
1

Exercise (could be a quiz)

2

3

Solution

4

CSE 421/521 - Operating Systems
Fall 2013

Tevfik Koşar

University at Buffalo
September 12th, 2013

Lecture - IV

Threads

5

Roadmap

• Threads
– Why do we need them?
– Threads vs Processes
– Threading Examples
– Threading Implementation & Multi-threading Models
– Other Threading Issues

• Thread cancellation
• Signal handling
• Thread pools
• Thread specific data

6

Concurrent Programming

• In certain cases, a single application may need to run
several tasks at the same time

1
1

2
3

2 4
5

3

4

5 sequential

concurrent

7

Motivation

• Increase the performance by running more than one
tasks at a time.
– divide the program to n smaller pieces, and run it n times

faster using n processors

• To cope with independent physical devices.
– do not wait for a blocked device, perform other operations at

the background

8

Divide and Compute

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

How many operations with sequential programming?
7

Step 1: x1 + x2
Step 2: x1 + x2 + x3
Step 3: x1 + x2 + x3 + x4
Step 4: x1 + x2 + x3 + x4 + x5
Step 5: x1 + x2 + x3 + x4 + x5 + x6
Step 6: x1 + x2 + x3 + x4 + x5 + x6 + x7
Step 7: x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

9

Divide and Compute

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

Step 1: parallelism = 4

Step 2: parallelism = 2

Step 3: parallelism = 1

10

Gain from parallelism

In theory:
• dividing a program into n smaller parts and running on n

processors results in n time speedup

In practice:
• This is not true, due to

– Communication costs
– Dependencies between different program parts

• Eg. the addition example can run only in log(n) time not 1/n

11

Concurrent Programming

• Implementation of concurrent tasks:
– as separate programs
– as a set of processes or threads created by a single program

• Execution of concurrent tasks:
– on a single processor using multiple threads
! Multithreaded programming
– on several processors in close proximity
! Parallel computing
– on several processors distributed across a network
! Distributed computing

12

Cooperating Processes

• Independent process cannot affect or be affected by
the execution of another process

• Cooperating process can affect or be affected by the
execution of another process

• Advantages of process cooperation
– Information sharing
– Computation speed-up
– Modularity
– Convenience

• Disadvantage
– Synchronization issues and race conditions

13

Interprocess Communication (IPC)

• Mechanism for processes to communicate and to
synchronize their actions

• Shared Memory: by using the same address space and
shared variables

• Message Passing: processes communicate with each
other without resorting to shared variables

14

Communications Models

a) Message Passing b) Shared Memory

Message Passing

• Message Passing facility provides two operations:
– send(message) – message size fixed or variable
– receive(message)

• If P and Q wish to communicate, they need to:
– establish a communication link between them
– exchange messages via send/receive

• Two types of Message Passing
– direct communication
– indirect communication

15 16

Message Passing – direct communication
• Processes must name each other explicitly:

– send (P, message) – send a message to process P
– receive(Q, message) – receive a message from process Q

• Properties of communication link
– Links are established automatically
– A link is associated with exactly one pair of communicating processes
– Between each pair there exists exactly one link
– The link may be unidirectional, but is usually bi-directional

• Symmetrical vs Asymmetrical direct communication
– send (P, message) – send a message to process P
– receive(id, message) – receive a message from any process

• Disadvantage of both: limited modularity, hardcoded

17

Message Passing - indirect communication

• Messages are directed and received from mailboxes
(also referred to as ports)
– Each mailbox has a unique id
– Processes can communicate only if they share a mailbox

• Primitives are defined as:
 send(A, message) – send a message to mailbox A
 receive(A, message) – receive a message from mailbox A

18

Indirect Communication (cont.)

• Mailbox sharing
– P

1
, P

2
, and P

3
 share mailbox A

– P
1
, sends; P

2
 and P

3
 receive

– Who gets the message?

• Solutions
– Allow a link to be associated with at most two processes
– Allow only one process at a time to execute a receive

operation
– Allow the system to select arbitrarily the receiver. Sender is

notified who the receiver was.

19

Synchronization

• Message passing may be either blocking or non-blocking
• Blocking is considered synchronous

– Blocking send has the sender block until the message is
received

– Blocking receive has the receiver block until a message is
available

• Non-blocking is considered asynchronous

– Non-blocking send has the sender send the message and
continue

– Non-blocking receive has the receiver receive a valid message
or null

20

Concurrency with Threads

• In certain cases, a single application may need to run
several tasks at the same time
– Creating a new process for each task is time consuming
– Use a single process with multiple threads

• faster
• less overhead for creation, switching, and termination
• share the same address space

21

Single and Multithreaded Processes New Process Description Model

22

" Multithreading requires changes in the process description
model

stack

process control
block (PCB)

program
code

data

each thread of execution receives
its own control block and stack
$ own execution state

(“Running”, “Blocked”, etc.)
$ own copy of CPU registers
$ own execution history (stack)

the process keeps a global
control block listing resources
currently used

process control
block (PCB)

program
code

data

thread 1 stack

thread 1 control
block (TCB 1)

thread 2 stack

thread 2 control
block (TCB 2)

New process image

Per-process vs per-thread items

23

" Per-process items and per-thread items in the control
block structures
process identification data

$ numeric identifiers of the process, the
parent process, the user, etc.

CPU state information
$ user-visible, control & status registers
$ stack pointers

process control information
$ scheduling: state, priority, awaited event
$ used memory and I/O, opened files, etc.
$ pointer to next PCB

process identification data + thread identifiers
$ numeric identifiers of the process, the

parent process, the user, etc.
CPU state information

$ user-visible, control & status registers
$ stack pointers

process control information
$ scheduling: state, priority, awaited event
$ used memory and I/O, opened files, etc.
$ pointer to next PCB

24

Multi-process model

Process Spawning:

Process creation involves the following four main actions:
• setting up the process control block,
• allocation of an address space and
• loading the program into the allocated address space and
• passing on the process control block to the scheduler

25

Multi-thread model
Thread Spawning:

• Threads are created within and belonging to processes
• All the threads created within one process share the resources of the
process including the address space
• Scheduling is performed on a per-thread basis.
• The thread model is a finer grain scheduling model than the process
model
• Threads have a similar lifecycle as the processes and will be managed
mainly in the same way as processes are

26

Threads vs Processes
• A common terminology:

– Heavyweight Process = Process
– Lightweight Process = Thread

Advantages (Thread vs. Process):
• Much quicker to create a thread than a process

– spawning a new thread only involves allocating a new stack and a new
CPU state block

• Much quicker to switch between threads than to switch between processes
• Threads share data easily

Disadvantages (Thread vs. Process):
• Processes are more flexible

– They don’t have to run on the same processor
• No security between threads: One thread can stomp on another thread's

data
• For threads which are supported by user thread package instead of the

kernel:
– If one thread blocks, all threads in task block.

Thread Creation

• pthread_create
// creates a new thread executing start_routine
int pthread_create(pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine)(void*), void *arg);

• pthread_join
// suspends execution of the calling thread until the target
// thread terminates
int pthread_join(pthread_t thread, void **value_ptr);

27

Thread Example
int main()

{
 pthread_t thread1, thread2; /* thread variables */

 pthread_create (&thread1, NULL, (void *) &print_message_function,
 (void*)”hello “);
 pthread_create (&thread2, NULL, (void *) &print_message_function,
 (void*)”world!\n”);

 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 exit(0);
}

28

Why use pthread_join?
 To force main block to wait for both threads to terminate, before it exits.
 If main block exits, both threads exit, even if the threads have not
 finished their work.

Exercise

Consider a process with two concurrent threads T1 and T2. The code being
executed by T1 and T2 is as follows:

Shared Data:
X:= 5; Y:=10;

T1: T2:
Y = X+1; U = Y-1;
X = Y; Y = U;

 Write X; Write Y;

 Assume that each assignment statement on its own is executed as an
atomic operation. What is the outputs of this process?

29

Solution

All six statements can be executed in any order. Possible outputs are:

1) 65
2) 56
3) 55
4) 99
5) 66
6) 69
7) 96

30

Threading Examples

31

" Web server
as each new request comes in, a “dispatcher thread” spawns a

new “worker thread” to read the requested file (worker threads
may be discarded or recycled in a “thread pool”)

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

A multithreaded Web server

Threading Examples

32

" Word processor
one thread listens continuously to keyboard and mouse events

to refresh the GUI; a second thread reformats the document (to
prepare page 600); a third thread writes to disk periodically

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

A word processor with three threads

Thread Implementation

33

" Two broad categories of thread implementation
User-Level Threads (ULTs)
Kernel-Level Threads (KLTs)

Pure user-level (ULT), pure kernel-level (KLT) and combined-level (ULT/KLT) threads

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

Thread Implementation

34

A user-level thread package

" User-Level Threads (ULTs)
the kernel is not aware of the existence of threads, it knows

only processes with one thread of execution (one PC)
each user process manages its own private thread table

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

% light thread switching: does not
need kernel mode privileges

% cross-platform: ULTs can run
on any underlying O/S

& if a thread blocks, the entire
process is blocked, including all
other threads in it

Thread Implementation

35

A kernel-level thread package

" Kernel-Level Threads
the kernel knows about and manages the threads: creating and

destroying threads are system calls

% fine-grain scheduling, done on
a thread basis

% if a thread blocks, another one
can be scheduled without
blocking the whole process

& heavy thread switching
involving mode switch

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

36

Different Multi-threading Models

• Many-to-One
• One-to-One
• Many-to-Many
• Hybrid

37

Many-to-One Model

• Several user-level threads
mapped to single kernel
thread

• Thread management in
user space ' efficient

• If a thread blocks, entire
process blocks

• One thread can access the
kernel at a time ' limits
parallelism

• Examples:
– Solaris Green Threads
– GNU Portable Threads

38

One-to-One Model

• Each user-level thread maps to a kernel thread
• A blocking thread does not block other threads
• Multiple threads can access kernel concurrently ' increased parallelism
• Drawback: Creating a user level thread requires creating a kernel level

thread ' increased overhead and limited number of threads
• Examples: Windows NT/XP/2000, Linux, Solaris 9 and later

39

Many-to-Many Model

• Allows many user level threads to
be mapped to a smaller number
of kernel threads

• Allows the operating system to
create a sufficient number of
kernel threads

• Increased parallelism as well as
efficiency

• Solaris prior to version 9
• Windows NT/2000 with the

ThreadFiber package

40

Threading Issues

• Thread pools
• Thread specific data
• Semantics of fork() and exec() system calls
• Thread cancellation
• Signal handling

41

Thread Pools
• Threads come with some overhead as well
• Unlimited threads can exhaust system resources, such as CPU

or memory
• Create a number of threads at process startup) and put them

in a pool, where they await work
• When a server receives a request, it awakens a thread from

this pool
• Advantages:

– Usually faster to service a request with an existing thread than
create a new thread

– Allows the number of threads in the application(s) to be bound
to the size of the pool

• Number of threads in the pool can be setup according to:
– Number of CPUs, memory, expected number of concurrent

requests

42

Semantics of fork() and exec()

• Semantics of fork() and exec() system calls change in a
multithreaded program
– Eg. if one thread in a multithreaded program calls fork()

• Should the new process duplicate all threads?
• Or should it be single-threaded?

– Some UNIX systems implement two versions of fork()

– If a thread executes exec() system call
• Entire process will be replaced, including all threads

43

Thread Cancellation

• Terminating a thread before it has finished
– If one thread finishes searching a database,

others may be terminated
– If user presses a button on a web browser, web

page can be stopped from loading further

• Two approaches to cancel the target thread
– Asynchronous cancellation terminates the target

thread immediately
– Deferred cancellation allows the target thread

to periodically check if it should be cancelled
• More controlled and safe

44

Signal Handling

• Signals are used in UNIX systems to notify a
process that a particular event has occurred

• All signals follow this pattern:
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Once delivered, a signal must be handled

• In multithreaded systems, there are 4 options:
– Deliver the signal to the thread to which the signal

applies
– Deliver the signal to every thread in the process
– Deliver the signal to certain threads in the process
– Assign a specific thread to receive all signals for the

process

45

Summary

Hmm.
.

• Reading Assignment: Chapter 5 from Silberschatz.
• Next Lecture: CPU Scheduling

– Why do we need them?
– Threads vs Processes
– Threading Examples
– Threading Implementation & Multi-threading Models
– Other Threading Issues

• Thread cancellation
• Signal handling
• Thread pools
• Thread specific data

• HW1 out today

46

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

