
1

CSE 421/521 - Operating Systems
Fall 2012

Tevfik Koşar

University at Buffalo
November 6th, 2012

Lecture - XIX

File Systems

File Systems

• An interface between users and files
• Provides organized and efficient access to data on

secondary storage:

1. Organizing data into files and directories and supporting
primitives to manipulate them (create, delete, read, write etc)

2. Improve I/O efficiency between disk and memory (perform I/O
in units of blocks rather than bytes)

3. Ensure confidentiality and integrity of data

– Contains file structure via a File Control Block (FCB)
– Ownership, permissions, location..

A Typical File Control Block

Directories

4

! Directories are special files that keep track of other files
" the collection of files is systematically organized
" first, disks are split into partitions that create logical volumes (can

be thought of as “virtual disks”)
" second, each partition contains information about the files within it
" this information is kept in entries in a device directory (or

volume table of contents)
" the directory is a symbol table that translates file names into their

entries in the directory
it has a logical structure
it has an implementation structure (linked list, table, etc.)

Directories

5

Single-level directory

! Single-level directory structure
" simplest form of logical organization: one global or root

directory containing all the files
" problems

global namespace: unpractical in multiuser systems
no systematic organization, no groups or logical categories

of files that belong together

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

Directories

6

Two-level directory

! Two-level directory structure
" in multiuser systems, the next step is to give each user their

own private directory
" avoids filename confusion
" however, still no grouping: not satisfactory for users with many

files

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

Directories

7

Tree-structured directory

! Tree-structured directory structure

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

Directories

8

! Tree-structured directory structure
" natural extension of the two-level scheme
" provides a general hierarchy, in which files can be grouped in

natural ways
" good match with human cognitive organization: tendency to

categorize objects in embedded sets and subsets

" navigation through the tree relies on pathnames
absolute pathnames start from the root, example: /jsmith/

academic/teaching/cs446/assignment4/grades
relative pathnames start at from a current working

directory, example: assignment4/grades
the current and parent directory are referred to as . and ..

Directories

9

A-cyclic graph structured directory

! A-cyclic Graph directory structure

Silberschatz, A., Galvin, P. B. and Gagne. G. (2003)
Operating Systems Concepts with Java (6th Edition).

pros?
cons?

Directory Implementation

• Linear list of file names with pointer to the data
blocks.
– simple to program
– time-consuming to execute

• Hash Table – linear list with hash data structure.
– decreases directory search time
– collisions – situations where two file names hash to the same

location
– fixed size

Directory Implementation

11

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

UNIX Directories

• Directory is a special file that contains list of names of
files and their inode numbers

• to see contents of a directory:
$ls -1ia .
9535554 .

9535489 ..

9535574 .bash_history

9535555 bin

9535584 .emacs.d

9535560 grading

9535803 hw1

9535571 test

9535801 .viminfo

12

Directories - System View

• user view vs system view of directory tree
– representation with “dirlists (directory files)”

• The real meaning of “A file is in a directory”
– directory has a link to the inode of the file

• The real meaning of “A directory contains a
subdirectory”
– directory has a link to the inode of the subdirectory

• The real meaning of “A directory has a parent
directory”
– “..” entry of the directory has a link to the inode of the parent

directory

13

Example inode listing

$ ls -iaR demodir:
865 . 193 .. 277 a 520 c 491 y

demodir/a:
277 . 865 .. 402 x

demodir/c:
520 . 865 .. 651 d1 247 d2

demodir/c/d1:
651 . 520 ..

demodir/c/d2:
247 . 520 .. 680 z

14
 Please show the system representation (system view) of this directory tree.

Link Counts

• The kernel records the number of links to any file/
directory.

• The link count is stored in the inode.

• The link count is a member of struct stat returned by
the stat system call.

15

Change Links

• What will be the resulting changes in directory tree?

$ cp demodir/a/x demodir/c/xcopy

$ ln demodir/a/x demodir/c/d1/xlink

$ mv demodir/y demodir/a/y

16

Implementing “pwd”

1. “.” is 247
chdir ..

2. 247 is called “d2”
“.” is 520
chdir ..

3. 520 is called “c”
“.” is 865
chdir ..

4. 865 is called “demodir”
“.” is 193
chdir ..

17

Allocation Methods

• An allocation method refers to how disk blocks are
allocated for files:

• Contiguous allocation

• Linked allocation

• Indexed allocation

Contiguous Allocation

• Each file occupies a set of contiguous blocks on
the disk

• + Simple – only starting location (block #) and
length (number of blocks) are required

• - Wasteful of space (dynamic storage-allocation
problem - fragmentation)

• - Files cannot grow

Contiguous Allocation of Disk Space

Linked Allocation

• Each file is a linked list of disk blocks: blocks may be scattered
anywhere on the disk.

pointerblock =

+ Simple – need only starting address
+ Free-space management system – no waste of space
+ Defragmentation not necessary
- No random access
- Extra space required for pointers
- Reliability: what if a pointer gets corrupted?

Linked Allocation

File-Allocation Table

Indexed Allocation

• Brings all pointers together into the index block, to allow random
access to file blocks.

• Logical view.

index table

+ Supports direct access
+ Prevents external fragmentation
- High pointer overhead --> wasted space

Example of Indexed Allocation

Free Space Management

• Disk space limited
• Need to re-use the space from deleted files
• To keep track of free disk space, the system maintains

a free-space list
– Records all free disk blocks

• Implemented using
– Bit vectors
– Linked lists

Free-Space Management (Cont.)

• Bit vector (n blocks)
– Each block is represented by 1 bit
– 1: free, 0: allocated

…
0 1 2 n-1

bit[i] =


 1 ⇒ block[i] free

0 ⇒ block[i] occupied

 e.g. 0000111110001000100010000

Free-Space Management (Cont.)

• Linked List Approach

28

Free-Space Management (Cont.)

• Bit map requires extra space
– Example:

 block size = 212 bytes
 disk size = 230 bytes (1 gigabyte)
 n = 230/212 = 218 bits (or 32K bytes)
• Easy to get contiguous files
• Linked list (free list)

– Cannot get contiguous space easily
– requires substantial I/O

• Grouping
– Modification of free-list
– Store addresses of n free blocks in the first free block

• Counting
– Rather than keeping list of n free addresses:

• Keep the address of the first free block
• And the number n of free contiguous blocks that follow it

Free-Space Management (Cont.)

• Linked List

30

Exercise

32

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

