CSE 421/521 - Operating Systems
Fall 2012 Recitations

RECITATION - IV

BUILDING COMPLEX PROGRAMS
WITH MAKEFILES

PROF. TEVFIK KOSAR

Presented by Sonali Batra

University at Buffalo
October 2nd, 2012

9/24/12

Splitting C Programs into Multiple Files

o All our programs so far are written in a single file
o But programs can be very big!
» E.g., Linux-2.6.0 contains 5,929,913 lines of C code

o Let's split our programs into multiple source files
» Easier to write and update
» Especially with multiple programmers
* Each programmer writes into his/her own file
» It is easier to recompile

* If you change a small part of the program, you can recompile just the
part that has changed

Modular C Programming

o A C program usually contains:

» Multiple .c files: contain the functions and global variables
» Multiple .h files: contain declarations of functions, types and variables

o Unlike in Java, you can put as many functions/variables/types per file
as you want
» It is up to you to organize everything
w But there are general rules that will help you. . .
» Most important: keep related things in a single file

Definition vs Declaration

o A definition actually creates a function/variable and gives it a value
> “From now on, variable foo of type int will be created"
» "From now on, function baz () will have the following prototype and
realize the following operations."

int foo;

double baz(double x, double y) {
Teturn Xex + y*y;

}

o A declaration simply informs the compiler that something does exist
» “Trust me, it will be defined somewhere else”

extern int foo;

double baz(double, double); /* no function code here! */

Calling an External Function

o If you want to call a function in a piece of code, you must first
declare the prototype of the function
» You do not need to write the full code of the function
» A prototype (i.e., interface) is enough
» Of course, the code of the function must be present in another file of
the program!

int this_func_is_defined_somewhere_else(char #);

int foo() {
return this_func_is_defined_somewhere_elsa("foo");

o A function must be defined only once in a program

» Otherwise the compiler wouldn’t know which one to use
o But it can be declared any number of times

» Provided all declaration are the same. ..

4
Using an External Variable
o To use a (global) variable defined in another file you must first
declare it
» Attention: you must define the variable only once
/% tilet.c #/
extern int my_variable; /# the variable is declared but not defined */
int foo() {
Teturn my_variable++;
D
/+ tile2.c #/
int my_variable; /+ the variable is declared and defined here */
6

9/24/12

Using Header Files

o Some informations must be present in multiple files
» Better to write them only once in a “header” file
» And include the header file wherever it is needed
o Header files (*.h) should contain:
» Function prototypes
» Type declaration
> Global variable declarations (but not defi
o C files (*.c) should contain:
» #include <standard files.h>
* Includes files from /usr/include, /usr/local/include etc.
» #include "header files.h"
* Includes files from the working directory
» Function code (definitions)
» Global variable (definitions)

itions!)

o Each C file usually has its corresponding header file. . .

Example

o A program that exchanges messages across a network

main(

int port_nb;
/ iwi‘m variable)
)

create_|)

send_| recv_|)
strncpy(\ Aeaddress\&\ / printfQ

Example

o A program that exchanges messages across a network

main.c, main.h

int port_nb;
lobal variable]

strncpy() printfO

: struct message
[

Il e -- - -
message.c, message.h network.c, network.h

struct message struct address
8
message.h
o message.h contains:
» The declaration of struct message
» The declaration of function create message()
#ifndef _MESSAGE_H_
#define _MESSACE_H_
struct message {
char buf [1024] ;
int length;
struct message *create_message(char smessage);
#endif /+ _MESSAGE_H_ */
10

message.cC

o message.c:
» Includes standard header files string.h and stdlib.h
(they contain the prototypes of strncpy and malloc)
» Includes header file nessage .h (it contains the declaration of struct
message)
» Defines function create message

network.h

#include <string.h>
#include <stdlib.h>
#include "message.h”

struct message *create_message(char smessage) {
struct message *m = (struct message *) malloc(sizeof(struct message));
strncpy (m->buf, 1023);
return m;

#ifndef _NETWORK_H_
#define _NETWORK_H_

#include "message.h® /+ Why is this required? /

struct address {
char ip[16];
int port;
struct address *create_address(char *ip);
int send_message(struct message *m, struct address *dest);
int recv_message(struct message *m, struct address +from);

#ondif /+ _NETWORK_H_ */

network.c

9/24/12

#include "network.h"
#include "main.h"

struct address *create_address(char *ip) {
struct address *a = (struct address*) malloc(sizeof(struct address)) ;|
stracpy(a->ip,ip);
a->port = port_nb;
return a;

¥

int send_message(struct message *m, struct address *dest) {
/% ... %/

}

int recv_message(struct message *m, struct address *from) {
/% ... %/

}

main.h

#ifndef _MAIN_H_
#define _MAIN_H_

extern int port_nb; /+ Daclare the global variable */
/* Do we need to declare the prototype of function main() here? +/

#endif /+ _MAIN_H_ */

@ Can you guess what main.h contains?
o Why don't we include message.h?
o What would happen if we included it?

main.c

#include "main.h"
#include "network.h"

int port_nb; /+ instantiate the global variable +/

int main() {
struct message *m = create_message("Hello, world!");
struct address *a = create_address("130.37.193.66");
send_message(m,a) ;
recv_nmessage(n,a) ;
printf ("Received: %s\n",m.buf);

Compiling it All Together

o Compile each C file separately into an object file

$ goc -c -Wall message.c
$ gec -c -Wall network.c
$ gec -c -Wall main.c

$

w This creates files message.o, network.o and main.o.

o Link all object files into an executable

$ gcc message.o network.o main.o

w This creates file a.out

Compiling it All Together

o One object file must define a main() function:

§ goc message.o network.o main.o

/usr/1ib/gec/x86_64-redhat-1imux/3.4.2/. ./ ../. ./ ../11b64/crti .o text+0x21) : In
function ‘_start’: undefined reference to ‘main’

collect2: 1d returned 1 exit status

o All functions and variables must be defined:
§ gec message.o network.o main.o
main.o(.text+0xa): In function ‘main’:
: undefined reference to ‘create_messaga’
collect2: 1d returned 1 exit status
$

o They must be defined only once:

§ gec message.o network.o main.o
network.o(.text+0x0): In function ‘create_message’ :
: miltiple definition of ‘create_messaga’
message.o(.text+0x0): first defined here

collect2: 1d returned 1 exit status

$

Building Complex Programs

o Imagine that you write a program split into 100 C files and 100
header files
» To compile your program, you must call gcc 101 times (perhaps with
long option lines)
o What happens when you update one of these files?
» You can recompile everything from scratch
* But it takes a lot of time
» You can decide to recompile only the parts which have changed
* Much faster!
» What happens if the updated file is a header file?
* You must recompile all C files which include it
* This is getting quite complex. ..

o make is a standard tool which will do the job for you

Using make

o To use make, you must write a file called Makefile
» It defines dependencies between files. ..
» ... and the command to generate each file from its dependencies

This is a comment

main: message.o network.o main.o
- gcc -o main main.o message.o metwork.o

message.o: message.c message.h
- gee —c -Wall message.c

network.o: network.c network.h message.h
- gec —c -Wall network.c

main.o: main.c main.h network.h message.h
- gee -c -Wall main.c

» '—' means “tab”: you cannot use spaces there!

9/24/12

Using make

o If you type “make main”, make will do all that is necessary to
generate file main:
» To generate main, | first need to have files message.o, network.o
and main.o
» These files do not exist, let's try to create them
* To generate message.o | first need to have files nessage.c and
nessage .h.

* OK, | already have them.

* Let's generate message.o by calling gcc -c message.c

* To generate network.o | first need to have files network.c,
network.h and message.h

* etc..

» Let's generate file main by calling gcc -0 main main.o message.o
network.o

Using make to re-compile a program

o If you update a few files, you want to recompile just what is necessary
o make will check the dates of your files:

target: dependencyl dependency2 depend
- command

» If you updated dependency1 after target was generated, then you
must re-generate target
» If the target is more recent than all its dependencies, then no
re-generation is necessary
o You must not forget dependencies!
» Otherwise, make will not recompile all that is necessary

Implicit Rules

o Very often, the command to compile a given type of files is the same
» gcc -c FOO.c
» All * .o files depend on the corresponding *.c file and are generated
using the command gec -c XXX.c

%.0: Y.c
gee ¢ $< -0 $0

» '$<’ means “the name of the dependency file" (here: F0O.c)
> '$@' means “the name of the target” (here: F00.0)

23

20
Generating Dependencies
o makedepend will generate dependencies automatically
> Just create one more rule:
depend:
= makedepend message.c network.c main.c
» If you type "make depend”, the program makedepend will be called
» It will read files message.c, network.c and main.c and generate
dependencies automatically
» Dependencies will be added at the end of your Makefile:
DO NOT DELETE
: /usr/include/stdio.h /usr/include/features.h /usr/include/sys/cdefs.h
.0: /usr/include/gnu/stubs.h
: /usr/1ib/gce/x86_64-redhat-1imm/3.4.2/ include/stddef . h
: /usr/include/bits/types.h /usr/include/bits/wordsize.h
.0: message.h /usr/include/string.h network.h
network.o: network.h message.h /usr/include/string.h /usr/include/features.h
network.o: /usr/include/sys/cdefs.h /usr/include/gmu/stubs.h
network.o: /usr/1ib/gcc/x86_64-redhat-1inux/3.4.2/include/stddef .h
atc...
22
Using Variables in Makefiles
o You can create variables in your Makefiles
» The list of all your *.c files, etc.
cc = gee
CFLACS = -g -Wall
SRC = main.c network.c message.c
OBJ = main.o network.o message.o
main: $(0BJ)
$(CC) -o $@ $(0BJ)
%.c
$(CC) $(CFLAGS) -c $<
depend:
mnakedepend $(SRC)
clean: # We can write rules which do not create amy file
™ main *.0
24

Acknowledgments

Advanced Programming in the Unix Environment by R.

Stevens

The C Programming Language by B. Kernighan and D.
Ritchie

Understanding Unix/Linux Programming by B. Molay

Lecture notes from B. Molay (Harvard), T. Kuo (UT-
Austin), G. Pierre (Vrije), M. Matthews (SC), B. Knicki
(WPI), M. Shacklette (UChicago), and J.Kim (KAIST).

25

9/24/12

