ocation</u>	<u>Request</u>	Available	Work
	АВС	АВС	АВС	ABC
P ₀	010	000	000	000
P ₁	200	202		
P ₂	303	001		
P ₃	211	100		
P_4	002	002		

- State of system?
 - Can reclaim resources held by process P_0 , but insufficient resources to fulfill other processes; requests.
 - Deadlock exists, consisting of processes P_1 , P_2 , P_3 , and $P_{4_{13}}$

Recovery from Deadlock: Resource Preemption

- Selecting a victim minimize cost.
- Rollback return to some safe state, restart process for that state.
- Starvation same process may always be picked as victim, include number of rollback in cost factor.

Deadlock Avoidance

Deadlock Prevention: prevent deadlocks by restraining resources and making sure one of 4 necessary conditions for a deadlock does not hold. (system design)

--> possible side effect: low device utilization and reduced system throughput

Deadlock Avoidance: Requires that the system has some additional *a priori* information available. (dynamic request check)

i.e. request disk and then printer..

or request at most n resources

--> allows more concurrency

• Similar to the difference between a traffic light and a police officer directing the traffic!

E	zamc	ole of Sa	afe Sta	ate	
 Five processes P₀ through P₄; three resource types A (7 instances), B (2 instances), and C (6 instances). Snapshot at time T₀: 					
Allo	cation l	Request .	Availabl	e Work	
A	ВС	ABC	ABC	ABC	
<i>P</i> ₀ 0	10	000	000	000	
<i>P</i> ₁ 2	00	202			
P ₂ 3	03	000			
P ₃ 2	11	100			
P ₄ 0	0 2	002			
 Sequence < P₀, P₂, P₃, P₁, P₄ > represents a safe state 					
					20

 Example of Banker's Algorithm The content of the matrix. Need is defined to be Max - Allocation 	
Max - Allocation. Need	
A B C	
P ₀ 743	
P ₁ 122	
$P_2 600$	
P ₃ 011	
P ₄ 431	
	20

ſ

Snapshot at	time T _o):			
<u>A</u>	llocatior	<u>n Max</u>	<u>Available</u>	<u>Need</u>	
	ABC	ABC	A B C	АВС	
P ₀	010	753	332	743	
P ₁	200	322		122	
P_2	302	902		600	
P ₂	211	222		011	
P ₄	002	433		431	

Example of Banker's Algorithm

• Snapshot at time T₀:

	<u>Allocation</u>	<u>Max</u>	<u>Available</u>	<u>Need</u>
	A B C	ABC	A B C	ABC
Ρ	010	753	332	743
Ρ	1 200	322		122
Ρ	302	902		600
Р	- 211	222		011
Ρ	002	433		431

The system is in a safe state since the sequence
 < P₁, P₃, P₄, P₂, P₀> satisfies safety criteria.

22

