
1

CSE 421/521 - Operating Systems
Fall 2012

Tevfik Koşar

University at Buffalo
November 29th, 2012

Lecture - XXIV

Distributed Systems - III

Distributed File Systems

• Distributed file system (DFS) – a distributed
implementation of the classical time-sharing model of a
file system, where multiple users share files and storage
resources over a network

• A DFS manages set of dispersed storage devices

• Overall storage space managed by a DFS is composed of
different, remotely located, smaller storage spaces

• There is usually a correspondence between constituent
storage spaces and sets of files

DFS Interface

3

• DFS provides access to and manipulation of data
stored at remote servers using file system
interfaces

• What are the file system interfaces?
– Open a file, check status on a file, close a file;
– Read data from a file;
– Write data to a file;
– Lock a file or part of a file;
– List files in a directory, delete a directory;
– Delete a file, rename a file, add a symlink to a file;
– i.e. POSIX interface

File System vs Block-Level Interface

4

• Data are organized in files, which in turn are
organized in directories

• Compare these with disk-level access or “block”
access interface: [Read/Write, LUN, block#]

• Key differences:
– Implementation of the directory/file structure and

semantics
– Synchronization

Buzz Words: NAS vs SAN

5

NAS SAN
Access Methods File access Disk block access

Access Medium Ethernet Fiber Channel and Ethernet

Transport Protocol Layer over TCP/IP SCSI/FC and SCSI/IP

Efficiency Less More
Sharing and Access
Control Good Poor

Integrity demands Strong Very strong
Clients Workstations Database servers

Why is DFS Useful?

6

• Data sharing of multiple users
• User mobility
• Data location transparency
• Data location independence
• Replications and increased availability

• Not all DFS are the same:
– Local-area vs Wide area DFS
– Fully Distributed FS vs DFS requiring central

coordinator

Issues in Distributed File Systems

• Naming (global name space)

• Performance (Caching, data access)

• Reliability (replication, recovery)

• Consistency (when/how to update/synch?)

• Security (user privacy, access controls)

7

Naming of Distributed Files

• Naming – mapping between logical and physical objects.
• A transparent DFS hides the location where in the network

the file is stored.
• Location transparency – file name does not reveal the

file’s physical storage location.
– File name denotes a specific, hidden, set of physical disk blocks.
– Convenient way to share data.
– Could expose correspondence between component units and machines.
• Location independence – file name does not need to be

changed when the file’s physical storage location changes.
– Better file abstraction.
– Promotes sharing the storage space itself.
– Separates the naming hierarchy from the storage-devices hierarchy.

DFS - Three Naming Schemes

1. Mount remote directories to local directories, giving the
appearance of a coherent local directory tree
• Mounted remote directories can be accessed transparently.
• Unix/Linux with NFS; Windows with mapped drives

2. Files named by combination of host name and local
name;
• Guarantees a unique system wide name
• Windows Network Places, Apollo Domain

3. Total integration of component file systems.
• A single global name structure spans all the files in the system.
• If a server is unavailable, some arbitrary set of directories on

different machines also becomes unavailable.
• AFS

Mounting Remote Directories (NFS)

10

Mounting Remote Directories (NFS)

11

Mounting Remote Directories (NFS)

12

• Note:– names of files are not unique
• As represented by path names

• E.g.,
• Server A sees : /users/steen/mbox
• Client A sees: /remote/vu/mbox
• Client B sees: /work/me/mbox

• Consequence:– Cannot pass file “names”
around haphazardly

DFS - Remote Service vs Caching

13

• Remote Service – all file actions implemented by
server.
– RPC functions
– Use for small memory diskless machines
– Particularly applicable if large amount of write activity

• Cached System
– Many “remote” accesses handled efficiently by the

local cache
• Most served as fast as local ones.

– Servers contacted only occasionally
• Reduces server load and network traffic.
• Enhances potential for scalability.

– Reduces total network overhead

DFS Caching - File Access Performance

14

• Reduce network traffic by retaining recently
accessed disk blocks in local cache

• Repeated accesses to the same information can be
handled locally.
– All accesses are performed on the cached copy.

• If needed data not already cached, copy of data
brought from the server to the local cache.
– Copies of parts of file may be scattered in different

caches.
• Cache-consistency problem – keeping the cached

copies consistent with the master file.
– Especially on write operations

DFS - File Caches

15

• In client memory
– Performance speed up; faster access
– Good when local usage is transient
– Enables diskless workstations

• On client disk
– Good when local usage dominates (e.g., AFS)
– Caches larger files
– Helps protect clients from server crashes

DFS - Cache Update Policies

16

• When does the client update the master file?
– I.e. when is cached data written from the cache to the file?

• Write-through – write data through to disk ASAP
– I.e., following write() or put(), same as on local disks.
– Reliable, but poor performance.

• Delayed-write – cache and then write to the server later.
– Write operations complete quickly; some data may be overwritten

in cache, saving needless network I/O.
– Poor reliability

• unwritten data may be lost when client machine crashes
• Inconsistent data

– Variation – scan cache at regular intervals and flush dirty blocks.

DFS - File Consistency

17

• Is locally cached copy of the data consistent with
the master copy?

• Client-initiated approach
– Client initiates a validity check with server.
– Server verifies local data with the master copy

• E.g., time stamps, etc.

• Server-initiated approach
– Server records (parts of) files cached in each client.
– When server detects a potential inconsistency, it reacts

DFS - File Server Semantics

18

• Stateful Service
– Client opens a file (as in Unix & Windows).
– Server fetches information about file from disk, stores in

server memory,
• Returns to client a connection identifier unique to client and open

file.
• Identifier used for subsequent accesses until session ends.

– Server must reclaim space used by no longer active clients.
– Increased performance; fewer disk accesses.
– Server retains knowledge about file

• E.g., read ahead next blocks for sequential access
• E.g., file locking for managing writes

– Windows

DFS - File Server Semantics

19

• Stateless Service
– Avoids state information in server by making

each request self-contained.
– Each request identifies the file and position in

the file.
– No need to establish and terminate a connection

by open and close operations.

– Poor support for locking or synchronization
among concurrent accesses

DFS - Server Semantics Comparison

20

• Failure Recovery: Stateful server loses all volatile
state in a crash.
– Restore state by recovery protocol based on a dialog

with clients.
– Server needs to be aware of crashed client processes

• orphan detection and elimination.

• Failure Recovery: Stateless server failure and
recovery are almost unnoticeable.
– Newly restarted server responds to self-contained

requests without difficulty.

DFS - Server Semantics Comparison

21

• Penalties for using the robust stateless service: –
– longer request messages
– slower request processing

• Some environments require stateful service.
– Server-initiated cache validation cannot provide

stateless service.
– File locking (one writer, many readers).

DFS - Replication

22

• Replicas of the same file reside on failure-independent
machines.

• Improves availability and can shorten service time.
• Naming scheme maps a replicated file name to a particular

replica.
– Existence of replicas should be invisible to higher levels.
– Replicas must be distinguished from one another by different

lower-level names.
• Updates

– Replicas of a file denote the same logical entity
– Update to any replica must be reflected on all other replicas.

Two Popular DFS

• NFS: Network File System (from SUN)

• AFS: the Andrew File System

23

AFS - NFS Quick Comparison

24

• NFS: per-client linkage
– Server: export /root/fs1/
– Client: mount server:/root/fs1 /fs1 ! fhandle

• AFS: global name space
– Name space is organized into Volumes

• Global directory /afs;
• /afs/cs.wisc.edu/vol1/…; /afs/cs.stanfod.edu/vol1/…

– Each file is identified as <vol_id, vnode#, vnode_gen>
– All AFS servers keep a copy of “volume location database”,

which is a table of vol_id! server_ip mappings

AFS - NFS Quick Comparison

25

• NFS: no transparency
– If a directory is moved from one server to another, client

must remount
• AFS: transparency
– If a volume is moved from one server to another, only the

volume location database on the servers needs to be
updated

– Implementation of volume migration
– File lookup efficiency
• Are there other ways to provide location

transparency?

More on NFS

26

• AFS is a stateful service
• NFS is a stateless service
• Server retains no knowledge of client

• Server crashes invisible to client

• All hard work done on client side
• Every operation provides file handle
• Server caching

• Performance only
• Based on recent usage

• Client caching
• Client checks validity of caches files
• Client responsible for writing out caches

More on NFS

27

• No locking! No synchronization!

• Unix file semantics not guaranteed
• E.g., read after write

• Session semantics not even guaranteed
• E.g., open after close

• Solution: global lock manager
• Separate from NFS

NSF Failure Recovery

28

• Server crashes are transparent to client
• Each client request contains all information
• Server can re-fetch from disk if not in its caches
• Client retransmits request if interrupted by crash

– (i.e., no response)

• Client crashes are transparent to server
• Server maintains no record of which client(s) have

cached files.

DFS Summary

29

• Performance is always an issue
– Tradeoff between performance and the semantics of file

operations (especially for shared files).
• Caching of file blocks is crucial in any file

system, distributed or otherwise.
– As memories get larger, most read requests can be

serviced out of file buffer cache (local memory).
– Maintaining coherency of those caches is a crucial

design issue.
• Current research addressing disconnected file

operation for mobile computers.

21

Any Questions?

Hmm.
.

31

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

