
1

CSE 421/521 - Operating Systems
Fall 2012

Tevfik Koşar

University at Buffalo
October 18th, 2012

Lecture - XII

Main Memory Management

2

Roadmap

• Main Memory Management
• Fixed and Dynamic Memory Allocation
• External and Internal Fragmentation
• Address Binding
• HW Address Protection
• Paging
• Segmentation

3

! The O/S must fit multiple processes in memory

" memory needs to be subdivided to accommodate multiple processes

" memory needs to be allocated to ensure a reasonable supply of ready processes so
that the CPU is never idle

Fitting processes into memory is like fitting boxes into a fixed amount of space

" memory management is an optimization task under constraints

Memory Management Requirements

28

Memory Allocation

• Fixed-partition allocation
– Divide memory into fixed-size partitions
– Each partition contains exactly one process
– The degree of multi programming is bound by

the number of partitions
– When a process terminates, the partition

becomes available for other processes

#no longer in use

OS

process 5
process 9

process 2

process 10

29

Memory Allocation (Cont.)

• Variable-partition Scheme (Dynamic)
– When a process arrives, search for a hole large enough

for this process
– Hole – block of available memory; holes of various size

are scattered throughout memory
– Allocate only as much memory as needed
– Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

OS

process 5

process 2

OS

process 5

process 2

OS

process 5
process 9

process 2

process 9
process 10

30

Dynamic Storage-Allocation Problem

• First-fit: Allocate the first hole that is big
enough

• Best-fit: Allocate the smallest hole that is big
enough; must search entire list, unless ordered
by size. Produces the smallest leftover hole.

• Worst-fit: Allocate the largest hole; must also
search entire list. Produces the largest leftover
hole.

How to satisfy a request of size n from a list of free holes

First-fit is faster.
Best-fit is better in terms of storage utilization.
Worst-fit may lead less fragmentation.

Example

7 30

Dynamic Storage-Allocation Problem

• First-fit: Allocate the first hole that is big
enough

• Best-fit: Allocate the smallest hole that is big
enough; must search entire list, unless ordered
by size. Produces the smallest leftover hole.

• Worst-fit: Allocate the largest hole; must also
search entire list. Produces the largest leftover
hole.

How to satisfy a request of size n from a list of free holes

First-fit is faster.
Best-fit is better in terms of storage utilization.
Worst-fit may lead less fragmentation.

32

Fragmentation
• External Fragmentation – total memory space

exists to satisfy a request, but it is not
contiguous (in average ~50% lost)

• Internal Fragmentation – allocated memory may
be slightly larger than requested memory; this
size difference is memory internal to a partition,
but not being used

• Reduce external fragmentation by compaction

– Shuffle memory contents to place all free memory
together in one large block

– Compaction is possible only if relocation is dynamic,
and is done at execution time

10

Address Binding

• Addresses in a source program are generally symbolic
– eg. int count;

• A compiler binds these symbolic addresses to
relocatable addresses
– eg. 100 bytes from the beginning of this module

• The linkage editor or loader will in turn bind the
relocatable addresses to absolute addresses
– eg. 74014

• Each binding is mapping from one address space to
another

11

Logical Address Space

• Each process has a
separate memory space

• Two registers provide
address protection
between processes:

• Base register: smallest
legal address space

• Limit register: size of
the legal range

12

Memory-Management Unit (MMU)
• Hardware device that maps

logical to physical address

• In MMU scheme, the value in the
relocation register (base register)
is added to every address
generated by a user process at
the time it is sent to memory

• The user program deals with
logical addresses; it never sees
the real physical addresses

13

HW Address Protection
• CPU hardware compares every address generated in user mode

with the registers
• Any attempt to access other processes’ memory will be trapped

and cause a fatal error

37

Paging - noncontiguous
• Physical address space of a process can be

noncontiguous
• Divide physical memory into fixed-sized blocks

called frames (size is power of 2, between 512
bytes and 16 megabytes)

• Divide logical memory into blocks of same size
called pages.

• Keep track of all free frames
• To run a program of size n pages, need to find n

free frames and load program
• Set up a page table to translate logical to physical

addresses
• Internal fragmentation

38

Address Translation Scheme

• Address generated by CPU is divided into:

– Page number (p) – used as an index into a page
table which contains base address of each page in
physical memory

– Page offset (d) – combined with base address to
define the physical memory address that is sent
to the memory unit

39

Address Translation Architecture

40

Paging Example

41

Paging Example

42

Free Frames

Before allocation After allocation

22

Shared Pages

• Shared code

– One copy of read-only (reentrant) code shared
among processes (i.e., text editors, compilers,
window systems).

– Shared code must appear in same location in the
logical address space of all processes

• Private code and data
– Each process keeps a separate copy of the code

and data
– The pages for the private code and data can

appear anywhere in the logical address space

23

Shared Pages Example

24

User’s View of a Program

25

Segmentation

• Memory-management scheme that supports user
view of memory

• A program is a collection of segments. A segment
is a logical unit such as:

 main program,
 procedure,
 function,
 method,
 object,
 local variables, global variables,
 common block,
 stack,
 symbol table, arrays

26

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Segmentation Architecture

• Logical address consists of a two tuple:
 <segment-number, offset>,
• Segment table – maps two-dimensional

physical addresses; each table entry has:
– base – contains the starting physical address where

the segments reside in memory
– limit – specifies the length of the segment

• Segment-table base register (STBR) points to
the segment table’s location in memory

• Segment-table length register (STLR)
indicates the length (limit) of the segment

• segment addressing is d (offset) < STLR

Segmentation Architecture (Cont.)

• Protection. With each entry in segment
table associate:
– validation bit = 0 ⇒ illegal segment
– read/write/execute privileges

• Protection bits associated with segments;
code sharing occurs at segment level

• Since segments vary in length, memory
allocation is a dynamic storage-allocation
problem

• A segmentation example is shown in the
following diagram

Address Translation Architecture Example of Segmentation

Exercise
• Consider the following segment table:

! ! Segment ! Base ! ! Length
! ! 0 ! ! 219 ! ! 600
! ! 1 ! ! 2300 ! ! 14
! ! 2 ! ! 90 ! ! 100
! ! 3 ! ! 1327 ! ! 580
! ! 4 ! ! 1952 ! ! 96

What are the physical addresses for the following logical addresses?

a. 1, 100

b. 2, 0

c. 3, 580

Solution
• Consider the following segment table:
! ! Segment ! Base ! ! Length
! ! 0 ! ! 219 ! ! 600
! ! 1 ! ! 2300 ! ! 14
! ! 2 ! ! 90 ! ! 100
! ! 3 ! ! 1327 ! ! 580
! ! 4 ! ! 1952 ! ! 96
What are the physical addresses for the following logical addresses?

a. 1, 100
illegal reference (2300+100 is not within segment limits)

b. 2, 0
physical address = 90 + 0 = 90

c. 3, 580
illegal reference (1327 + 580 is not within segment limits)

Sharing of Segments

31

Sharing of Segments

33

Summary

Hmm.
.

• Main Memory Management
• Memory Allocation
• Fragmentation
• Address Binding
• HW Address Protection
• Paging
• Segmentation

• Next Lecture: Virtual Memory

34

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

