CSE 421/521 - Operating Systems Fall 2013

Lecture - XII MAIN MEMORY MANAGEMENT

Tevfik Koşar

University at Buffalo October 10th, 2013

Roadmap

- Main Memory Management
 - Fixed and Dynamic Memory Allocation
 - External and Internal Fragmentation
 - Address Binding
 - HW Address Protection

Memory Management Requirements

- > The O/S must fit multiple processes in memory
 - ✓ memory needs to be subdivided to accommodate multiple processes
 - memory needs to be allocated to ensure a reasonable supply of ready processes so that the CPU is never idle
 - memory management is an optimization task under constraints

Fitting processes into memory is like fitting boxes into a fixed amount of space

Memory Allocation

- Fixed-partition allocation
 - Divide memory into fixed-size partitions
 - Each partition contains exactly one process
 - The degree of multi programming is bound by the number of partitions
 - When a process terminates, the partition becomes available for other processes

OS
process 5
process 9
process 10
process 2

➔no longer in use

Memory Allocation (Cont.)

- Variable-partition Scheme (Dynamic)
 - When a process arrives, search for a hole large enough for this process
 - Hole block of available memory; holes of various size are scattered throughout memory
 - Allocate only as much memory as needed
 - Operating system maintains information about:
 a) allocated partitions
 b) free partitions (hole)

Fragmentation

- External Fragmentation total memory space exists to satisfy a request, but it is not contiguous (in average ~50% lost)
- Internal Fragmentation allocated memory may be slightly larger than requested memory; this size difference is memory internal to a partition, but not being used
- Reduce external fragmentation by compaction
 - Shuffle memory contents to place all free memory together in one large block
 - Compaction is possible *only* if relocation is dynamic, and is done at execution time

Dynamic Storage-Allocation Problem

How to satisfy a request of size *n* from a list of free holes

- First-fit: Allocate the *first* hole that is big enough
- **Best-fit**: Allocate the *smallest* hole that is big enough; must search entire list, unless ordered by size. Produces the smallest leftover hole.
- Worst-fit: Allocate the *largest* hole; must also search entire list. Produces the largest leftover hole.

First-fit is faster.

Best-fit is better in terms of storage utilization.

Worst-fit may lead less fragmentation.

Example

Given five memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and 600 KB (in order), how would each of the first-fit, best-fit, and worst-fit algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in order)? Which algorithm makes the most efficient use of memory?

Address Binding

- Addresses in a source program are generally symbolic
 - eg. int count;
- A compiler binds these symbolic addresses to relocatable addresses
 - eg. 100 bytes from the beginning of this module
- The linkage editor or loader will in turn bind the relocatable addresses to absolute addresses
 - eg. 74014
- Each binding is mapping from one address space to another

Logical Address Space

- Each process has a separate memory space
- Two registers provide address protection between processes:
- Base register: smallest legal address space
- Limit register: size of the legal range

Memory-Management Unit (MMU)

- Hardware device that maps logical to physical address
- In MMU scheme, the value in the relocation register (base register) is added to every address generated by a user process at the time it is sent to memory
- The user program deals with logical addresses; it never sees the real physical addresses

HW Address Protection

- CPU hardware compares every address generated in user mode with the registers
- Any attempt to access other processes' memory will be trapped and cause a fatal error

Summary

- Main Memory Management
 - Memory Allocation
 - Fragmentation
 - Address Binding
 - HW Address Protection

Acknowledgements

- "Operating Systems Concepts" book and supplementary material by A. Silberschatz, P. Galvin and G. Gagne
- "Operating Systems: Internals and Design Principles" book and supplementary material by W. Stallings
- "Modern Operating Systems" book and supplementary material by A. Tanenbaum
- R. Doursat and M. Yuksel from UNR