CSE 421/521 - Operating Systems
Fall 2012

LECTURE - XV

VIRTUAL MEMORY - |

Tevfik Kosar

University at Buffalo
October 23rd, 2012

Roadmap

e Virtual Memory
- Demand Paging
- Page Faults
- Page Replacement
- Page Replacement Algorithms
- FIFO

Background

« Virtual memory - separation of user logical
memory from physical memory.

Only part of the program needs to be in memory for
execution.

- Logical address space can therefore be much larger
than physical address space.

- Allows address spaces to be shared by several
processes.

- Allows for more efficient process creation.

e Virtual memory can be implemented via:
- Demand paging
- Demand segmentation

Demand Paging

» Bring a page into memory only when it is needed
Less I/0 needed

Less memory needed

Faster response

More users

« Page is needed = reference to it
- invalid reference = abort
- not-in-memory = bring to memory

Valid-Invalid Bit

» With each page table entry a valid-invalid bit is associated
(1 = in-memory and legal, 0 = not-in-memory or invalid)

 Initially valid-invalid bit is set to 0 on all entries
» Example of a page table snapshot:

Frame # valid-invalid bit
1
1
1
1
0
0
0
page table

» During address translation, if valid-invalid bit in page table entry
is 0 = page fault

Page Table When Some Pages Are Not in Main Memory

0
1
JE 2
d = 3 PN
w
bl C 4 (A
Bl B 5 E\I:'\:\
kil E] . [] [a] [B]
d E 7
(o o
4 = o [NE W (][]
ey 0 (] [0 [
11
__,_//
12
13
14
15

physical memory

Transfer of a Paged Memory to Contiguous Disk Space

D N
N _/
program swap out Ol 1M 2/ 3]]
g 40 503 o 701
’ 8] o[1o[M1d
A 121814151
Pro%ram J)\ swap in 16|:|17|_T_|18|_I__|19|_T_|
2021 [J22[123[]
= _/
main
memory
Page Fault

If there is ever a reference to a page not in memory, first
reference will trap to OS = page fault

OS looks at another table (in PCB) to decide:
- Invalid reference = abort.
- Just not in memory. ==> page-in

Get an empty frame.

Swap (read) page into the new frame.

Set validation bit = 1.

Restart instruction

Steps in Handling a Page Fault

page is on
backing store /(_ﬁ\
operating
system @
reference
@ trap
load M [
restart page table
instruction
free frame
reset page bring in
table missing page
physical
memory.

What happens if there is no free frame?

» Page replacement - find some page in
memory, but not really in use, swap it out
- Algorithms (FIFO, LRU ..)
- performance - want an algorithm which will result
in minimum number of page faults
e Same page may be brought into memory
several times

Page Replacement

« Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement

« Use modify (dirty) bit to reduce overhead of page
transfers - only modified pages are written to disk

- Page replacement completes separation between
logical memory and physical memory - large virtual
memory can be provided on a smaller physical memory

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page
replacement algorithm to select a victim frame

3. Read the desired page into the (newly) free
frame. Update the page and frame tables.

4. Restart the process

Page Replacement

rame valid—invalid bit

T g—
swap out
o 13 to invalid @ page]
f v /
@ f| victim 9
reset page \
table for ;
page table
new page @ swap \D
desired
page in
physical
memory

Page Replacement Algorithms

« Want lowest page-fault rate

« Evaluate algorithm by running it on a
particular string of memory references
(reference string) and computing the
number of page faults on that string

e In all our examples, the reference string is
1,2,3,4,1,2,5,1,2,3,4,5

Graph of Page Faults Versus The Number of Frames

16
3 1 \
E \
(o]
“é 8 N
é 6 \\
2 4 \t—

2

1 2 3 4 5 6
number of frames

First-In-First-Out (FIFO) Algorithm

» Reference string: 1, 2, 3,4,1,2,5,1,2,3,4,5
« 3 frames (3 pages can be in memory at a time per
process)

First-In-First-Out (FIFO) Algorithm

» Reference string: 1, 2, 3,4,1,2,5,1,2,3,4,5
« 3 frames (3 pages can be in memory at a time per
process)

21 1 3 9page faults

First-In-First-Out (FIFO) Algorithm

o Reference string: 1,2, 3,4,1,2,5,1,2,3,4,5
« 3 frames (3 pages can be in memory at a time per
process)

21 1 3 9page faults

* 4 frames

First-In-First-Out (FIFO) Algorithm

Reference string: 1, 2, 3,4,1,2,5,1,2,3,4,5
3 frames (3 pages can be in memory at a time per
process)

11114 5
22| 1 3 9page faults
33| 2 4

4 frames 111 5 4
2|12 1 5 10 page faults
3|13| 2
4143

FIFO Replacement - Belady’s Anomaly
- more frames = more page faults

FIFO Illustrating Belady’s Anomaly

10 <

number of page faults

1 2 3 4 5 6
number of frames

Performance of Demand Paging

o Page Fault Rate 0 <p <1.0
- if p = 0 no page faults
- if p =1, every reference is a fault

» Effective Access Time (EAT)
EAT = (1 - p) x memory access
+ p X (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

Demand Paging Example

» Memory access time = 1 microsecond

« 50% of the time the page that is being replaced has been modified

and therefore needs to be swapped out
» Swap Page Time = 10 msec = 10,000 microsec

o EAT=?

Demand Paging Example

» Memory access time = 1 microsecond
« 50% of the time the page that is being replaced has been modified

and therefore needs to be swapped out
» Swap Page Time = 10 msec = 10,000 microsec

e EAT=(1-p)x1+px (10,000 +1/2 x 10,000)
=1+14,999 x p (in microsec)

« What if 1 out of 1000 memory accesses cause a page fault?

« What if we only want 30% performance degradation?

Summary

e Virtual Memory
- Demand Paging
- Page Faults .
- Page Replacement

- Page Replacement Algorithms
- FIFO A

o0

* Next Lecture: Virtual Memory - Il

« Reading Assignment: Chapter 9 from Silberschatz.

Acknowledgements

“Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

“Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

“Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

