
1

CSE 421/521 - Operating Systems
Fall 2013

Tevfik Koşar

University at Buffalo
November 21st, 2013

Lecture - XXIII

Project Discussion - II

Pintos Projects

1. Threads

2. User Programs <-- Need also this
 (provided by us!)
3. Virtual Memory <-- CSE 421/521 Project 2

4. File Systems

3

Pintos after full implementation (post prj-4)

4

Pintos before any implementation (pre prj-1)

5

Yo will be provided with this (pre prj-3)

6

You will implement this (post prj-3)

Initial src code provided to you

• Basic OS, with basic thread scheduler, no process
management, no memory management, no file system
etc.

• runs only 7 tests from “threads” successfully
• fails remaining (20) thread tests, as well as all

userprog, vm, and filesys tests

New (patched) src code provided to you
• Comes with full “user program” support, system calls,

basic file system, and basic memory management
functionality

• pass all “userprog” tests, basic filesys tests
• would fail most vm tests --> this is what you need to

implement

8

Current test results

9

FAIL tests/vm/pt-grow-stack
FAIL tests/vm/pt-grow-pusha
pass tests/vm/pt-grow-bad
FAIL tests/vm/pt-big-stk-obj
pass tests/vm/pt-bad-addr
pass tests/vm/pt-bad-read
pass tests/vm/pt-write-code
FAIL tests/vm/pt-write-code2
FAIL tests/vm/pt-grow-stk-sc
FAIL tests/vm/page-linear
FAIL tests/vm/page-parallel
FAIL tests/vm/page-merge-seq
FAIL tests/vm/page-merge-par
FAIL tests/vm/page-merge-stk
FAIL tests/vm/page-merge-mm
pass tests/vm/page-shuffle

FAIL tests/vm/mmap-read
FAIL tests/vm/mmap-close
pass tests/vm/mmap-unmap
FAIL tests/vm/mmap-overlap
FAIL tests/vm/mmap-twice
FAIL tests/vm/mmap-write
FAIL tests/vm/mmap-exit
FAIL tests/vm/mmap-shuffle
pass tests/vm/mmap-bad-fd
FAIL tests/vm/mmap-clean
FAIL tests/vm/mmap-inherit
FAIL tests/vm/mmap-misalign
FAIL tests/vm/mmap-null
FAIL tests/vm/mmap-over-code
FAIL tests/vm/mmap-over-data
FAIL tests/vm/mmap-over-stk
FAIL tests/vm/mmap-remove
pass tests/vm/mmap-zero

• You need to make all of these tests pass!

Important

• Keep both versions of the code
• It is important for you to understand how different

functionality is implemented in Pintos, and how the
code evolves

10

How to access new (patched) code?

$ cd ${PINTOSDIR}

$ cp /web/faculty/tkosar/cse421-521/projects/project-2/pintos-patched.tar .

$ mv src src-unpatched

$ tar -xvf pintos-patched.tar

11

Where to start?

• We provide you with three additional source
files under src/vm:

•frame.c
•page.c
•swap.c

– and the corresponding header files:
•frame.h
•page.h
•swap.h

- any additional source files would need to be
defined in “Makefile.build”

12

Order of Implementation

• Design and implement your Frame table
– (change `process.c' to use your frame table allocator)

• Design and implement your Page table
– (supplemental page table)

• Implement a page fault handler
– (change `process.c' to record the necessary information in the

supplemental page table when loading an executable and
setting up its stack.)

• Implement eviction (page replacement)
• Implement stack growth, mapped files

13

Adding new files to the code

To add a `.c' file, edit the top-level `Makefile.build'.
Add the new file to variable `dir_SRC', where dir is the
directory where you added the file. A new `.h' file does
not require editing the `Makefile's.

14

Loading and Running User Programs

Example:
pintos-mkdisk filesys.dsk --filesys-size=2

 pintos -f -q
 pintos -p ../../examples/echo -a echo -- -q
 pintos -q run 'echo x'

 pintos -q ls
 pintos -q rm file

 How do I compile new user programs?
 Modify `src/examples/Makefile', then run make.

15

Testing

To completely test your submission, invoke $ make
check from the project `build' directory. This will build
and run each test and print a \pass" or \fail" message
for each one. When a test fails, make check also prints
some details of the reason for failure.

Make check will select the faster simulator by default,
but you can override its choice by specifying
`SIMULATOR=--bochs'.
i.e. $ make check SIMULATOR=--bochs

16

Testing (cont)

To run and grade a single test, make the `.result' file
explicitly from the `build' directory, e.g. $ make tests/
threads/alarm-multiple.result. If make says that the test
result is up-to-date, but you want to re-run it anyway, either
run make clean or delete the `.output' file by hand.

By default, each test provides feedback only at completion,
not during its run. If you prefer, you can observe the
progress of each test by specifying `VERBOSE=1' on the
make command line, i.e.
$ make tests/threads/alarm-multiple.result VERBOSE=1

17

