
1

CSE 421/521 - Operating Systems
Fall 2012

Tevfik Koşar

University at Buffalo
October 4th, 2012

Lecture - XI

Deadlocks - II

2

Roadmap

• Deadlocks
– Deadlock Prevention
– Deadlock Detection
– Deadlock Recovery
– Deadlock Avoidance

3

Deadlock Prevention

• Mutual Exclusion – not required for sharable resources; must hold
for nonsharable resources.
– Eg. read-only files

• Hold and Wait – must guarantee that whenever a process requests
a resource, it does not hold any other resources.
1. Require process to request and be allocated all its resources before it

begins execution
2. or allow process to request resources only when the process has

none.
Example: Read from DVD to memory, then print.
 1. holds printer unnecessarily for the entire execution

• Low resource utilization
 2. may never get the printer later

• starvation possible

! Ensure one of the deadlock conditions cannot hold
!Restrain the ways request can be made.

4

Deadlock Prevention (Cont.)

• No Preemption –
– If a process that is holding some resources requests

another resource that cannot be immediately allocated to
it, then all resources currently being held are released.

– Preempted resources are added to the list of resources for
which the process is waiting.

– Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

• Circular Wait – impose a total ordering of all
resource types, and require that each process
requests resources in an increasing order of
enumeration.

(Silberschatz pp.249-251)
to

Exercise

5

6

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

7

Single Instance of Each Resource Type

• Maintain wait-for graph
– Nodes are processes.
– P

i
 → P

j
if P

i
 is waiting for P

j
.

Resource-Allocation Graph Corresponding wait-for graph

8

Single Instance of Each Resource Type

• Periodically invoke an algorithm that
searches for a cycle in the graph.

• An algorithm to detect a cycle in a graph
requires an order of n2 operations, where n
is the number of vertices in the graph.

• Only good for single-instance resource
allocation systems.

9

Several Instances of a Resource Type

• Available: A vector of length m indicates the
number of available resources of each type.

• Allocation: An n x m matrix defines the number
of resources of each type currently allocated to
each process.

• Request: An n x m matrix indicates the current
request of each process. If Request [i

j
] = k, then

process P
i
 is requesting k more instances of

resource type. R
j
.

10

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:
(a) Work = Available

(b) For i = 0,1, 2, …, n-1, Finish[i] = false.

2. Find an index i such that both:
(a) Finish[i] == false

(b) Request
i
 ≤ Work

If no such i exists, go to step 4.

11

Detection Algorithm (Cont.)

3. Work = Work + Allocation
i

Finish[i] = true

go to step 2.

4. If Finish[i] == false, for some i, 0 ≤ i ≤ n-1, then the
system is in deadlock state. Moreover, if Finish[i] ==
false, then P

i
 is deadlocked.

Algorithm requires an order of O(m x n2) operations to detect whether the
system is in deadlocked state.

12

Example of Detection Algorithm
• Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances).

• Snapshot at time T0:

 Allocation Request Available Work

 A B C A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] =
true for all i.

13

Example (Cont.)

• P2 requests an additional instance of type C.

 Allocation Request Available Work

 A B C A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 1

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

• State of system?
– Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests.
– Deadlock exists, consisting of processes P1, P2, P3, and P4.

Recovery from Deadlock: Process Termination

• Abort all deadlocked processes. --> expensive

• Abort one process at a time until the deadlock cycle is
eliminated. --> overhead of deadlock detection alg.

• In which order should we choose to abort?
– Priority of the process.
– How long process has computed, and how much longer to

completion.
– Resources the process has used.
– Resources process needs to complete.
– How many processes will need to be terminated.
– Is process interactive or batch?

24

Recovery from Deadlock: Resource Preemption

• Selecting a victim – minimize cost.

• Rollback – return to some safe state, restart
process for that state.

• Starvation – same process may always be picked
as victim, include number of rollback in cost
factor.

25

3

Deadlock Avoidance
Deadlock Prevention: prevent deadlocks by restraining
resources and making sure one of 4 necessary conditions
for a deadlock does not hold. (system design)
--> possible side effect: low device utilization and reduced
system throughput
Deadlock Avoidance: Requires that the system has some
additional a priori information available. (dynamic request
check)
i.e. request disk and then printer..
or request at most n resources
--> allows more concurrency
• Similar to the difference between a traffic light and a police officer

directing the traffic!

4

Deadlock Avoidance

• Simplest and most useful model requires that
each process declare the maximum number of
resources of each type that it may need.

• The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition.

• Resource-allocation state is defined by the
number of available and allocated resources, and
the maximum demands of the processes.

6

Safe State

• A state is safe if the system can allocate resources to
each process (upto its maximum) in some order and
can still avoid a deadlock.

• When a process requests an available resource,
system must decide if immediate allocation leaves
the system in a safe state.

• System is in safe state if there exists a safe sequence
of all processes.

7

Safe State

• Sequence <P1, P2, …, Pn> is safe if for each Pi, the
resources that Pi can still request can be satisfied by
currently available resources + resources held by all
the Pj, with j<i.
– If Pi resource needs are not immediately available, then P

i

can wait until all P
j
 have finished.

– When P
j
 is finished, Pi can obtain needed resources,

execute, return allocated resources, and terminate.
– When P

i
 terminates, P

i+1 can obtain its needed resources,
and so on.

• If no such sequence exists, the state is unsafe!

20

Example of Safe State
• Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances).

• Snapshot at time T0:

 Allocation Request Available Work

 A B C A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> represents a safe state

8

Basic Facts

• If a system is in safe state ⇒ no
deadlocks.

• If a system is in unsafe state ⇒ possibility
of deadlock.

• Avoidance ⇒ ensure that a system will
never enter an unsafe state.

9

Safe, Unsafe , Deadlock State

Example
Consider a system with 3 processes and 12 disks.
At t = t0;

 Maximum Needs Current Allocation

P1 10 5

P2 4 2

P3 9 2

23

Example (cont.)

Consider a system with 3 processes and 12 disks.
At t = t1;

 Maximum Needs Current Allocation

P1 10 5

P2 4 2

P3 9 3

24

12

Resource-Allocation Graph Algorithm

• Claim edge P
i
 → R

j
 indicated that process P

j

may request resource R
j
; represented by a

dashed line.

• Claim edge converts to request edge when a
process requests a resource.

• When a resource is released by a process,
assignment edge reconverts to a claim edge.

• Resources must be claimed a priori in the
system.

13

Resource-Allocation Graph For Deadlock Avoidance

14

Unsafe State In Resource-Allocation Graph

15

Banker’s Algorithm

• Works for multiple resource instances.

• Each process declares maximum # of resources it
may need.

• When a process requests a resource, it may have
to wait if this leads to an unsafe state.

• When a process gets all its resources it must
return them in a finite amount of time.

16

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] =
k, there are k instances of resource type R

j

available.

• Max: n x m matrix. If Max [i,j] = k, then process
P

i
 may request at most k instances of resource

type R
j
.

• Allocation: n x m matrix. If Allocation[i,j] = k
then P

i
 is currently allocated k instances of R

j.

• Need: n x m matrix. If Need[i,j] = k, then P
i
 may

need k more instances of R
j to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types.

17

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available

Finish [i] = false for i = 1,2, …, n.

2. Find an i such that both:
(a) Finish [i] = false

(b) Need
i
 ≤ Work

If no such i exists, go to step 4.

3. Work = Work + Allocation
i

Finish[i] = true

go to step 2.
4. If Finish [i] == true for all i, then the system is in a

safe state.

18

Resource-Request Algorithm for Process P
i

Let Request
i
be the request vector for process P

i
.

If Request
i [j] = k then process P

i
 wants k instances of

resource type R
j.

1. If Request
i
 ≤ Need

i
 go to step 2. Otherwise, raise error

condition, since process has exceeded its maximum claim.
2. If Request

i
 ≤ Available, go to step 3. Otherwise P

i
 must

wait, since resources are not available.
3. Pretend to allocate requested resources to P

i
 by

modifying the state as follows:
 Available = Available - Request

i
;

 Allocation
i = Allocation

i
 + Request

i
;

 Need
i
 = Need

i
 – Request

i
;

 If safe ⇒ the resources are allocated to Pi.

 If unsafe ⇒ Pi must wait, and the old resource-allocation

state is restored

19

Example of Banker’s Algorithm

• 5 processes P0 through P4; 3 resource types:
A (10 instances), B (5 instances), and C (7 instances).

• Snapshot at time T0:

 Allocation Max Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

20

• The content of the matrix. Need is defined to be
Max – Allocation.

 Need

 A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

Example of Banker’s Algorithm

21

Example of Banker’s Algorithm

• Snapshot at time T0:

 Allocation Max Available
 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

Need

A B C

7 4 3

1 2 2

6 0 0
0 1 1

4 3 1

22

Example of Banker’s Algorithm

• Snapshot at time T0:

 Allocation Max Available
 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

Need

A B C

7 4 3

1 2 2

6 0 0
0 1 1

4 3 1

• The system is in a safe state since the sequence
< P1, P3, P4, P2, P0> satisfies safety criteria.

23

Example: P1 Requests (1,0,2)
• Check that Request ≤ Available (that is, (1,0,2) ≤

(3,3,2) ⇒ true.

 Allocation Need Available

 A B C A B C A B C

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0

 P2 3 0 1 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence
<P1, P3, P4, P0, P2> satisfies safety requirement.

• Can request for (3,3,0) by P4 be granted?
• Can request for (0,2,0) by P0 be granted?

37

Summary

Hmm.
.

• Deadlocks
– Deadlock Prevention
– Deadlock Detection
– Deadlock Recovery
– Deadlock Avoidance

38

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

