
1

CSE 421/521 - Operating Systems
Fall 2012

Tevfik Koşar

University at Buffalo
November 27th, 2012

Lecture - XXIII

Distributed Systems - II

Distributed Mutual Exclusion (DME)

• Assumptions
– The system consists of n processes; each process P

i
 resides at a

different processor

– Each process has a critical section that requires mutual
exclusion

• Requirement
– If P

i
 is executing in its critical section, then no other process P

j

is executing in its critical section

• We present two algorithms to ensure the mutual
exclusion execution of processes in their critical
sections

DME: Centralized Approach

• One of the processes in the system is chosen to coordinate the
entry to the critical section

• A process that wants to enter its critical section sends a
request message to the coordinator

• The coordinator decides which process can enter the critical
section next, and its sends that process a reply message

• When the process receives a reply message from the
coordinator, it enters its critical section

• After exiting its critical section, the process sends a release
message to the coordinator and proceeds with its execution

• This scheme requires three messages per critical-section
entry:
– request
– reply

– release

DME: Fully Distributed Approach

• When process P
i
 wants to enter its critical section, it

generates a new timestamp, TS, and sends the message
request (P

i
, TS) to all processes in the system

• When process P
j receives a request message, it may

reply immediately or it may defer sending a reply back

• When process P
i
receives a reply message from all other

processes in the system, it can enter its critical section

• After exiting its critical section, the process sends reply
messages to all its deferred requests

DME: Fully Distributed Approach (Cont.)

• The decision whether process P
j
 replies immediately to a

request(P
i
, TS) message or defers its reply is based on three

factors:
– If P

j
 is in its critical section, then it defers its reply to P

i

– If P
j
 does not want to enter its critical section, then it sends a reply

immediately to P
i

– If P
j
 wants to enter its critical section but has not yet entered it, then

it compares its own request timestamp with the timestamp TS

• If its own request timestamp is greater than TS, then it
sends a reply immediately to P

i
 (P

i
 asked first)

• Otherwise, the reply is deferred

– Example: P1 sends a request to P2 and P3 (timestamp=10)

 P3 sends a request to P1 and P2 (timestamp=4)

Undesirable Consequences

• The processes need to know the identity of all other
processes in the system, which makes the dynamic
addition and removal of processes more complex

• If one of the processes fails, then the entire scheme
collapses
– This can be dealt with by continuously monitoring the state of

all the processes in the system, and notifying all processes if a
process fails

Token-Passing Approach

• Circulate a token among processes in system
– Token is special type of message

– Possession of token entitles holder to enter critical section

• Processes logically organized in a ring structure

• Unidirectional ring guarantees freedom from starvation

• Two types of failures
– Lost token – election must be called

– Failed processes – new logical ring established

Election Algorithms

• Determine where a new copy of the coordinator should be
restarted

• Assume that a unique priority number is associated with each
active process in the system, and assume that the priority number
of process P

i
 is i

• Assume a one-to-one correspondence between processes and sites

• The coordinator is always the process with the highest priority
number. When a coordinator fails, the algorithm must elect that
active process with the largest priority number

• Two algorithms, the bully algorithm and a ring algorithm, can be
used to elect a new coordinator in case of failures

Bully Algorithm

• Applicable to systems where every process can send a
message to every other process in the system

• If process P
i
 sends a request that is not answered by the

coordinator within a time interval T, assume that the
coordinator has failed; P

i
 tries to elect itself as the new

coordinator

• Pi sends an election message to every process with a
higher priority number, P

i
 then waits for any of these

processes to answer within T

Bully Algorithm (Cont.)

• If no response within T, assume that all processes with
numbers greater than i have failed; P

i
 elects itself the

new coordinator

• If answer is received, P
i
 begins time interval T´,

waiting to receive a message that a process with a
higher priority number has been elected

• If no message is sent within T´, assume the process
with a higher number has failed; P

i
 should restart the

algorithm

Bully Algorithm (Cont.)

• If P
i
 is not the coordinator, then, at any time during execution, P

i

may receive one of the following two messages from process P
j

– P
j
 is the new coordinator (j > i). P

i
, in turn, records this information

– P
j
 started an election (j > i). P

i
, sends a response to P

j
 and begins its

own election algorithm, provided that Pi has not already initiated such
an election

• After a failed process recovers, it immediately begins execution of
the same algorithm

• If there are no active processes with higher numbers, the
recovered process forces all processes with lower number to let it
become the coordinator process, even if there is a currently active
coordinator with a lower number

Ring Algorithm

• Applicable to systems organized as a ring (logically or
physically)

• Assumes that the links are unidirectional, and that
processes send their messages to their right neighbors

• Each process maintains an active list, consisting of all the
priority numbers of all active processes in the system when
the algorithm ends

• If process Pi detects a coordinator failure, I creates a new
active list that is initially empty. It then sends a message
elect(i) to its right neighbor, and adds the number i to its
active list

Ring Algorithm (Cont.)

• If P
i
 receives a message elect(j) from the process on the left, it

must respond in one of three ways:

✦ If this is the first elect message it has seen or sent, P
i
 creates a new

active list with the numbers i and j

• It then sends the message elect(i), followed by the
message elect(j)

✦ If i ≠ j, then the active list for P
i
 now contains the numbers of all the

active processes in the system

• P
i
 can now determine the largest number in the active list

to identify the new coordinator process
✦ If i = j, then P

i
 receives the message elect(i)

• The active list for P
i
 contains all the active processes in

the system
- P

i
 can now determine the new coordinator process.

Distributed Deadlock Handling

• Resource-ordering deadlock-prevention
=>define a global ordering among the system resources

– Assign a unique number to all system resources
– A process may request a resource with unique number i only if

it is not holding a resource with a unique number grater than i

– Simple to implement; requires little overhead

• Timestamp-ordering deadlock-prevention

=>unique Timestamp assigned when each process is
created

1. wait-die scheme -- non-reemptive
2. wound-wait scheme -- preemptive

Prevention: Wait-Die Scheme

• non-preemptive approach

• If P
i
 requests a resource currently held by P

j
, P

i
 is

allowed to wait only if it has a smaller timestamp
than does P

j
 (P

i
 is older than P

j
)

– Otherwise, P
i
 is rolled back (dies - releases resources)

• Example: Suppose that processes P1, P2, and P3 have
timestamps 5, 10, and 15 respectively
– if P1 request a resource held by P2, then P1 will wait

– If P3 requests a resource held by P2, then P3 will be rolled
back

• The older the process gets, the more waits

Prevention: Wound-Wait Scheme
• Preemptive approach, counterpart to the wait-die

• If P
i
 requests a resource currently held by P

j
, P

i
 is

allowed to wait only if it has a larger timestamp than
does P

j
 (P

i
 is younger than P

j
). Otherwise P

j
 is rolled

back (P
j
 is wounded by P

i
)

• Example: Suppose that processes P1, P2, and P3 have
timestamps 5, 10, and 15 respectively
– If P1 requests a resource held by P2, then the resource will be

preempted from P2 and P2 will be rolled back

– If P3 requests a resource held by P2, then P3 will wait

• The rolled-back process eventually gets the smallest
timestamp.

Comparison

• Both avoid starvation, provided that when a process is
rolled back, it is not assigned a new timestamp

• In wait-die, older process must wait for the younger
one to release its resources. In wound-wait, an older
process never waits for a younger process.

• There are fewer roll-backs in wound-wait.
– Pi->Pj; Pi dies, requests the same resources; Pi dies again...
– Pj->Pi; Pi wounded. requests the same resources; Pi waits..

17

Distributed Deadlock Detection

Two Local Wait-For Graphs

Global Wait-For Graph

Deadlock Detection – Centralized Approach

• Each site keeps a local wait-for graph
– The nodes of the graph correspond to all the processes that are

currently either holding or requesting any of the resources local to
that site

• A global wait-for graph is maintained in a single coordination
process; this graph is the union of all local wait-for graphs

• There are three different options (points in time) when the
wait-for graph may be constructed:
1. Whenever a new edge is inserted or removed in one of the local wait-for

graphs

2. Periodically, when a number of changes have occurred in a wait-for graph

3. Whenever the coordinator needs to invoke the cycle-detection algorithm

• Option1: unnecessary rollbacks may occur as a result of false
cycles

Local and Global Wait-For Graphs

Detection Algorithm Based on Option 3

• Append unique identifiers (timestamps) to requests
form different sites

• When process P
i
, at site A, requests a resource from

process P
j
, at site B, a request message with timestamp

TS is sent

• The edge P
i
 → P

j
 with the label TS is inserted in the

local wait-for of A. The edge is inserted in the local
wait-for graph of B only if B has received the request
message and cannot immediately grant the requested
resource

Algorithm: Option 3

1. The controller sends an initiating message to each site in the
system

2. On receiving this message, a site sends its local wait-for graph to
the coordinator

3. When the controller has received a reply from each site, it
constructs a graph as follows:
(a) The constructed graph contains a vertex for every process in the

system
(b) The graph has an edge Pi → Pj if and only if

- there is an edge Pi → Pj in one of the wait-for graphs, or

If the constructed graph contains a cycle ⇒ deadlock

*To avoid report of false deadlocks, requests from different sites
appended with unique ids (timestamps)

Timestamping

• Generate unique timestamps in distributed scheme:
– Each site generates a unique local timestamp

– The global unique timestamp is obtained by concatenation of
the unique local timestamp with the unique site identifier

– Use a logical clock defined within each site to ensure the fair
generation of timestamps

• Timestamp-ordering scheme – combine the centralized
concurrency control timestamp scheme with the 2PC
protocol to obtain a protocol that ensures serializability
with no cascading rollbacks

Generation of Unique Timestamps

Fully Distributed Approach

• All controllers share equally the responsibility for detecting
deadlock

• Every site constructs a wait-for graph that represents a part of the
total graph

• We add one additional node P
ex

 to each local wait-for graph

– Pi ->P
ex

exists if Pi is waiting for a data item at another site being held
by any process

• If a local wait-for graph contains a cycle that does not involve
node P

ex
, then the system is in a deadlock state

• A cycle involving P
ex

 implies the possibility of a deadlock

– To ascertain whether a deadlock does exist, a distributed deadlock-
detection algorithm must be invoked

Augmented Local Wait-For Graphs

Augmented Local Wait-For Graph in Site S2

21

Any Questions?

Hmm.
.

30

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

