CSE 421/521 - Operating Systems
Fall 2012

LECTURE - XXIV

DISTRIBUTED SYSTEMS - I11

Tevfik Kosar

University at Buffalo
November 29th, 2012

DFS Interface

* DFS provides access to and manipulation of data
stored at remote servers using file system
interfaces

* What are the file system interfaces?
— Open a file, check status on a file, close a file;
— Read data from a file;
— Write data to a file;
— Lock a file or part of a file;
— List files in a directory, delete a directory;
— Delete a file, rename a file, add a symlink to a file;
— i.e. POSIX interface

Distributed File Systems

Distributed file system (DFS) - a distributed
implementation of the classical time-sharing model of a
file system, where multiple users share files and storage
resources over a network

A DFS manages set of dispersed storage devices

Overall storage space managed by a DFS is composed of
different, remotely located, smaller storage spaces

There is usually a correspondence between constituent
storage spaces and sets of files

Buzz Words: NAS vs SAN

File System vs Block-Level Interface

Data are organized in files, which in turn are
organized in directories

Compare these with disk-level access or “block”
access interface: [Read/Write, LUN, block#]
Key differences:

— Implementation of the directory/file structure and
semantics

— Synchronization

NAS SAN
Access Methods File access Disk block access
Access Medium Ethernet Fiber Channel and Ethernet

Transport Protocol | Layer over TCP/IP | SCSI/FC and SCSI/IP

Efficiency Less More

Sharing and Access Good Poor

Control

Integrity demands Strong Very strong
Clients Workstations Database servers

Why is DFS Useful?

Data sharing of multiple users

User mobility

Data location transparency

Data location independence
Replications and increased availability

Not all DFS are the same:
— Local-area vs Wide area DFS

— Fully Distributed FS vs DFS requiring central
coordinator

Issues in Distributed File Systems

Naming (global name space)

Performance (Caching, data access)
Reliability (replication, recovery)
Consistency (when/how to update/synch?)
Security (user privacy, access controls)

3.

DFS - Three Naming Schemes

Mount remote directories to local directories, giving the
appearance of a coherent local directory tree

* Mounted remote directories can be accessed transparently.

* Unix/Linux with NFS; Windows with mapped drives

Files named by combination of kost name and local
name;,

* Guarantees a unique system wide name

* Windows Network Places, Apollo Domain

Total integration of component file systems.

* Asingle global name structure spans all the files in the system.

» Ifaserver is unavailable, some arbitrary set of directories on
different machines also becomes unavailable.

« AFS

Naming of Distributed Files

* Naming — mapping between logical and physical objects.

* A transparent DFS hides the location where in the network
the file is stored.

* Location transparency — file name does not reveal the
file’s physical storage location.

— File name denotes a specific, hidden, set of physical disk blocks.

— Convenient way to share data.

— Could expose correspondence between component units and machines.

* Location independence — file name does not need to be
changed when the file’s physical storage location changes.

— Better file abstraction.

— Promotes sharing the storage space itself.

— Separates the naming hierarchy from the storage-devices hierarchy.

Mounting Remote Directories (NFS)

Client A Server Client B

f f

Mounting Remote Directories (NFS)

client server
system-calls interface
VFS interface VFS interface
other types of UNIX 4.2 file UNIX 4.2 file
file systems systems NESicliont NES servor; systems

RPC/XDR RPC/XDR

disk

2

network

Exported directory
mounted by client

Exported directory
mounted by client

Network

Mounting Remote Directories (NFS)

* Note:— names of files are not unique
* As represented by path names
* Eg,
* Server A sees : /users/steen/mbox
* Client A sees: /remote/vu/mbox
* Client B sees: /work/me/mbox

» Consequence:— Cannot pass file “names”
around haphazardly

DFS - Remote Service vs Caching

* Remote Service — all file actions implemented by
Server.
— RPC functions
— Use for small memory diskless machines
— Particularly applicable if large amount of write activity
* Cached System

— Many “remote” accesses handled efficiently by the
local cache
* Most served as fast as local ones.
— Servers contacted only occasionally
* Reduces server load and network traffic.
» Enhances potential for scalability.
— Reduces total network overhead

DFS - File Caches

* In client memory
— Performance speed up; faster access
— Good when local usage is transient
— Enables diskless workstations
* On client disk
— Good when local usage dominates (e.g., AFS)
— Caches larger files
— Helps protect clients from server crashes

DFS Caching - File Access Performance

* Reduce network traffic by retaining recently
accessed disk blocks in local cache

* Repeated accesses to the same information can be
handled locally.
— All accesses are performed on the cached copy.
* Ifneeded data not already cached, copy of data
brought from the server to the local cache.
— Copies of parts of file may be scattered in different
caches.
* Cache-consistency problem — keeping the cached
copies consistent with the master file.
— Especially on write operations

DFS - File Consistency

* Is locally cached copy of the data consistent with
the master copy?
* Client-initiated approach
— Client initiates a validity check with server.
— Server verifies local data with the master copy
« E.g., time stamps, etc.
* Server-initiated approach
— Server records (parts of) files cached in each client.
— When server detects a potential inconsistency, it reacts

DFS - Cache Update Policies

* When does the client update the master file?
— Le. when is cached data written from the cache to the file?
» Write-through — write data through to disk ASAP
— Le., following write() or put(), same as on local disks.
— Reliable, but poor performance.
* Delayed-write — cache and then write to the server later.

— Write operations complete quickly; some data may be overwritten
in cache, saving needless network /0.

— Poor reliability
* unwritten data may be lost when client machine crashes
* Inconsistent data

— Variation — scan cache at regular intervals and flush dirzy blocks.

DFS - File Server Semantics

o Stateful Service
— Client opens a file (as in Unix & Windows).

— Server fetches information about file from disk, stores in
server memory,

* Returns to client a connection identifier unique to client and open
file.

« Identifier used for subsequent accesses until session ends.
— Server must reclaim space used by no longer active clients.
— Increased performance; fewer disk accesses.
— Server retains knowledge about file

* E.g., read ahead next blocks for sequential access

» E.g., file locking for managing writes
— Windows

DFS - File Server Semantics

e Stateless Service

— Avoids state information in server by making
each request self-contained.

— Each request identifies the file and position in
the file.

— No need to establish and terminate a connection
by open and close operations.

— Poor support for locking or synchronization
among concurrent accesses

DFS - Server Semantics Comparison

 Failure Recovery: Stateful server loses all volatile
state in a crash.

— Restore state by recovery protocol based on a dialog
with clients.

— Server needs to be aware of crashed client processes
* orphan detection and elimination.
* Failure Recovery: Stateless server failure and
recovery are almost unnoticeable.

— Newly restarted server responds to self-contained
requests without difficulty.

20

DFS - Server Semantics Comparison

 Penalties for using the robust stateless service: —
— longer request messages
— slower request processing

» Some environments require stateful service.

— Server-initiated cache validation cannot provide
stateless service.

— File locking (one writer, many readers).

21

DFS - Replication

* Replicas of the same file reside on failure-independent
machines.
» Improves availability and can shorten service time.
» Naming scheme maps a replicated file name to a particular
replica.
— Existence of replicas should be invisible to higher levels.

— Replicas must be distinguished from one another by different
lower-level names.

» Updates
— Replicas of a file denote the same logical entity
— Update to any replica must be reflected on all other replicas.

22

Two Popular DFS

« NFS: Network File System (from SUN)

o AFS: the Andrew File System

23

AFS - NFS Quick Comparison

* NFS: per-client linkage

— Server: export /root/fs1/

— Client: mount server:/root/fs1 /fs1 = fhandle
+ AFS: global name space

— Name space is organized into Volumes
* Global directory /afs;
« /afs/cs.wisc.edu/voll/...; /afs/cs.stanfod.edu/voll/...

— Each file is identified as <vol_id, vnode#, vnode gen>

— All AFS servers keep a copy of “volume location database”,
which is a table of vol_id-> server_ip mappings

24

AFS - NFS Quick Comparison

* NFS: no transparency

— If a directory is moved from one server to another, client
must remount

* AFS: transparency

— Ifa volume is moved from one server to another, only the
volume location database on the servers needs to be
updated

— Implementation of volume migration
— File lookup efficiency

* Are there other ways to provide location
transparency?

25

More on NFS

* No locking! No synchronization!

* Unix file semantics not guaranteed
» E.g., read after write

* Session semantics not even guaranteed
* E.g., open after close

* Solution: global lock manager
* Separate from NFS

27

More on NFS

e AFS is a stateful service

¢ NFS is a stateless service

* Server retains no knowledge of client
« Server crashes invisible to client

¢ All hard work done on client side

» Every operation provides file handle

» Server caching
* Performance only
» Based on recent usage

* Client caching

* Client checks validity of caches files

* Client responsible for writing out caches
26

DFS Summary

* Performance is always an issue
— Tradeoff between performance and the semantics of file
operations (especially for shared files).
* Caching of file blocks is crucial in any file
system, distributed or otherwise.

— As memories get larger, most read requests can be
serviced out of file buffer cache (local memory).

— Maintaining coherency of those caches is a crucial
design issue.

* Current research addressing disconnected file
operation for mobile computers.

29

NSF Failure Recovery

* Server crashes are transparent to client
« Each client request contains all information
« Server can re-fetch from disk if not in its caches

* Client retransmits request if interrupted by crash
— (i.e., no response)

* Client crashes are transparent to server

« Server maintains no record of which client(s) have
cached files.

28

Any Questions?

Hmm.)

E\

21

Acknowledgements

“Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

“Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

“Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

31

