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Distributed Systems - II

Distributed Mutual Exclusion (DME) 

• Assumptions
– The system consists of  n processes; each process P

i
 resides at a 

different processor

– Each process has a critical section that requires mutual 
exclusion

• Requirement
– If P

i
 is executing in its critical section, then no other process P

j
 

is executing in its critical section

• We present two algorithms to ensure the mutual 
exclusion execution of processes in their critical 
sections 



DME:  Centralized Approach

• One of the processes in the system is chosen to coordinate the 
entry to the critical section

• A process that wants to enter its critical section sends a 
request message to the coordinator

• The coordinator decides which process can enter the critical 
section next, and its sends that process a reply message

• When the process receives a reply message from the 
coordinator, it enters its critical section

• After exiting its critical section, the process sends a release 
message to the coordinator and proceeds with its execution 

• This scheme requires three messages per critical-section 
entry:
– request 
– reply

– release

DME:  Fully Distributed Approach

• When process P
i
 wants to enter its critical section, it 

generates a new timestamp, TS, and sends the message 
request (P

i
, TS) to all processes in the system

• When process P
j receives a request message, it may 

reply immediately or it may defer sending a reply back

• When process P
i 
receives a reply message from all other 

processes in the system, it can enter its critical section

• After exiting its critical section, the process sends reply 
messages to all its deferred requests



DME:  Fully Distributed Approach (Cont.)

• The decision whether process P
j
 replies immediately to a 

request(P
i
, TS) message or defers its reply is based on three 

factors:
– If P

j
 is in its critical section, then it defers its reply to P

i

– If P
j
 does not want to enter its critical section, then it sends a reply 

immediately to P
i

– If P
j
 wants to enter its critical section but has not yet entered it, then 

it compares its own request timestamp with the timestamp TS

• If its own request timestamp is greater than TS, then it 
sends a reply immediately to P

i
 (P

i
 asked first)

• Otherwise, the reply is deferred

– Example:  P1 sends a request to P2 and P3 (timestamp=10)

   P3 sends a request to P1 and P2 (timestamp=4)

Undesirable Consequences

• The processes need to know the identity of all other 
processes in the system, which makes the dynamic 
addition and removal of processes more complex

• If one of the processes fails, then the entire scheme 
collapses
– This can be dealt with by continuously monitoring the state of 

all the processes in the system, and notifying all processes if a 
process fails



Token-Passing Approach

• Circulate a token among processes in system
– Token is special type of message

– Possession of token entitles holder to enter critical section

• Processes logically organized in a ring structure

• Unidirectional ring guarantees freedom from starvation

• Two types of failures
– Lost token – election must be called

– Failed processes – new logical ring established

Election Algorithms

• Determine where a new copy of the coordinator should be 
restarted

• Assume that a unique priority number is associated with each 
active process in the system, and assume that the priority number 
of process P

i
  is i

• Assume a one-to-one correspondence between processes and sites

• The coordinator is always the process with the highest priority 
number.  When a coordinator fails, the algorithm must elect that 
active process with the largest priority number

• Two algorithms, the bully algorithm and a ring algorithm, can be 
used to elect a new coordinator in case of failures



Bully Algorithm

• Applicable to systems where every process can send a 
message to every other process in the system

• If process P
i
 sends a request that is not answered by the 

coordinator within a time interval T, assume that the 
coordinator has failed; P

i
 tries to elect itself as the new 

coordinator

• Pi sends an election message to every process with a 
higher priority number, P

i
 then waits for any of these 

processes to answer within T

Bully Algorithm (Cont.)

• If no response within T, assume that all processes with 
numbers greater than i have failed; P

i
 elects itself the 

new coordinator

• If answer is received, P
i
 begins time interval T´, 

waiting to receive a message that a process with a 
higher priority number has been elected

• If no message is sent within T´, assume the process 
with a higher number has failed; P

i
 should restart the 

algorithm



Bully Algorithm (Cont.)

• If P
i
 is not the coordinator, then, at any time during execution, P

i 

may receive one of the following two messages from process P
j

– P
j
 is the new coordinator (j > i).  P

i
, in turn, records this information

– P
j
 started an election (j > i).  P

i
, sends a response to P

j
 and begins its 

own election algorithm, provided that Pi has not already initiated such 
an election

• After a failed process recovers, it immediately begins execution of 
the same algorithm

• If there are no active processes with higher numbers, the 
recovered process forces all processes with lower number to let it 
become the coordinator process, even if there is a currently active 
coordinator with a lower number 

Ring Algorithm

• Applicable to systems organized as a ring (logically or 
physically)

• Assumes that the links are unidirectional, and that 
processes send their messages to their right neighbors 

• Each process maintains an active list, consisting of all the 
priority numbers of all active processes in the system when 
the algorithm ends

• If process Pi detects a coordinator failure, I creates a new 
active list that is initially empty.  It then sends a message 
elect(i) to its right neighbor, and adds the number i to its 
active list



Ring Algorithm (Cont.)

• If P
i
 receives a message elect(j) from the process on the left, it 

must respond in one of three ways:

✦ If this is the first elect message it has seen or sent, P
i
 creates a new 

active list with the numbers i and j

• It then sends the message elect(i), followed by the 
message elect(j)

✦ If i ≠ j, then the active list for P
i
 now contains the numbers of all the 

active processes in the system  

• P
i
 can now determine the largest number in the active list 

to identify the new coordinator process
✦ If i = j, then P

i
 receives the message elect(i)

• The active list for P
i
 contains all the active processes in 

the system
- P

i
 can now determine the new coordinator process.

Distributed Deadlock Handling

• Resource-ordering deadlock-prevention 
=>define a global ordering among the system resources

– Assign a unique number to all system resources
– A process may request a resource with unique number i only if 

it is not holding a resource with a unique number grater than i

– Simple to implement; requires little overhead

• Timestamp-ordering deadlock-prevention

=>unique Timestamp assigned when each process is 
created 

1. wait-die scheme -- non-reemptive
2. wound-wait scheme -- preemptive



Prevention: Wait-Die Scheme

• non-preemptive approach

• If P
i
 requests a resource currently held by P

j
, P

i
 is 

allowed to wait only if it has a smaller timestamp 
than does P

j
 (P

i
 is older than P

j
)

– Otherwise, P
i
 is rolled back (dies - releases resources)

• Example:  Suppose that processes P1, P2, and P3 have 
timestamps 5, 10, and 15 respectively
– if P1 request a resource held by P2, then P1 will wait

– If P3 requests a resource held by P2, then P3 will be rolled 
back

• The older the process gets, the more waits

Prevention: Wound-Wait Scheme
• Preemptive approach, counterpart to the wait-die 

• If P
i
 requests a resource currently held by P

j
, P

i
 is 

allowed to wait only if it has a larger timestamp than 
does P

j
 (P

i
 is younger than P

j
).  Otherwise P

j
 is rolled 

back (P
j
 is wounded by P

i
)

• Example:  Suppose that processes P1, P2, and P3 have 
timestamps 5, 10, and 15 respectively
– If P1 requests a resource held by P2, then the resource will be 

preempted from P2 and P2 will be rolled back

– If P3 requests a resource held by P2, then P3 will wait

• The rolled-back process eventually gets the smallest 
timestamp.



Comparison

• Both avoid starvation, provided that when a process is 
rolled back, it is not assigned a new timestamp

• In wait-die, older process must wait for the younger 
one to release its resources. In wound-wait, an older 
process never waits for a younger process.

• There are fewer roll-backs in wound-wait. 
– Pi->Pj; Pi dies, requests the same resources; Pi dies again...
– Pj->Pi; Pi wounded. requests the same resources; Pi waits..
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Distributed Deadlock Detection

Two Local Wait-For Graphs



Global Wait-For Graph

Deadlock Detection – Centralized Approach

• Each site keeps a local wait-for graph  
– The nodes of the graph correspond to all the processes that are 

currently either holding or requesting any of the resources local to 
that site

• A global wait-for graph is maintained in a single coordination 
process; this graph is the union of all local wait-for graphs 

• There are three different options (points in time) when the 
wait-for graph may be constructed:
1.  Whenever a new edge is inserted or removed in one of the local wait-for 

graphs

2. Periodically, when a number of changes have occurred in a wait-for graph

3. Whenever the coordinator needs to invoke the cycle-detection algorithm

• Option1: unnecessary rollbacks may occur as a result of false 
cycles



Local and Global Wait-For Graphs

Detection Algorithm Based on Option 3

• Append unique identifiers (timestamps) to requests 
form different sites

• When process P
i
, at site A, requests a resource from 

process P
j
, at site B, a request message with timestamp 

TS is sent

• The edge P
i
 → P

j
 with the label TS is inserted in the 

local wait-for of A. The edge is inserted in the local 
wait-for graph of B only if B has received the request 
message and cannot immediately grant the requested 
resource



Algorithm: Option 3 

1. The controller sends an initiating message to each site in the 
system 

2. On receiving this message, a site sends its local wait-for graph to 
the coordinator

3. When the controller has received a reply from each site, it 
constructs a graph as follows:
(a) The constructed graph contains a vertex for every process in the 

system
(b)   The graph has an edge Pi → Pj if and only if 

- there is an edge Pi → Pj in one of the wait-for graphs, or

If the constructed graph contains a cycle ⇒ deadlock

*To avoid report of false deadlocks, requests from different sites 
appended with unique ids (timestamps)

Timestamping

• Generate unique timestamps in distributed scheme:
– Each site generates a unique local timestamp

– The global unique timestamp is obtained by concatenation of 
the unique local timestamp with the unique site identifier

– Use a logical clock defined within each site to ensure the fair 
generation of timestamps

• Timestamp-ordering scheme – combine the centralized 
concurrency control timestamp scheme with the 2PC 
protocol to obtain a protocol that ensures serializability 
with no cascading rollbacks



Generation of Unique Timestamps

Fully Distributed Approach

• All controllers share equally the responsibility for detecting 
deadlock

• Every site constructs a wait-for graph that represents a part of the 
total graph

• We add one additional node P
ex

 to each local wait-for graph 

– Pi ->P
ex 

exists if Pi is waiting for a data item at another site being held 
by any process  

• If a local wait-for graph contains a cycle that does not involve 
node P

ex
, then the system is in a deadlock state

• A cycle involving P
ex

 implies the possibility of a deadlock

– To ascertain whether a deadlock does exist, a distributed deadlock-
detection algorithm must be invoked



Augmented Local Wait-For Graphs 

Augmented Local Wait-For Graph in Site S2
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Any Questions?

Hmm.
.
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