
Project 2!
CSE 421/521 - Operating Systems!

Virtual Memory in Pintos

Deadline: December 4, 2013 @ 11.59pm

Muhammed Fatih Bulut



Preparation

Chapters 8-9 from Silberschatz.!

Lecture slides on Memory and Virtual Memory!

Pintos introduction!

http://www.stanford.edu/~ouster/cgi-bin/cs140-winter13/pintos/pintos_1.html!

Pintos Reference Guides!

http://www.stanford.edu/~ouster/cgi-bin/cs140-winter13/pintos/pintos_6.html

http://www.stanford.edu/~ouster/cgi-bin/cs140-winter13/pintos/pintos_1.html
http://www.stanford.edu/~ouster/cgi-bin/cs140-winter13/pintos/pintos_6.html


What is Pintos?

Pintos is a simple OS for 80x86 architecture 
developed at Stanford University.!

It supports kernel threads, loading and 
running user programs, and a file system.!

Some parts left unimplemented for 
instructional purpose, such as virtual 
memory.



Programming Task

Implement the virtual memory component in 
the Pintos operating system.



Goals!

You’ll have a better understanding of:!

Paging!

Page replacement!

Other virtual memory concepts!

How an operating system works!

Yet, lots of C programming. Yay!!!



Setting up The Pintos Environment

Login to timberlake or any other cse servers.!
ssh [user_name]@timberlake.cse.buffalo.edu!

Copy Pintos source to your home dir.!
cp /web/faculty/tkosar/cse421-521/projects/project-2/pintos.tar!

Create a dir called pintos and extract to it.!

tar -xvf pintos.tar!

Grab Bosch simulator and run Pintos on it.!
cp /web/faculty/tkosar/cse421-521/projects/project-2/boschs-2.6.2.tar



Background



Pages 

A continuous region of virtual memory.!

Page size = 4096 bytes = 12 bits.!

Must be page-aligned.!

In 32-bit virtual address, 20-bit page #, 12-bit 
page offset



Functions

Pintos provides various functions to work on 
virtual addresses.!

unsigned pg_ofs (const void *va): Extracts and returns the 
page offset in virtual address va.!

uintptr_t pg_no (const void *va): Extracts and returns the 
page number in virtual address va.!

See Pintos references for more details (A.6 
Virtual Addresses).



Frames

Frame is a continuous region of physical 
memory.!

Must be in same page-size and page-aligned.!

32-bit physical address = 20-bit frame # + 12-
bit frame offset.



Page Tables

Page table is a data structure that the CPU 
uses to translate a virtual address to a 
physical address (page -> frame).



Swap slots

Swap slot is a continuous, page-size region of 
disk space in the swap partition. !

When a frame is evicted from the memory, it 
is written to swap page.



Your duty!



Tasks

You will need to design the following data 
structures!

Supplemental page table!

Frame table!

Swap table!

Table of file mappings



Managing the Supplemental Page 
Table (SPT)

It’s supplemental to the page table. It’s not the 
page table itself!!

It’s needed because of the limitations imposed 
by the page table’s format (See A.7 Page Table).!

The most important user of SPT is the page 
fault handler (see “page_fault()” in “userprog/
exception.c”).



Supplemental Page Table (Cont.)

Page fault handler should do:!

Locate the page faulted and find the data that goes in 
the page (might be in file system or swap slot or none).!

Obtain a frame to store the page.!

Fetch the data into the frame.!

Point the page table entry for the faulting virtual 
address to the physical address (see userprog/pagedir.c).



Managing Frame Table

Frame table maps frames to user pages, and 
other data of your choice.!

It allows Pintos to implement an eviction policy.!

Frames can be obtained from the user pool by 
calling palloc_get_page(PAL_USER) function.!

Be careful about the user pool and kernel pool.



The process of eviction

Here are the steps:!

Choose a frame to evict (LRU, FIFO or …). The 
“accessed” and “dirty” bit in the page table will be 
useful.!

Remove any reference to the frame from the page 
table (Be careful on sharing).!

If necessary write the page to the file system or to 
swap.



Managing Swap Table

Swap table tracks in-use and free swap slots.!

You may use BLOCK_SWAP block device for swapping. !

From the vm/build directory, run !

pintos-mkdisk swap.dsk —swap-size=n!

swap.dsk will be automatically attached when you run 
Pintos.!

Allocate swap slots lazily, i.e. when needed.



Managing Memory Mapped Files

File system is in general accessed by read/write system 
calls.!

A secondary interface is to use “mmap” system call. !

Program can then use memory directly with virtual 
addresses.!

You must track what memory is used by memory mapped 
files to properly handle page faults and to ensure that 
mapped files do not overlap any other segments.



Suggested order of implementation

Frame table.!

Change process.c to use your frame table allocator.!

Don’t implement swapping yet.!

If you run out of frames: panic the kernel.!

Supplemental page table and page fault handler.!

Change process.c to record the necessary information to the 
SPT when loading an executable and setting up its stack.!

Stack growth, mapped files and so on.



Requirements



Paging

In Pintos, currently executables are loaded in 
memory by process_load() in userprog/process.c. !

The entire executables loaded before run.!

Data which may never be read is loaded.!

Instead load the segments in demand.



Stack growth

Currently Pintos implements a fixed stack size.!

Implement stack growth. If new space needed, 
allocate additional pages.!

Impose some limit on stack size, i.e. 8MB.!

First stack page need not be loaded lazily.!

All stack pages are candidates for eviction.



Memory mapped files

Implement following system calls:!

mapid_t mmap (int fd, void *addr)!

Maps the file as consecutive virtual pages starting at address 
addr.!

void munmap (mapid_t mapping)!

Unmap the file from the virtual pages.!

Modified pages should be written to the disk.!

Pages should be removed from the process’ list of virtual pages.



Accessing User Memory

Adapt your code to access user memory in 
while handling a system call.!

More on this in the project page.



What to submit?

<lastname_firstname>.tar package containing all 
source files. !

Don’t forget to include makefile and README.!

Email .tar package: {tkosar, mbulut}@buffalo.edu!

Deadline is December 4th, 2013 @ 11.59pm.!

Also write a design document and submit the 
hardcopy by the beginning of class December 5th.

http://buffalo.edu


Bottom line!

Start working now!



Questions


