
1

CSE 421/521 - Operating Systems
Fall 2012

Tevfik Koşar

University at Buffalo
October 11th, 2012

Lecture - XII

Midterm Review

Midterm Exam

October 16th, Tuesday
 9:30am-10:50am

 @101 Davis

Chapters included in the Midterm Exam

• Ch. 1 (Introduction)

• Ch. 2 (OS Structures)

• Ch. 3 (Processes)

• Ch. 4 (Threads)

• Ch. 5 (CPU Scheduling)

• Ch. 6 (Synchronization)

• Ch. 7 (Deadlocks)

1 & 2: Overview

• Basic OS Components
• OS Design Goals & Responsibilities

• OS Design Approaches
• Kernel Mode vs User Mode

• System Calls

4

3. Processes

• Process Creation & Termination
• Context Switching

• Process Control Block (PCB)
• Process States

• Process Queues & Scheduling

• Interprocess Communication

5

4. Threads

• Concurrent Programming
• Threads vs Processes

• Threading Implementation & Multi-threading Models
• Other Threading Issues

– Thread creation & cancellation
– Signal handling
– Thread pools

– Thread specific data

6

5. CPU Scheduling

• Scheduling Criteria & Metrics
• Scheduling Algorithms

– FCFS, SJF, Priority, Round Robing
– Preemptive vs Non-preemptive

– Gantt charts & measurement of different metrics

• Multilevel Feedback Queues
• Estimating CPU bursts

7

6. Synchronization

• Race Conditions
• Critical Section Problem

• Mutual Exclusion
• Semaphores

• Monitors

• Classic Problems of Synchronization
– Bounded Buffer

– Readers-Writers
– Dining Philosophers

– Sleeping Barber

8

7. Deadlocks

• Deadlock Characterization
• Deadlock Detection

– Resource Allocation Graphs
– Wait-for Graphs
– Deadlock detection algorithm

• Deadlock Avoidance (Bankers alg. excluded)

• Deadlock Recovery

9

Exercise Questions

10

Question 1

Are each of the following statements True or False? Circle the correct answer.

(a) In multiprogramming, it is safe to have an arbitrary number of threads/
 processes reading a piece of data at once. (True / False)
(b) Kernel mode can directly access hardware devices, user mode cannot.
 (True / False)
(c) Deadlocks cannot arise without semaphores. (True / False)
(d) Semaphores are destroyed by the OS when your process exits. (True /
 False)
(e) A process that is blocked is not given any processor time by the

scheduler until the condition that caused the blocking no longer applies.
(True / False)

11

Solution 1

Are each of the following statements True or False? Circle the correct answer.

(a) In multiprogramming, it is safe to have an arbitrary number of threads/
 processes reading a piece of data at once. (True / False) --True
(b) Kernel mode can directly access hardware devices, user mode cannot.
 (True / False) -- True
(c) Deadlocks cannot arise without semaphores. (True / False) -- False
(d) Semaphores are destroyed by the OS when your process exits. (True /
 False) -- False
(e) A process that is blocked is not given any processor time by the

scheduler until the condition that caused the blocking no longer applies.
(True / False) -- True

Question 2-a

A system that meets the four deadlock conditions will always/
sometimes/never result in deadlock?

13

Solution 2-a

A system that meets the four deadlock conditions will always/
sometimes/never result in deadlock?

Sometimes – meeting four deadlock conditions is necessary
for a deadlock to occur, but not sufficient.

14

Question 2-b

Round-robin scheduling always/sometimes/never results in
more context switches than FCFS?

15

Solution 2-b

Round-robin scheduling always/sometimes/never results in
more context switches than FCFS?

Sometimes – if every job has an execution time less than the
quantum, then it has the same number as FCFS.

16

Question 2-c

Which of the following scheduling algorithms can lead to
starvation (FIFO/Shortest Job First/Priority/Round Robin)?

17

Solution 2-c

Which of the following scheduling algorithms can lead to
starvation (FIFO/Shortest Job First/Priority/Round Robin)?

SJF, Priority – in either approach, the jobs with lower priority
or the long jobs may never get executed depending on the
arrival pattern of the jobs.

18

Question 3

Consider the above set of processes.
a) Draw Gantt chart illustrating the execution of these
processes using Shortest Job First (Preemptive)
algorithm.
b) What is the waiting time of each process
c) What is the turnaround time of each process

19 20

Question 4

21

Question 4 (cont)

22

Solution 4

Question 5

Assume S and T are binary semaphores, and X, Y, Z are
processes. X and Y are identical processes and consist of the
following four statements:

 P(S); P(T); V(T); V(S)
And, process Z consists of the following statements:
 P(T); P(S); V(S); V(T)
Would it be safer to run X and Y together or to run X and Z
together? Please justify your answer.

23

Solution 5

Assume S and T are binary semaphores, and X, Y, Z are
processes. X and Y are identical processes and consist of the
following four statements:

 P(S); P(T); V(T); V(S)
And, process Z consists of the following statements:
 P(T); P(S); V(S); V(T)
Would it be safer to run X and Y together or to run X and Z
together? Please justify your answer.

24

Answer: It is safer to run X and Y together since they request
resources in the same order, which eliminates the circular wait
condition needed for deadlock.

Question 6
Remember that if the semaphore operations Wait and Signal are not executed
atomically, then mutual exclusion may be violated. Assume that Wait and Signal are
implemented as below:

Describe a scenario of context switches where two threads, T1 and T2, can both
enter a critical section guarded by a single mutex semaphore as a result of a lack of
atomicity.

25

void Signal (Semaphore S) {
S.count = S.count + 1;

}

void Wait (Semaphore S) {
while (S.count <= 0) {}
S.count = S.count - 1;

}

Solution 6
Remember that if the semaphore operations Wait and Signal are not executed
atomically, then mutual exclusion may be violated. Assume that Wait and Signal are
implemented as below:

Describe a scenario of context switches where two threads, T1 and T2, can both
enter a critical section guarded by a single mutex semaphore as a result of a lack of
atomicity.

Answer: Assume that the semaphore is initialized with count = 1. T1 calls Wait,
executes the while loop, and breaks out because count is positive. Then a context
switch occurs to T2 before T1 can decrement count. T2 also calls Wait, executes
the while loop, decrements count, and returns and enters the critical section.
Another context switch occurs, T1 decrements count, and also enters the critical
section. Mutual exclusion is therefore violated as a result of a lack of atomicity.

26

void Signal (Semaphore S) {
S.count = S.count + 1;

}

void Wait (Semaphore S) {
while (S.count <= 0) {}
S.count = S.count - 1;

}

27

Question 7

28

Question 7 (cont)

29

Solution 7

30

Question 7-b

31

Solution 7-b

