
Pangaea: a symbiotic wide-area file system

Yasushi Saito and Christos Karamanolis
HP Labs, Storage Systems Department

1501 Page Mill Rd, Palo Alto, CA, USA.
{ysaito,christos}@hpl.hp.com

1 Introduction

Pangaea is a planetary-scale file system designed for large,
multi-national corporations or groups of collaborating users
spread over the world. Its goal is to handle people’s daily stor-
age needs—e.g., document sharing, software development, and
data crunching—that can be write intensive. Pangaea usesper-
vasive replication to achieve low access latency and high avail-
ability. It creates replicas dynamically whenever and wherever
requested, and builds a random graph of replicas for each file to
propagate updates efficiently. It uses an optimistic consistency
semantics by default, but it also offers a manual mechanism for
enforcing consistency. This paper overviews Pangaea’s philos-
ophy and architecture for accommodating such environments
and describes randomized protocols for managing large num-
bers of replicas efficiently.

Pangaea is built by federating a large number of unreliable,
widely distributed commodity computers, provided by the sys-
tem’s users. Thus, the system faces continuous reconfigura-
tion, with users moving, companies restructuring, and comput-
ers being added and removed. In this context, the design of
Pangaea must meet three key goals:

Performance: Hide the wide-area networking latency; file ac-
cess latency should resemble that of a local file system.

Availability: Not depend on the availability of any specific
(central) servers; Pangaea mustadapt automatically to
server additions and failures without disturbing users.

Autonomy: Avoid centralized management; each node in the
system should be able to perform its own resource man-
agement, e.g., the amount of disk space to offer and when
to reclaim it.

To achieve these goals, we advocate asymbiotic approach to
the system design. Each server should be able to function au-
tonomously, and serve to its users most of their files even when
disconnected. However, as more computers become available,
they should dynamically adapt and collaborate with each other
in a way that enhances the overall performance and availability
of the system. Pangaea is an example of this approach.

1.1 Pangaea Overview

Pangaea builds a unified file system over thousands of servers
(nodes) distributed over the world. We currently assume that
these servers are trusted. Pangaea addresses the aforemen-
tioned goals viapervasive replication; it creates replicas of
a file or a directory dynamically whenever and wherever re-
quested and distributes updates to these replicas efficiently.
Thus, there may be billions of files, each replicated on hun-
dreds on nodes. Files shared by many people (e.g., the root di-
rectory) are replicated on virtually every node, whereas users’
personal files reside on their local nodes and only a few re-
mote nodes for availability. Pangaea demands no synchronous
coordination among nodes to update file contents or to add or
remove replicas. All changes to the system are propagated epi-
demically in the background.

Pervasive replication offers three main advantages: 1) pro-
vides fault tolerance, stronger for popular files; 2) hides net-
work latency; 3) supports disconnected operations by contain-
ing a user’s working set in a single server. These are key fea-
tures for realizing the symbiotic approach in Pangaea’s design.

1.2 Related work

The idea of pervasive replication is similar to persistent
caching used in systems such as AFS, Coda [4] and LBFS [5].
However, Pangaea offers several additional advantages. First,
it provides better availability. When a node crashes, there are
always other nodes providing access to the files it hosted. Sec-
ondly, the decentralized nature of Pangaea also allows for bet-
ter site autonomy; it lets any node be removed or replaced at
any time transparently to the user. Finally, Pangaea achieves
better performance by creating new replicas from a nearby ex-
isting replica and by propagating updates along fast network
links. In this sense, Pangaea provides a generalization of the
idea of Fluid replication [2] that utilizes surrogate Coda servers
placed in strategic (but fixed) locations to improve the perfor-
mance and availability of the system.

Mobile data sharing services, such as Lotus Notes [3],
Roam [7], and Bayou [6], allow mobile users to replicate data
dynamically and work disconnected. However, they lack a

1



replica location service. Humans are responsible for synchro-
nizing devices to keep replicas consistent. In contrast, Pangaea
keeps track of the location of replicas and distributes updates
proactively and transparently to the users.

Farsite [1] is similar to Pangaea in that it provides a uni-
fied file system over pervasive number of nodes. The two sys-
tems, however, have different focuses. Farsite builds a reliable
service on top of untrusted desktop nodes by using Byzantine
consensus protocols, but it is not concerned with reducing la-
tency. On the other hand, Pangaea assumes trusted servers, but
it dynamically replicates files closer to their point of accesses
to minimize the use of wide-area networks.

Recent peer-to-peer data sharing systems, such as CFS,
Oceanstore, and PAST, build flat distributed tables using ran-
domization techniques. Although Pangaea shares many of their
goals—decentralization, availability and autonomy—its appli-
cations are different. In Pangaea, replicas are placed by user
activity, not by randomization; files encounter frequent updates
and are structured hierarchically. These differences force Pan-
gaea to maintain a graph of replicas explicitly.

1.3 Challenges in Pangaea

While offering many benefits, pervasive replication introduces
fundamental challenges as well. The first is the computational
and storage overhead of meta-data management. While this
problem is genuine, servers in cooperative-work environments,
which we target initially, are known to waste much of their
resources anyway [1].

The second challenge is to design algorithms for keeping
track of a large number of files and replicas in a decentralized
and highly available way. To address this problem, Pangaea
builds a random graph over the set of replicas of each file and
uses the graph to locate replicas and distribute updates. We
present simple randomized algorithms for maintaining these
graphs in Section 2.

The third challenge is the difficulty of propagating updates
reliably yet efficiently and providing strong consistency guar-
antees. We solve this challenge by the combination of two
techniques: 1) dynamic overlaying of a spanning tree over
the random graph, and 2) a mechanism to explicitly enforce
replica consistency for demanding applications. We discuss
these mechanisms in Section 3.

2 Managing replica membership

Pangaea experiences very frequent replica additions and re-
movals, because it manages billions of files, each of which
is replicated independently on many servers. Thus, it calls
for available and cheap mechanisms to manage the replica
membership efficiently for each file and distribute updates re-
liably among replicas. Pangaea decentralizes both the tasks to

/joe/foo

/joe
a b

c

f

a d

e

Figure 1: A replica graph. Each file (an oval) consists of its
own set of replicas. Labels show the names of the servers that
store replicas. Edges between replicas show acquaintance rela-
tionships. Updates to the file are propagated along these edges.
Edges are also spanned between some of the file’s replicas and
those of its parent directory to allow for path traversal.

achieve this goal. There is no entity that centrally manages the
replicas for a file. Instead, Pangaea lets each replica maintain
links to k (k = 3 in our implementation) other random replicas
of the same file. An update can be issued at any replica, and it
is flooded along these edges (Section 3.1 describes a protocol
for minimizing the flooding overhead.) Links to some of these
replicas are also recorded in the entry of the parent directory,
and they act as starting points file lookup (Section 2.3). Fig-
ure 1 shows an example. This design addresses our goals as
follows:

Available update distribution: Pangaea can always dis-
tribute updates to all live replicas of a file even afterk
simultaneous server failures. With timely graph repairing
(Section 2.2), it can tolerate arbitrary number of failures
over time.

Available membership management:Pangaea lets a replica
be added by connecting to anyk live replicas, no matter
how many other replicas are unavailable. This property
essentially allows popular files to remain always avail-
able.

Available replica location: Each directory entry links to mul-
tiple replicas of the file. Directories themselves are repli-
cated just like any regular file. Thus, Pangaea allows path
name traversal even when some servers are unavailable.

Inexpensive membership management:Adding or remov-
ing a replica involves only a constant cost, regardless of
the total number of replicas.

The following sections introduce randomized protocols for
dynamically reconstructing a graph in response to replica ad-
dition or removal.

2.1 Adding a replica

When a file is first created, the user’s local server selects a few
(two in the current implementation) servers in addition to it-

2



self. We currently choose them randomly using a gossip-based
membership service [9], but we plan to investigate more intel-
ligent placement in the future. Pangaea then creates replicas
of the new file on the chosen servers and spans graph edges
among them. These replicas, calledgolden replicas, are regis-
tered in the parent directory and used for path traversals (Sec-
tion 2.3).

A replica is added when a user tries to look up a file miss-
ing from her local server. First, the server retrieves the file’s
contents from a nearby replica (found in the parent directory)
and serves them to the user immediately. In the background,
the server addsk (k = 3 in our implementation) bi-directional
edges to existing replicas. Parameterk trades off availability
(tolerating a node or edge loss) and replica-management over-
head. Lacking a central replica-management authority, Pan-
gaea chooses peer replicas usingrandom walks, starting from
a golden replica and performing a series of remote procedure
calls along graph edges. Our simulation shows that a random-
walk distance of three is enough to keep the graph diameter at
O(logN), or 5 for a 1000-replica graph.

Directories are files with special contents and are replicated
using the same random-walk-based protocol. Thus, to repli-
cate a file, its parent directory must also be replicated on the
same server beforehand. This recursive step potentially con-
tinues all the way to the root directory. The locations of root-
directory replicas are maintained using the gossip-based mem-
bership service.

2.2 Removing a replica

A replica is removed from a file’s graph either involuntarily
or voluntarily. It is removed involuntarily when its host server
remains unavailable for a certain period (e.g., a week). When a
replica detects the death of a graph neighbor, it autonomously
initiates a random walk and spans an edge with another live
replica. Starting the walk from a live golden replica ensures
that the graph remains strongly connected.

A replica is removed voluntarily when the hosting server
runs out of disk space or decides that the replica is not worth
keeping. The protocol is the same as above, except that the re-
tiring replica proactively sends notices to its graph neighbors,
so that they can replace edges immediately to minimize the pe-
riod of low graph connectivity.

2.3 Maintaining hierarchical name space
using golden replicas

Pangaea’s decentralized replica maintenance approach has
some downsides. In particular, it is not trivial to ensure a mini-
mum replication factor for a file, or to ensure that a file’s repli-
cas are reachable from the parent directory even after repeated
replica additions and removals.

We solve these problems by marking some replicas “golden”
(currently, replicas created initially are marked golden.) The
golden replicas form a complete subgraph in the replica graph
to let them monitor each other and maintain a minimum repli-
cation factor. Non-golden replicas store one-way edges to
golden replicas and use them as starting points for random
walks. The file’s entry in the parent directory also points to
the golden replicas. Otherwise, golden replicas act exactly like
other replicas. This design allows non-golden replicas of a
file to be added or removed without affecting its parent direc-
tory, and non-golden replicas of the directory to be added or
removed without affecting children files.

Golden replicas must be given a high priority to stay on disk,
since adding or removing a golden replica is a relatively ex-
pensive operation. For example, removing a golden replica
involves picking one non-golden replica, “engolden” it, and
telling all replicas of the file and the parent directory to update
their pointers to the golden-replica set.

3 Propagating updates

A wide-area file system faces two inherently contradicting
goals: providing high end-to-end availability and maintaining
strong data consistency. We decided to favor availability when
a trade-off is inevitable, based on a recent study that reveals
that most instances of write sharing can be predicted easily,
and that they demand consistency only within a window of
minutes [8]. Thus, Pangaea maintains both replica member-
ship and file contents completelyoptimistically without any
synchronous coordination—any user can read or update any
replica any time.

We discuss our solutions to three particular challenges that
arise from our approach: efficient update propagation, provid-
ing strong consistency, and conflicting updates.

3.1 Efficient propagation using harbingers

Unlike the Web or p2p data sharing systems, file systems must
handle updates efficiently since they are relatively common and
synchronous, i.e., the user often waits for a write to complete
before issuing subsequent operations. A naive (but safe) ap-
proach for distributing updates to replicas would be to “flood”
the change along graph edges hop by hop. However, that would
consume network bandwidthk times as much as optimal and
increase propagation delay, especially for large updates. Thus,
Pangaea uses a two-phase strategy to propagate updates that
exceed a certain size (> 1K bytes in the current implementa-
tion). In the first phase, a small message that only contains the
timestamp of the update, called aharbinger, is pushed along
the graph edges. When a node receives a new harbinger, it asks
the sender to push the update body. When a node receives a
duplicate harbinger without having received the actual update,

3



a

d

b

fc

e

a

d

b

fc

e

a

d
fc

e

b
a

d
fc

e

b

(1) (2) (3) (4)

Figure 2:An example of update propagation in Pangaea. Thick
edges represent fast links. (1) An update is issued at A. (2) A
sends a harbinger to the fat edge, C. C forwards the harbinger to
D and F quickly. (3) D forwards the harbinger to E. After some
wait, A sends harbinger to B, and a spanning tree is formed.
Links not in the tree are used as backups when some of the tree
links fail. (4) The update’s body is pushed along the tree edges.
In practice, steps 3 and 4 proceed in parallel.

it asks the sender to retry later.1 Moreover, before pushing (or
forwarding) a harbinger to a graph edge, a node adds a slight
delay inversely proportional to the estimated bandwidth of the
edge. This way, for each update, Pangaea dynamically con-
structs a spanning tree whose shape closely matches the phys-
ical network topology. Figure 2 shows an example.

This harbinger algorithm yields two important benefits.
First, it shrinks the effective window of replica inconsistency.
When a user tries to read a file for which only a harbinger
is received, she waits until the update body arrives. Because
harbinger-propagation delay is independent of the actual up-
date size, the chance of a user seeing stale file contents is
greatly reduced. Second, it saves wide-area network usage,
because it propagates updates along the fast edges. Our eval-
uation shows that this algorithm consumes only 5% more net-
work bandwidth than an idealized optimal algorithm.

For users with strong consistency requirements, Pangaea
also provides a mechanism to enforce consistency by syn-
chronously circulating harbingers of recent updates. The user
waits until all replicas of the files send back acknowledgments
(or times out when remote nodes are unavailable). This mech-
anism may be initiated either manually by the user or automat-
ically by Pangaea. The latter will be based on hints such as file
names or application names, since write-sharing situations can
often be predicted [8].

3.2 Conflict resolution

Because Pangaea requires no global coordination during any
change, two nodes may issue different updates to the same ob-
ject. Furthermore, some file operations—e.g.,mkdir andre-
name—change two files (a file itself and its parent directory)
that may encounter conflicts independently. We developed a
proven-correct distributed protocol for this purpose. It is a
variant of the version-vector-based algorithms used by Ficus

1The sender must retry the propagation later because the node that send the
harbinger the earliest may crash before sending the update body.

and Roam [7], but we omit the details due to space constraints.

4 Current status and future work

We are implementing Pangaea on Linux as a user-space loop-
back NFS server. Preliminary evaluations indicate that, in
a uniformly configured network, its performance is compa-
rable to that of Coda. In a geographically distributed set-
ting, Pangaea outperforms Coda by being able to transfer data
from closer nodes, not just from a statically configured central
server.

We identify two key areas of future research. First is the
study of intelligent file placement heuristics. We plan to con-
sider information such as storage capacity, network bandwidth,
and content type to optimize both performance and availability.
Second is security. We plan to study end-to-end data and meta-
data encryption and protocols for tolerating Byzantine servers.

References
[1] William J. Bolosky, John R. Douceur, David Ely, and Marvin

Theimer. Feasibility of a serverless distributed file system de-
ployed on an existing set of desktop PCs. InACM SIGMETRICS,
pages 34–43, June 2000.

[2] Minkyong Kim, Landon P. Cox, and Brian D. Noble. Safety,
visibility, and performance in a wide-area file system. InFAST.
Usenix, January 2002.

[3] C. Mohan. A database perspective on Lotus Domino/Notes. In
ACM SIGMOD, page 507, May 1999.

[4] Lily B. Mummert, Maria R. Ebling, and M. Satyanarayanan. Ex-
ploiting weak connectivity for mobile file access. InSOSP, pages
143–155, December 1995.

[5] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A
low-bandwidth network file system. InSOSP, pages 174–187,
October 2001.

[6] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M.
Theimer, and Alan J. Demers. Flexible update propagation for
weakly consistent replication. InSOSP, pages 288–301, October
1997.

[7] David H. Ratner.Roam: A Scalable Replication System for Mo-
bile and Distributed Computing. PhD thesis, UC Los Angeles,
1998.

[8] Susan Spence, Erik Riedel, and Magnus Karlsson. Adaptive
consistency–patterns of sharing in a networked world. Techni-
cal report, HP Labs, 2002.

[9] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure
detection service. InIFIP Int. Conf. on Dist. Sys. Platforms and
Open Dist. Proc. (Middleware), 1998.

4

http://portal.acm.org/toc.cfm?id=339331&coll=portal&dl=ACM&type=procee% ding
http://portal.acm.org/toc.cfm?id=304182&coll=portal&dl=ACM&type=procee% ding
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=procee% ding
http://portal.acm.org/toc.cfm?id=None&coll=portal&dl=ACM&type=proceedi% ng
http://portal.acm.org/toc.cfm?id=268998&coll=portal&dl=ACM&type=procee% ding

	Introduction
	Pangaea Overview
	Related work
	Challenges in Pangaea

	Managing replica membership
	Adding a replica
	Removing a replica
	Maintaining hierarchical name spaceusing golden replicas

	Propagating updates
	Efficient propagation using harbingers
	Conflict resolution

	Current status and future work

