9/24/12

CSE 421/521 - Operating Systems
Fall 2012 Recitations

RECITATION - I

NETWORKING &
CONCURRENT PROGRAMMING

PROF. TEVFIK KOSAR

Presented by Sonali Batra

University at Buffalo
September 26th 2012

Network Programming

SERVER

Create socket

bind a port to the.
socket

« TCP Client-Server view

» Connection-oriented
socket connections

CLIENT

Server Side Socket Details

SERVER

int socket(int domain, int type, int protocol)
sockfd = socket(PF_INET, SOCK_STREAM, 0);

Create socket

listen for incoming

Create socket ‘

connections

i v

accept an connect to server's

incoming o

connection ‘ P
L v

read from the | witeto the
| connection connection .

/
loop L loop
AN v e
“a| wite tothe read from the |’
connection connection

bind a port to the

fisten for incoming
connections

v
acoept an
incomi
connection

int bind(int sockfd, struct sockaddr *server_addr, socklen_t length)
bind(sockfd, &server, sizeof(server));

int listen(int sockfd, int num_queued_requests)
listen(sockfd, 5);

int accept(int sockfd, struct sockaddr *incoming_address, socklen_t length)
newfd = accept(sockfd, &client, sizeof(client)); /* BLOCKS */

Client Side Socket Details

CLIENT
Create socket int socket(int domain, int type, int protocol)
sockfd = socket(PF_INET, SOCK_STREAM, 0);
v
connect to Server int connect(int sockfd, struct sockaddr *server_address, socklen_t length)
socket connect(sockfd, &server, sizeof(server));
Y S . . .
write to the int write(int sockfd, void * buffer, size_t buffer_size)
connection write(sockfd, buffer, sizeof(buffer));
v

read from the
connection

int read(int sockfd, void * buffer, size_t buffer_size)
read(sockfd, buffer, sizeof(buffer));

read from the. int read(int sockfd, void * buffer, size_t buffer_size)
connection read(newfd, buffer, sizeof(buffer));
Y - . . .
‘ wiite (o the. int write(int sockfd, void * buffer, size_t buffer_size)
connection wril buffer, si; 0
4
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#define PORTNUM 8824
#define oops(msg) { perror(msg) ; exit(l) ; }
6

9/24/12

void main(int ac, char **av)

{

struct sockaddr_in saddr; /* build our address here */
struct hostent *hp; /* this is part of our */
char hostname[256]; /% address =/
int slen,sock_id,sock_fd; /* line id, file desc */
FILE *sock_fp; /% use socket as stream */

char *ctime(); /+ convert secs to string */

long time(), thetime; /* time and the val */

gethostname(hostname , 256); /* where am T ? */

hp = gethostbyname(hostname); /* get info about host */
/* zero struct */

/* £ill in hostaddr */

bzero(&saddr, sizeof(saddr));

beopy(hp->h_addr, &saddr.sin_addr, hp->h_length);

while (1){
sock_fd = accept(sock_id, NULL, NULL); /* wait for call */
printf("** Server: A new client connected!"
if (sock fd == -1)

oops("accept”);

/% error getting calls */

sock_fp = fdopen(sock_fd, " /* we'll write to the */

if (sock_fp NULL) /% socket as a stream */
oops("fdopen"); /% unless we can't */
thetime = time(NULL); /% get time */

/% and convert to strng */

fprintf(sock_fp, " \n");
f£printf(sock_fp, "** From Server: The current time is: ");

fprintf(sock_fp, "$s", ctime(sthetime));

fprintf(sock_fp, \n");

saddr.sin_family = AF_INET ; /* £i11 in socket type */
saddr.sin_port = htons (PORTNUM) ; /* £i1l in socket port */
sock_id = socket(AF_INET, SOCK_STREAM, 0); /% get a socket */
H—t — y—oopst—* “—y

7
if (bind(sock id. &saddr. sizeof(saddr)) = 0 \/* bind it to *

fclose(sock_fp); /+ release connection */

f££lush(stdout); /% force output */

Client-Server Implementation

main(int arge, char *rargv){

int len, port sk, client sk;

1.server code

char *errmess;
port_sk = tcp_passive_open(port); /* establish port */
if (port_sk < 0) { perror("socket"); exit(1l); }
printf("start up complete\n");

client_sk = tcp_accept(port_sk); /* wait for client to comnect */

close(port_sk); /* only want one client, so close port sk */

for(;;) { /* talk to client */
len = read(client_sk,buff,buf_len); //listen
printf("client says: $s\n",buff);
if (gets(buff) NULL) { /* user typed end of file */
close(client_sk); break;
}
write(client sk,buff,strlen(buff)); //server's turn
} exit(0);

int tcp_passive_open(portno)

int portno; passive open
{

int sd, code;

struct sockaddr_in bind_addr;

bind_addr.sin_family = AF_INET;

bind_addr.sin_addr.s_addr = 0; /* 0.0.0.0 == this host */

bzero(bind_addr.sin_zero, 8);

bind_addr.sin_port = portno;

sd = socket(AF_INET, SOCK_STREAM,0);

if (sd < 0) return sd;

code = bind(sd, &bind addr, sizeof(bind_addr));

if (code < 0) { close(sd); return code; }

code = listen(sd, 1);

if (code < 0) { close(sd); return code; }

return sd;
}

int tcp_accept(sock)

int sock; tcp_accept

{
int sd;
struct sockaddr bind_addr;
int len=sizeof (bind_addr);
sd = accept(sock, &bind_addr, &len);
return sd;
}

9/24/12

main(int argc, char**argv) .
(2. client code
int serv_sk, len;
char *errmess;
serv_sk = tcp_active_open(host,port); /* request connection */
if (serv_sk < 0) { perror("socket"); exit(1l); }

printf("You can send now\n");

for(;;) { /* talk to server */
if (gets(buff)

close(serv_sk); break;

NULL) { /* client's turn */

}

write(serv_sk,buff,strlen(buff));

len = read(serv_sk,buff,buf_len); //wait for server's response
0) {
printf("server finished the conversation\n");break;
}
buff[len] = '\0';
printf("server says: $s\n",buff);
} exit(0);

if (len

int tcp_active_open(char* hostname,int portno) .
¢ active open
int sd, code;
struct sockaddr_in bind_addr;

struct hostent *host;

host = gethostbyname (hostname);
if (host == NULL) return -1;

bind_addr.sin_family = PF_INET;

bind_addr.sin_addr = *((struct in_addr *) (host->h_addr));
bind_addr.sin_port = portno;

sd = socket(AF_INET, SOCK_STREAM, 0);

if (sd < 0) return sd;

code = connect(sd, &bind addr, sizeof(bind_addr));

if (code < 0) { close(sd); return code; }

return sd;

Threads

« In certain cases, a single application may need to run
several tasks at the same time
- Creating a new process for each task is time consuming
- Use a single process with multiple threads
« faster
« less overhead for creation, switching, and termination
« share the same address space

Thread Creation

« pthread_create
// creates a new thread executing start_routine
int pthread_create(pthread_t *thread,
const pthread attr_t *attr,
void *(*start_routine)(void*), void
*arg);

« pthread_join

// suspends execution of the calling thread until the target

// thread terminates
int pthread_join(pthread_t thread, void **value_ptr);

Thread Example

main()
{
pthread_t threadl, thread2; /* thread variables */

pthread_create(sthreadl, NULL, (void *) &print_message_function, (void*)"hello ");
pthread_create(sthread2, NULL, (void *) &print_message_function, (void*)"world!");

pthread_join(threadl, NULL);
pthread_join(thread2, NULL);

printf("\n");
exit(0);

}

Why use pthread_join?
To force main block to wait for both threads to terminate, before it exits.
If main block exits, both threads exit, even if the threads have not
finished their work.

Thread Example (cont.)

void print_message_function (void *ptr)
{
char *cp = (char*)ptr;
int i;
for (i=0;i<3;i++){
printf("$s \n", cp);
f£flush(stdout);
sleep(1);

pthread_exit(0); /* exit */

Example: Interthread Cooperation

void* print_count (void *ptr);
void* increment_count (void *ptr);

int NUM=5;

int counter =0;

int main()

{
pthread_t thread1, thread2;

pthread_create (&thread1, NULL, increment_count, NULL);
pthread_create (&thread2, NULL, print_count, NULL);

pthread_join(thread?, NULL);
pthread_join(thread2, NULL);

exit(0);

9/24/12

Interthread Cooperation (cont.)

void* print_count (void *ptr)
{
int i;
for (i=0;i<NUM;i++){
printf("counter = %d \n", counter);
/1sleep(1);
3
pthread_exit(0);

void* increment_count (void *ptr)
{
inti;
for (i=0;i<NUM;i++){
counter++;
I1/sleep(1);
}
pthread_exit(0);

Concurrency lIssues

Concurrency Earalielism
Tima Tima
Pl: X:=1 — 1 Task 1 Task 2
-
P2:| X:=0; X:=X+1 s
‘i
]
= If programs are independent, -

the results are the same (X=1)

= If programs are executed concurrently and one
program is X:=1, are results of P1 and P2 different

”

"interleaving” makes it difficult to deal with global
properties from the local analysis!

* assumption: access to the memory is atomic

Concurrency Issues

= Shared variables are an effective
way to communicate between

e s e PP

processes

* X:i=X+1isimplemented as 3 { [ew] [wew] Cuewl
different instructions —
+ load the value of X to the register

= increment the register
* store the value of register to X
= Two grocesses updating same
variable concurrently causes
erroneous results
= Correctivity of the pl;o%;-eam needs INC AX
that this updating will LD CARS, AX
indivisible (or atomic)
= Reading a variable can also be a
critical section

= e.g. reading four bytes that are not
volatile

LD AX, CARS

22

POSIX Threads: MUTEX

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t
*mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

*a new data type named pthread_mutex_t is designated for mutexes

*a mutex is like a key (to access the code section) that is handed
to only one thread at a time

the attribute of a mutex can be controlled by using the
pthread_mutex_init() function
sthe lock/unlock functions work in tandem

23

MUTEX Example

#include <pthread.h>

pthread_mutex_tmy_mutex; // should be of global scope
int main()

{

int tmp;

/linitialize the mutex
tmp = pthread_mutex_init(&my_mutex, NULL);

Il create threads

thread_mutex lockl tex).

o somethig prvae(

Whenever g freac m@g&ﬂh& lock/unlock block, it first determines if the
mutex is locked. If so, it waits until it is unlocked. Otherwise, it takes the
mutex,#eeks the succeeding code, then frees the mutex and unlocks the

) code when it's done.

24

POSIX: Semaphores

e creating a semaphore:
int sem_init(sem_t *sem, int pshared, unsigned int value);
initializes a semaphore object pointed to by sem

pshared is a sharing option; a value of 0 means the semaphore is
local to the calling process

gives an initial value value to the semaphore

® terminating a semaphore:
int sem_destroy(sem_t *sem);

frees the resources allocated to the semaphore sem
usually called after pthread_join()
an error will occur if a semaphore is destroyed for which a thread

9/24/12

POSIX: Semaphores (cont.)

» semaphore control:
int sem_post(sem_t *sem);
int sem_wait(sem_t *sem);

sem_post atomically increases the value of a semaphore by 1, i.e.,
when 2 threads call sem_post simultaneously, the semaphore's
value will also be increased by 2 (there are 2 atoms calling)

sem_wait atomically decreases the value of a semaphore by 1; but
always waits until the semaphore has a non-zero value first

Semaphore: Example

#include <pthread.h>

#include <semaphore h>
void *thread_function(void *arg);

sem_t semaphore; //also a global variable just like mutexes

int main()
{
int tmp;
Ilinitialize the semaphore
tmp = sem_init(&semaphore, 0, 0);
Il create threads
pthread_create(&threadil, NULL, thread_function, NULL);
while (still_has_something_to_do())
{
27
sem_post(&semaphore);

Threads (True or False Questions):

« A thread cannot see the variables on another thread's stack.

o False -- they can since they share memory

« Inanon-preemptive thread system, you do not have to worry about race conditions.

e« False -- as threads block and unblock, they may do so in unspecified orders, so you
can still have race race conditions.

« A thread may only call pthread_join() on threads which it has created with
pthread_create()

e« False -- Any thread can join with any other

« With mutexes, you may have a thread execute instructions atomically with respect
to other threads that lock the mutex.

o True -- That's most often how mutexes are used.

29

26
Semaphore: Example (cont.)
void “thread_function(void *arg)
{
sem_wait(&semaphore);
perform_task_when_sem_open();
p}hread,exwl(NULL);
}
28
Exercises
Threads (True or False Questions):
« pthread_create() always returns to the caller
+ True.
« pthread_mutex_lock() never returns
« False - It may block, but it when it unblocks, it will return.
« pthread_exit() returns if there is no error
+ False -- never returns.
30

9/24/12

Exercises
Processes:

Please provide two reasons on why an invocation to fork() might fail

(1) too many processes in the system (2) the total number of processes Daemon Processes
for the real uid exceeds the limit (3) too many PID in the system (4)
memory exceeds the limit,

When a process terminates, what would be the PID of its child
processes? Why?

It would become 1. Because when any of the child processes
terminate, init would be informed and fetch termination status of the
process so that the system is not cogged by zombie processes.

31 32

Daemon Characteristics Writing a Daemon

Commonly, deemon processes are created to offer a specific service.
@ fork off the parent process
Dzemon processes usually

" " @ change file mode mask (umask)
@ live for a long time

@ are started at boot time @ create a unique Session ID (SID)
@ terminate only during shutdown @ change the current working directory to a safe place
© have no controling terminal @ close (or redirect) standard file descriptors
The previously listed istics have certain implications: ° open any IOQS for writing
@ do one thing, and one thing only g @ enter actual deemon code

@ no (or only limited) user-interaction possible
@ consider current working directory S
@ how to create (debugging) output

33 34
Example Daemon Creation Daemon Logging
int daemon—imt(VOid) A daemon cannot simply print error messages to the terminal or standard error. Also,
{ we would not want each daemon writing their error messages into separate files in
A A different formats. A central logging facility is needed.

pid_t pid;

if ((pid=fork())<0) return (-1); There are three ways to generate log messages:

else if (pid!=0) exit (0); //parent goes away @ via the kernel routine 1og (9)

setsid(); //becomes session leader @ via the userland routine syslog(3)

chdir(“/”); //cwd @ via UDP messages to port 514

umask(0); //clear file creation mask
return (0)
3

35 36

9/24/12

Syslog()

openlog(3) allows us to set specific options when logging:
@ prepend ident to each message
@ specify logging options (LOG_CONS | LOGNDELAY | LOG_PERRO | LOG_PID)
@ specify a facility (such as LOG_DAEMON, LOGMAIL etc.)

syslog(3) writes ar to the system logger, tagged with priority.
A priority is a combination of a facility (as above) and a level (such as LOG_DEBUG,
LOG_WARNING or LOG_EMERG).

37

