CSE 421/521 - Operating Systems
Fall 2012

LECTURE - XXIII

DISTRIBUTED SYSTEMS - |]

Tevfik Kosar

University at Buffalo
November 27th, 2012

Distributed Mutual Exclusion (DME)

Assumptions
- The system consists of n processes; each process P; resides at a
different processor
- Each process has a critical section that requires mutual
exclusion
Requirement
- If P, is executing in its critical section, then no other process P;
is executing in its critical section
We present two algorithms to ensure the mutual
exclusion execution of processes in their critical
sections

DME: Centralized Approach

» One of the processes in the system is chosen to coordinate the
entry to the critical section

» A process that wants to enter its critical section sends a
request message to the coordinator

e The coordinator decides which process can enter the critical
section next, and its sends that process a reply message

» When the process receives a reply message from the
coordinator, it enters its critical section

» After exiting its critical section, the process sends a release
message to the coordinator and proceeds with its execution

» This scheme requires three messages per critical-section
entry:
- request
- reply
- release

DME: Fully Distributed Approach

When process P; wants to enter its critical section, it
generates a new timestamp, TS, and sends the message
request (P;, TS) to all processes in the system

When process P;receives a request message, it may
reply immediately or it may defer sending a reply back
When process P, receives a reply message from all other
processes in the system, it can enter its critical section

After exiting its critical section, the process sends reply
messages to all its deferred requests

DME: Fully Distributed Approach (Cont.)

« The decision whether process P, replies immediately to a
request(P;, TS) message or defers its reply is based on three
factors:

- If P;is in its critical section, then it defers its reply to P,
- If P; does not want to enter its critical section, then it sends a reply
immediately to P;

- If P, wants to enter its critical section but has not yet entered it, then
it compares its own request timestamp with the timestamp TS

« If its own request timestamp is greater than TS, then it
sends a reply immediately to P; (P; asked first)

» Otherwise, the reply is deferred

- Example: P1 sends a request to P2 and P3 (timestamp=10)
P3 sends a request to P1 and P2 (timestamp=4)

Undesirable Consequences

» The processes need to know the identity of all other
processes in the system, which makes the dynamic
addition and removal of processes more complex

 If one of the processes fails, then the entire scheme
collapses

- This can be dealt with by continuously monitoring the state of
all the processes in the system, and notifying all processes if a
process fails

Token-Passing Approach

Circulate a token among processes in system
- Token is special type of message
- Possession of token entitles holder to enter critical section

Processes logically organized in a ring structure
Unidirectional ring guarantees freedom from starvation

Two types of failures
- Lost token - election must be called
- Failed processes - new logical ring established

Election Algorithms

Determine where a new copy of the coordinator should be
restarted

Assume that a unique priority number is associated with each
active process in the system, and assume that the priority number
of process P; is i

Assume a one-to-one correspondence between processes and sites

The coordinator is always the process with the highest priority
number. When a coordinator fails, the algorithm must elect that
active process with the largest priority number

Two algorithms, the bully algorithm and a ring algorithm, can be
used to elect a new coordinator in case of failures

Bully Algorithm

» Applicable to systems where every process can send a
message to every other process in the system

« If process P; sends a request that is not answered by the

coordinator within a time interval T, assume that the
coordinator has failed; P; tries to elect itself as the new

coordinator

« P; sends an election message to every process with a
higher priority number, P; then waits for any of these
processes to answer within T

Bully Algorithm (Cont.)

 If no response within T, assume that all processes with
numbers greater than i have failed; P; elects itself the

new coordinator

. If answer is received, P; begins time interval T~,

waiting to receive a message that a process with a
higher priority number has been elected

« If no message is sent within T’, assume the process
with a higher number has failed; P; should restart the

algorithm

Bully Algorithm (Cont.)

If P; is not the coordinator, then, at any time during execution, P;
may receive one of the following two messages from process P;

- P; is the new coordinator (j > i). P;, in turn, records this information

- P, started an election (j > 7). P;, sends a response to P; and begins its

own election algorithm, provided that Pi has not already initiated such
an election

After a failed process recovers, it immediately begins execution of
the same algorithm

If there are no active processes with higher numbers, the
recovered process forces all processes with lower number to let it
become the coordinator process, even if there is a currently active
coordinator with a lower number

Ring Algorithm

» Applicable to systems organized as a ring (logically or
physically)

e Assumes that the links are unidirectional, and that
processes send their messages to their right neighbors

» Each process maintains an active list, consisting of all the
priority numbers of all active processes in the system when
the algorithm ends

» |If process Pi detects a coordinator failure, | creates a new
active list that is initially empty. It then sends a message
elect(i) to its right neighbor, and adds the number i to its
active list

Ring Algorithm (Cont.)

« If P, receives a message elect(j) from the process on the left, it
must respond in one of three ways:

<4 If this is the first elect message it has seen or sent, P; creates a new
active list with the numbers i and j
e |t then sends the message elect(i), followed by the
message elect(j)
<4 If i = j, then the active list for P, now contains the numbers of all the
active processes in the system
e P;can now determine the largest number in the active list
to identify the new coordinator process
<4 If i = j, then P; receives the message elect(i)

e The active list for P; contains all the active processes in

the system
P; can now determine the new coordinator process.

Distributed Deadlock Handling

e Resource-ordering deadlock-prevention

=>define a global ordering among the system resources
- Assign a unique number to all system resources

- A process may request a resource with unique number i only if
it is not holding a resource with a unique number grater than i

- Simple to implement; requires little overhead

e Timestamp-ordering deadlock-prevention

=>unique Timestamp assigned when each process is
created

1. wait-die scheme -- non-reemptive
2. wound-wait scheme -- preemptive

Prevention: Wait-Die Scheme

non-preemptive approach
If P, requests a resource currently held by P;, P; is

allowed to wait only if it has a smaller timestamp
than does P; (P; is older than P))

- Otherwise, P; is rolled back (dies - releases resources)

Example: Suppose that processes P, P,, and P, have

timestamps 5, 10, and 15 respectively
- if P, request a resource held by P,, then P, will wait

- If Py requests a resource held by P,, then P; will be rolled
back

The older the process gets, the more waits

Prevention: Wound-Wait Scheme

Preemptive approach, counterpart to the wait-die

If P, requests a resource currently held by P;, P; is

allowed to wait only if it has a larger timestamp than
does P; (P; is younger than P;). Otherwise P; is rolled

back (P; is wounded by P))

Example: Suppose that processes P,, P, and P; have

timestamps 5, 10, and 15 respectively
- If P, requests a resource held by P,, then the resource will be
preempted from P, and P, will be rolled back

- If Py requests a resource held by P,, then P; will wait

The rolled-back process eventually gets the smallest
timestamp.

Comparison

» Both avoid starvation, provided that when a process is
rolled back, it is not assigned a new timestamp

« In wait-die, older process must wait for the younger
one to release its resources. In wound-wait, an older
process never waits for a younger process.

o There are fewer roll-backs in wound-wait.
- Pi->Pj; Pi dies, requests the same resources; Pi dies again...
- Pj->Pi; Pi wounded. requests the same resources; Pi waits..

17

Distributed Deadlock Detection

site S, site S,

Two Local Wait-For Graphs

Global Wait-For Graph

Deadlock Detection - Centralized Approach

Each site keeps a local wait-for graph

- The nodes of the graph correspond to all the processes that are
currently either holding or requesting any of the resources local to
that site

A global wait-for graph is maintained in a single coordination
process; this graph is the union of all local wait-for graphs
There are three different options (points in time) when the
wait-for graph may be constructed:

1. Whenever a new edge is inserted or removed in one of the local wait-for
graphs

2. Periodically, when a number of changes have occurred in a wait-for graph

3. Whenever the coordinator needs to invoke the cycle-detection algorithm

Option1: unnecessary rollbacks may occur as a result of false
cycles

Local and Global Wait-For Graphs

site S,

site S,

coordinator

Detection Algorithm Based on Option 3

« Append unique identifiers (timestamps) to requests

form different sites

« When process P;, at site A, requests a resource from
process P;, at site B, a request message with timestamp

TS is sent

« The edge P, — P; with the label TS is inserted in the

local wait-for of A. The edge is inserted in the local
wait-for graph of B only if B has received the request
message and cannot immediately grant the requested

resource

Algorithm: Option 3

1. The controller sends an initiating message to each site in the
system

2. On receiving this message, a site sends its local wait-for graph to
the coordinator

3. When the controller has received a reply from each site, it
constructs a graph as follows:

(a) The constructed graph contains a vertex for every process in the
system

(b) The graph has an edge Pi — Pj if and only if
- there is an edge Pi — Pj in one of the wait-for graphs, or
If the constructed graph contains a cycle = deadlock

*To avoid report of false deadlocks, requests from different sites
appended with unique ids (timestamps)

Timestamping

» Generate unique timestamps in distributed scheme:
- Each site generates a unique local timestamp

- The global unique timestamp is obtained by concatenation of
the unique local timestamp with the unique site identifier

- Use a logical clock defined within each site to ensure the fair
generation of timestamps

» Timestamp-ordering scheme - combine the centralized
concurrency control timestamp scheme with the 2PC
protocol to obtain a protocol that ensures serializability
with no cascading rollbacks

Generation of Unique Timestamps

ocal unique timestamp site identifier
\ /
“ (

global unique identifier

Fully Distributed Approach

All controllers share equally the responsibility for detecting
deadlock

Every site constructs a wait-for graph that represents a part of the
total graph
We add one additional node P, to each local wait-for graph
P, ->P,, exists if P; is waiting for a data item at another site being held
by any process
If a local wait-for graph contains a cycle that does not involve
node P,,, then the system is in a deadlock state

ex’

A cycle involving P, implies the possibility of a deadlock

- To ascertain whether a deadlock does exist, a distributed deadlock-
detection algorithm must be invoked

Augmented Local Wait-For Graphs

site S, site S,

Augmented Local Wait-For Graph in Site S2

site S,

Any Questions?

/—\K

-
<2

£\

21

Acknowledgements

“Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

“Operating Systems: Internals and Design Principles”

book and supplementary material by W. Stallings

“Modern Operating Systems” book and supplementary

material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

30

