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Main Memory Management
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Roadmap

• Main Memory Management
• Fixed and Dynamic Memory Allocation
• External and Internal Fragmentation
• Address Binding
• HW Address Protection
• Paging
• Segmentation
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! The O/S must fit multiple processes in memory

" memory needs to be subdivided to accommodate multiple processes

" memory needs to be allocated to ensure a reasonable supply of ready processes so 
that the CPU is never idle

Fitting processes into memory is like fitting boxes into a fixed amount of space

" memory management is an optimization task under constraints

Memory Management Requirements
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Memory Allocation 

• Fixed-partition allocation
– Divide memory into fixed-size partitions
– Each partition contains exactly one process
– The degree of multi programming is bound by 

the number of partitions
– When a process terminates, the partition 

becomes available for other processes
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Memory Allocation (Cont.)

• Variable-partition Scheme (Dynamic)
– When a process arrives, search for a hole large enough 

for this process
– Hole – block of available memory; holes of various size 

are scattered throughout memory
– Allocate only as much memory as needed
– Operating system maintains information about:

a) allocated partitions    b) free partitions (hole)
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Dynamic Storage-Allocation Problem

• First-fit:  Allocate the first hole that is big 
enough

• Best-fit:  Allocate the smallest hole that is big 
enough; must search entire list, unless ordered 
by size.  Produces the smallest leftover hole.

• Worst-fit:  Allocate the largest hole; must also 
search entire list.  Produces the largest leftover 
hole.

How to satisfy a request of size n from a list of free holes

First-fit is faster.
Best-fit is better in terms of storage utilization.
Worst-fit may lead less fragmentation.



Example
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Dynamic Storage-Allocation Problem

• First-fit:  Allocate the first hole that is big 
enough

• Best-fit:  Allocate the smallest hole that is big 
enough; must search entire list, unless ordered 
by size.  Produces the smallest leftover hole.

• Worst-fit:  Allocate the largest hole; must also 
search entire list.  Produces the largest leftover 
hole.

How to satisfy a request of size n from a list of free holes

First-fit is faster.
Best-fit is better in terms of storage utilization.
Worst-fit may lead less fragmentation.
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Fragmentation
• External Fragmentation – total memory space 

exists to satisfy a request, but it is not 
contiguous (in average ~50% lost)

• Internal Fragmentation – allocated memory may 
be slightly larger than requested memory; this 
size difference is memory internal to a partition, 
but not being used

• Reduce external fragmentation by compaction

– Shuffle memory contents to place all free memory 
together in one large block

– Compaction is possible only if relocation is dynamic, 
and is done at execution time
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Address Binding

• Addresses in a source program are generally symbolic 
– eg. int count;

• A compiler binds these symbolic addresses to 
relocatable addresses
– eg. 100 bytes from the beginning of this module

• The linkage editor or loader will in turn bind the 
relocatable addresses to absolute addresses
– eg. 74014 

• Each binding is mapping from one address space to 
another
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Logical Address Space

• Each process has a 
separate memory space

• Two registers provide 
address protection 
between processes: 

• Base register: smallest 
legal address space

• Limit register: size of 
the legal range
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Memory-Management Unit (MMU)
• Hardware device that maps 

logical to physical address

• In MMU scheme, the value in the 
relocation register (base register) 
is added to every address 
generated by a user process at 
the time it is sent to memory

• The user program deals with 
logical addresses; it never sees 
the real physical addresses
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HW Address Protection
• CPU hardware compares every address generated in user mode 

with the registers
• Any attempt to access other processes’ memory will be trapped 

and cause a fatal error
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Paging - noncontiguous
• Physical address space of a process can be 

noncontiguous
• Divide physical memory into fixed-sized blocks 

called frames (size is power of 2, between 512 
bytes and 16 megabytes)

• Divide logical memory into blocks of same size 
called pages.

• Keep track of all free frames
• To run a program of size n pages, need to find n 

free frames and load program
• Set up a page table to translate logical to physical 

addresses
• Internal fragmentation
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Address Translation Scheme

• Address generated by CPU is divided into:

– Page number (p) – used as an index into a page 
table which contains base address of each page in 
physical memory

– Page offset (d) – combined with base address to 
define the physical memory address that is sent 
to the memory unit
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Address Translation Architecture
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Paging Example 
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Paging Example
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Free Frames

Before allocation After allocation
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Shared Pages

• Shared code

– One copy of read-only (reentrant) code shared 
among processes (i.e., text editors, compilers, 
window systems).

– Shared code must appear in same location in the 
logical address space of all processes

• Private code and data 
– Each process keeps a separate copy of the code 

and data
– The pages for the private code and data can 

appear anywhere in the logical address space
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Shared Pages Example
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User’s View of a Program
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Segmentation

• Memory-management scheme that supports user 
view of memory 

• A program is a collection of segments.  A segment 
is a logical unit such as:

  main program,
  procedure, 
  function,
  method,
  object,
  local variables, global variables,
  common block,
  stack,
  symbol table, arrays
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Logical View of Segmentation
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Segmentation Architecture 

• Logical address consists of a two tuple:
  <segment-number, offset>,
• Segment table – maps two-dimensional 

physical addresses; each table entry has:
– base – contains the starting physical address where 

the segments reside in memory
– limit – specifies the length of the segment

• Segment-table base register (STBR) points to 
the segment table’s location in memory

• Segment-table length register (STLR) 
indicates the length (limit) of the segment

• segment addressing is  d (offset) < STLR

Segmentation Architecture (Cont.)

• Protection.  With each entry in segment 
table associate:
– validation bit = 0 ⇒ illegal segment
– read/write/execute privileges

• Protection bits associated with segments; 
code sharing occurs at segment level

• Since segments vary in length, memory 
allocation is a dynamic storage-allocation 
problem

• A segmentation example is shown in the 
following diagram

Address Translation Architecture Example of Segmentation

Exercise
• Consider the following segment table: 

! ! Segment ! Base ! ! Length 
! ! 0 ! ! 219 ! ! 600 
! ! 1 ! ! 2300 ! ! 14 
! ! 2 ! ! 90 ! !       100 
! ! 3 ! ! 1327 ! ! 580 
! ! 4 ! ! 1952 ! ! 96 

What are the physical addresses for the following logical addresses? 

a. 1, 100 

b. 2, 0 

c. 3, 580

Solution
• Consider the following segment table: 
! ! Segment ! Base ! ! Length 
! ! 0 ! ! 219 ! ! 600 
! ! 1 ! ! 2300 ! ! 14 
! ! 2 ! ! 90 ! !       100 
! ! 3 ! ! 1327 ! ! 580 
! ! 4 ! ! 1952 ! ! 96 
What are the physical addresses for the following logical addresses? 

a. 1, 100 
illegal reference (2300+100 is not within segment limits)

b. 2, 0 
physical address = 90 + 0 = 90

c. 3, 580
illegal reference (1327 + 580 is not within segment limits)



Sharing of Segments
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Sharing of Segments
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Summary

Hmm.
.

• Main Memory Management
• Memory Allocation
• Fragmentation
• Address Binding
• HW Address Protection
• Paging
• Segmentation

• Next Lecture: Virtual Memory
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