CSE 421/521 - Operating Systems
Fall 2012

LECTURE - XII
MIDTERM REVIEW

Tevfik Kosar

University at Buffalo
October 11th) 2012

Chapters included in the Midterm Exam

Ch. 1 (Introduction)
Ch. 2 (OS Structures)
Ch. 3 (Processes)

Ch. 4 (Threads)

Ch. 5 (CPU Scheduling)
Ch. 6 (Synchronization)
Ch. 7 (Deadlocks)

Midterm Exam

October 16th, Tuesday
9:30am-10:50am
@101 Davis

3. Processes

Process Creation & Termination
Context Switching

Process Control Block (PCB)
Process States

Process Queues & Scheduling
Interprocess Communication

1 & 2: Overview

Basic OS Components

OS Design Goals & Responsibilities
OS Design Approaches

Kernel Mode vs User Mode

System Calls

4. Threads

Concurrent Programming
Threads vs Processes
Threading Implementation & Multi-threading Models

Other Threading Issues
- Thread creation & cancellation
- Signal handling
- Thread pools
- Thread specific data

5. CPU Scheduling

Scheduling Criteria & Metrics

» Scheduling Algorithms

- FCFS, SJF, Priority, Round Robing

- Preemptive vs Non-preemptive

- Gantt charts & measurement of different metrics
Multilevel Feedback Queues

» Estimating CPU bursts

7. Deadlocks

Deadlock Characterization

» Deadlock Detection
- Resource Allocation Graphs
- Wait-for Graphs
- Deadlock detection algorithm

Deadlock Avoidance (Bankers alg. excluded)
Deadlock Recovery

6. Synchronization

» Race Conditions

» Critical Section Problem
e Mutual Exclusion

» Semaphores

* Monitors

« Classic Problems of Synchronization
- Bounded Buffer
- Readers-Writers
- Dining Philosophers
- Sleeping Barber

Exercise Questions

Question 1

Are each of the following statements True or False? Circle the correct answer.

(a) In multiprogramming, it is safe to have an arbitrary number of threads/
processes reading a piece of data at once. (True / False)
(b) Kernel mode can directly access hardware devices, user mode cannot.
(True / False)
(c) Deadlocks cannot arise without semaphores. (True / False)
(d) Semaphores are destroyed by the OS when your process exits. (True /
False)
(e) A process that is blocked is not given any processor time by the
scheduler until the condition that caused the blocking no longer applies.
(True / False)

Solution 1

Are each of the following statements True or False? Circle the correct answer.

(a) In multiprogramming, it is safe to have an arbitrary number of threads/
processes reading a piece of data at once. (True / False) --True
(b) Kernel mode can directly access hardware devices, user mode cannot.
(True / False) -- True
(c) Deadlocks cannot arise without semaphores. (True / False) -- False
(d) Semaphores are destroyed by the OS when your process exits. (True /
False) -- False
(e) A process that is blocked is not given any processor time by the
scheduler until the condition that caused the blocking no longer applies.
(True / False) -- True

Question 2-a

A system that meets the four deadlock conditions will always/
sometimes/never result in deadlock?

Question 2-b

Round-robin scheduling always/sometimes/never results in
more context switches than FCFS?

Solution 2-a

A system that meets the four deadlock conditions will always/
sometimes/never result in deadlock?

Sometimes — meeting four deadlock conditions is necessary
for a deadlock to occur, but not sufficient.

Question 2-c

Which of the following scheduling algorithms can lead to
starvation (FIFQ/Shortest Job First/Priority/Round Robin)?

Solution 2-b

Round-robin scheduling always/sometimes/never results in
more context switches than FCFS?

Sometimes — if every job has an execution time less than the
quantum, then it has the same number as FCFES.

Solution 2-c

Which of the following scheduling algorithms can lead to
starvation (FIFQ/Shortest Job First/Priority/Round Robin)?

SJF, Priority — in either approach, the jobs with lower priority
or the long jobs may never get executed depending on the
arrival pattern of the jobs.

Question 3

Process ID Arrival Time Priority Burst Time
A 0 5 20
B 4 1 12
C 12 2 16
D 16 4 4
E 20 3 8

Consider the above set of processes.

a) Draw Gantt chart illustrating the execution of these
processes using Shortest Job First (Preemptive)
algorithm.

b) What is the waiting time of each process

¢) What is the turnaround time of each process

Question 4

In the code below. assume that (7) all fork and =xecvp slalements execule successlully,
(77) the program arguients of execvp donot spawn wore processes or print out more characters,
and (7ii) all pid vanables are mitialized to 0

a. What is the total number of processes that will be ereated by the execution of this cade?
b. How many ol each character ‘A’ to ‘G’ will be printed out?

20

Question 4 (cont)

void main()
{

pid2 = f
if (pidl
pi ;
printf ("A\n");
} else {
printf ("B\n");
ex 2

if (pid2 == 0 && pid3 != 0) {
execvp(...);
printf ("C\n");
)
pidd = fork();
printf("D\n");
if (pi 0) {

21

Solution 4

condtional ¢

J = main exec after F

forks N’ ——

Question 5

Assume S and T are binary semaphores, and X, Y, Z are
processes. X and Y are identical processes and consist of the
following four statements:
P(S); P(T); V(T); V(S)
And, process Z consists of the following statements:
P(T); P(S); V(S); N(T)
Would it be safer to run X and Y together or to run X and Z
together? Please justify your answer.

23

Solution 5

Assume S and T are binary semaphores, and X, Y, Z are
processes. X and Y are identical processes and consist of the
following four statements:
P(S); P(T); V(T); V(S)
And, process Z consists of the following statements:
P(T); P(S); V(S); N(T)
Would it be safer to run X and Y together or to run X and Z
together? Please justify your answer.

Answer: It is safer to run X and Y together since they request
resources in the same order, which eliminates the circular wait
condition needed for deadlock.

24

Question 6

Remember that if the semaphore operations Wait and Signal are not executed

atomically, then mutual exclusion may be violated. Assume that Wait and Signal are

implemented as below:

void Wait (Semaphore S) {
while (S.count <=0) {}
S.count = S.count - 1;

void Signal (Semaphore S) {
S.count = S.count + 1;
}

Solution 6

Remember that if the semaphore operations Wait and Signal are not executed
atomically, then mutual exclusion may be violated. Assume that Wait and Signal are

implemented as below:

void Wait (Semaphore S) {
while (S.count <=0) {}
S.count = S.count - 1;

void Signal (Semaphore S) {
S.count = S.count + 1;
}

Describe a scenario of context switches where two threads, T1 and T2, can both
enter a critical section guarded by a single mutex semaphore as a result of a lack of
atomicity.

25

Question 7

Describe a scenario of context switches where two threads, T1 and T2, can both
enter a critical section guarded by a single mutex semaphore as a result of a lack of
atomicity.

Answer: Assume that the semaphore is initialized with count = 1. T1 calls Wait,
executes the while loop, and breaks out because count is positive. Then a context
switch occurs to T2 before T1 can decrement count. T2 also calls Wait, executes
the while loop, decrements count, and returns and enters the critical section.
Another context switch occurs, T1 decrements count, and also enters the critical
section. Mutual exclusion is therefore violated as a result of a lack of atc.micityz.6

void do threadl ()

walle (true)
lamp[1]

while (lamp|[0])
it
lamp (1]
while (
lamp (1]
} }
} i
/**% CRITICAL REGION 0 ***/ /**%* CRITICAL RECION 1 **x*/

kbook = 1;
lamp[l] = false;

Solution 7

Does this code guarantee mutual exclusion of the two threads from their respective critical
regions?

YES, it does. Once thread(has set lamp|0] to true, threadl will be busy waiting in the
while(lamp[0]) loop and cannot access CR1 (and vice-versa swapping 0 and 1). If
threadl was already in CR1 when thread0 set lamp[0] to true, then necessarily it is
thread0 that will be busy waiting in the while(lamp[1]) loop since lamp[1] must be
already true by the time threadl reaches CR1. This is becaunse lamp[1] = true is the
always the last statement executed by threadl before reaching CR1. wherever it came
from (vice-versa swapping 0 and 1). Finally, if for any reason both lamp flags are
already true upon starting line 1, OR if lines 1 and 2 get interleaved (t0(1)-t1(1)-t0(2)-
t1(2) then both threads will enter their while(lamp[x]) loops together: at this point,
the current book value decides that only one of them will go into the if structure and
reset its own lamp flag to 0 (then become trapped in the inner book-controlled loop),
thereby allowing the other to escape the while(lamp|[x]) loop and enter its CR.

29

Question 7 (cont)

Does this code guarantee mutual exclusion of the two threads from their respective critical
regions?

28

Question 7-b

Does this code guarantee “progress”, i.e., if one thread is currently executing outside its
critical region, the other thread will always have the opportunity to enter its own critical
region?

30

Solution 7-b

Does this code guarantee “progress”, ie., if one thread is currently executing outside its
critical region, the other thread will always have the opportunity to enter its own critical
region?

NO, it does not. Here is one counter-example:

schedule line 1 in thread0 —> lamp[0] becomes (rue
then execute threadl’s lines 1, 2, 3, 4, 5-6-5-6-5-6.

threadl is trapped into the small loop on lines 5-6 (it entered the big loop because
lamp[0] was true and the small loop because book was 0)

now, resume thread(, which is going to execute lines 2, 10, 11 and 12

at this point, thread0 can take all the time it wants to execute inside the noncritical

area 13 while threadl is still trapped in the tight loop of lines 5-6

nothing can free threadl anymore precisely because the value of book did NOT
change in that erroncous code: it remained 0

31

