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Abstract 

We present the design, implementation, and evaluation of a fully distributed directory service for Farsite, a logically 

centralized file system that is physically implemented on a loosely coupled network of desktop computers. Prior to 

this work, the Farsite system included distributed mechanisms for file content but centralized mechanisms for file 

metadata. Our distributed directory service introduces tree-structured file identifiers that support dynamically 

partitioning metadata at arbitrary granularity, recursive path leases for scalably maintaining name-space consistency, 

and a protocol for consistently performing operations on files managed by separate machines. It also mitigates 

metadata hotspots via file-field leases and the new mechanism of disjunctive leases. We experimentally show that 

Farsite can dynamically partition file-system metadata while maintaining full file-system semantics. 

1 Introduction 

Farsite [1] is a serverless, distributed file system that 

logically functions as a centralized file server but is 

physically distributed among a network of desktop 

workstations. Farsite provides the location-transparent 

file access and reliable data storage commonly provided 

by a central file server, without a central file server’s 

infrastructure costs, susceptibility to geographically 

localized faults, and reliance on the error-freedom and 

trustworthiness of system administrators. 

Farsite replaces the physical security of a locked 

room with the virtual security of cryptography and 

Byzantine-fault tolerance (BFT) [7]. It replaces high-

reliability server hardware with distributed redundant 

storage, computation, and communication provided by 

the unused resources of existing desktop machines. And 

it replaces central system administrators with 

autonomic processes that transparently migrate replicas 

of file content and file-system metadata to adapt to 

variations in applied load, changes in machines’ 

availability, and the arrival and departure of machines. 

In 2002, we published a paper [1] describing a 

Farsite system that provides a Windows file-system 

interface via a file-system driver, that stores encrypted 

replicas of file content on remote machines, that 

autonomically rearranges these replicas to maintain file 

availability [11], that provides transparent access to 

remotely stored file content, that caches content on 

clients for efficiency, and that lazily propagates file 

updates to remote replicas. This implementation also 

includes a directory service that manages file-system 

metadata, issues leases to clients, and receives metadata 

updates from clients. The directory service tolerates 

malicious clients by validating metadata updates before 

applying them to the persistent metadata state. In 

addition, the directory service tolerates failures or 

malice in the machines on which it runs, by replicating 

its execution on a BFT group of machines [7]. 

However, because every machine in a BFT group 

redundantly executes the directory-service code, the 

group has no more throughput than a single machine 

does, irrespective of the group size. Since this directory 

service runs on a single BFT group, the rate at which 

the group can process file-system metadata governs the 

maximum scale of the system. By contrast, every other 

Farsite subsystem avoids scalability limitations either 

by implicit parallelism or by relaxed consistency that is 

tolerable because it is concealed by the directory 

service. 

This paper presents a new design, implementation, 

and evaluation of a directory service that is scalable and 

seamlessly distributed. This work involves several 

novel techniques for partitioning file-system metadata, 

maintaining name-space consistency, coordinating 

multi-machine operations, and mitigating metadata 

hotspots. Experiments in a modest-sized configuration 

show that our techniques enable the system to sustain 

throughput that is proportional to system scale. 

Our contributions include the following techniques: 

• tree-structured file identifiers 

• multi-machine operation protocol 

• recursive path leases 

• file-field leases 

• disjunctive leases 

Our contributions also include the end result, namely: 

• a file system that seamlessly distributes 

and dynamically repartitions metadata 

among multiple machines 

Section 2 overviews the Farsite system. Section 3 

describes the design decisions that drove the techniques 

detailed in Section 4 on metadata partitioning and 

Section 5 on hotspot mitigation. Section 6 reports on 

design lessons we learned, and Section 7 describes our 

implementation. Section 8 experimentally evaluates the 

system. Sections 9 and 10 describe future work and 

related work. Section 11 summarizes and concludes. 



2 Farsite overview 

This section briefly summarizes the goals, assumptions, 

and basic system design of Farsite. Many more details 

can be found in our 2002 paper [1]. 

2.1 Goals 

Farsite is Windows-based file system intended to 

replace the central file servers in a large corporation or 

university, which can serve as many as ~10
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clients [4]. Of Farsite’s many design goals, the key goal 

for the present work is minimizing human system 

administration, which is not only a significant cost for 

large server systems but also a major cause of system 

failure [26]. In this paper, we address the specific sub-

goal of automated load balancing. 

2.2 Assumptions 

Farsite is intended for wired campus-area networks, 

wherein all machines can communicate with each other 

within a small number of milliseconds, and network 

topology can be mostly ignored. Farsite expects that 

machines may fail and that network connections may be 

flaky, but it is not designed to gracefully handle long-

term disconnections. 

Farsite’s intended workload is that of normal 

desktop systems, which exhibit high access locality, a 

low rate of updates that survive subsequent overwrites, 

and infrequent, small-scale read/write sharing [20, 41]. 

It is not intended for high-performance parallel I/O. 

2.3 Basic system design 

This section briefly overviews the aspects of the Farsite 

system relevant to the metadata service, completely 

ignoring issues relating to file content. 

Each machine functions in two roles, a client that 

performs operations for its local user and a server that 

provides directory service to clients. To perform an 

operation, a client obtains a copy of the relevant 

metadata from the server, along with a lease [15] over 

the metadata. For the duration of the lease, the client 

has an authoritative value for the metadata. If the lease 

is a write lease, then the server temporarily gives up 

authority over the metadata, because the lease permits 

the client to modify the metadata. 

After the client performs the metadata operation, it 

lazily propagates its metadata updates to the server. To 

make it easier for servers to validate a client’s updates, 

the updates are described as operations rather than as 

deltas to metadata state. 

When the load on a server becomes excessive, the 

server selects another machine in the system and 

delegates a portion of its metadata to this machine. 

From the perspective of the directory service, there 

is little distinction between directories and data files, 

other than directories have no content and data files 

may not have children. For simplicity, we refer to them 

both as “files” except when clarity dictates otherwise. 

3 Directory service design decisions 

This section motivates our design decisions and 

describes why we did not follow through with many of 

the design ideas enumerated in our 2002 paper. 

3.1 Fully functional rename 

A fundamental decision was to support a fully 

functional rename operation. Decades of experience by 

Unix and Windows users have shown that fully 

functional rename is part of what makes a hierarchical 

file system a valuable tool for organizing data. In fact, 

rename is the only operation that makes non-trivial use 

of the name space’s hierarchy, by atomically changing 

the paths of every file in a subtree while preserving 

open handles. Without rename, the file-system structure 

is only slightly more involved than a flat name space 

wherein the path separator (‘/’ in Unix, ‘\’ in Windows) 

is just another character. It is slightly more involved 

because, for example, one can create a file only if its 

parent exists, so in the flattened name space, one could 

create a new name only if a constrained prefix of the 

name already exists. 

Some prior distributed file systems have divided 

the name space into user-visible partitions and 

disallowed renames across partitions; examples include 

volumes in AFS [19], shares in Dfs [25], and domains 

in Sprite [27]. Anecdotal evidence suggests this is quite 

tolerable as long as the system administrator exercises 

care when selecting files for each partition:  “[T]hey 

need to be closely related, in order for rename to be 

useful, and there should be enough of them so that the 

restriction on rename is not perceived by users as a 

problem [34].” However, in keeping with our goal of 

minimizing system administration, we shied away from 

user-visible partitions, which demand such careful 

organization [6]. Instead, we designed our metadata 

service to present a semantically seamless name space. 

3.2 Name-space consistency 

Given a fully functional rename operation, name-space 

consistency is necessary to avoid permanently 

disconnecting parts of the file system, as a simplified 

example illustrates. Fig. 1a shows a file-system tree in 

which every file is managed by a different server. 

Client X renames file C to be a child of file G, as shown 

in Fig. 1b, and Client Y independently renames file F to 

be a child of file D, as shown in Fig. 1c. No single 

server is directly involved in both rename operations, 

and each independent rename is legal. Yet, if both 

renames were allowed to proceed, the result would be 

an orphaned loop, as shown in Fig. 1d. 



Once we had a mechanism for scalable name-space 

consistency, it seemed reasonable to use this 

mechanism to provide a consistent name space for all 

path-based operations, not merely for renames. 

3.3 Long-term client disconnection 

Although Farsite is not intended to gracefully support 

long-term client disconnections, we still need to decide 

what to do when such disconnections occur. Since we 

employ a lease-based framework, we attach expiration 

times – typically a few hours – to all leases issued by 

servers. When a lease expires, the server reclaims its 

authority over the leased metadata. 

If a client had performed operations under the 

authority of this lease, these operations are effectively 

undone when the lease expires. Farsite thus permits 

lease expiration to cause metadata loss, not merely file 

content loss as in previous distributed file systems. 

However, these situations are not as radically different 

as they may first appear, because the user-visible 

semantics depend on how applications use files. 

For example, Microsoft's email program Outlook 

[28] stores all of its data, including application-level 

metadata, in a single file. By contrast, maildir [40] uses 

the file system’s name space to maintain email folder 

metadata. Under Outlook, content-lease expiration can 

cause email folder metadata updates to get lost; whereas 

under maildir, expiring a file-system metadata lease can 

cause the same behavior. 

3.4 Prior design ideas 

Our 2002 paper [1] envisioned a distributed directory 

service, for which it presented several ideas that seemed 

reasonable in abstract, but which proved problematic as 

we developed a detailed design. 

Our intent had been to partition file metadata 

among servers according to file path names. Each client 

would maintain a cache of mappings from path names 

to their managing servers, similar to a Sprite prefix 

table [43]. The client could verify the authority of the 

server over the path name by evaluating a chain of 

delegation certificates extending back to the root server. 

To diffuse metadata hotspots, servers would issue stale 

snapshots instead of leases when the client load got too 

high, and servers would lazily propagate the result of 

rename operations throughout the name space. 

Partitioning by path name complicates renames 

across partitions, as detailed in the next section. In the 

absence of path-name delegation, name-based prefix 

tables are inappropriate. Similarly, if partitioning is not 

based on names, consistently resolving a path name 

requires access to metadata from all files along a path, 

so delegation certificates are unhelpful for scalability. 

Stale snapshots and lazy rename propagation allow the 

name space to become inconsistent, which can cause 

orphaned loops, as described above in Section 3.2. For 

these reasons, we abandoned these design ideas. 

4 Metadata partitioning 

In building a distributed metadata service, the most 

fundamental decision is how to partition the metadata 

among servers. One approach is to partition by file path 

name, as in Sprite [27] and the precursor to AFS [32], 

wherein each server manages files in a designated 

region of name space. However, this implies that when 

a file is renamed, either the file’s metadata must 

migrate to the server that manages the destination 

name, or authority over the destination name must be 

delegated to the server that manages the file’s metadata. 

The former approach – migration without delegation – 

is insufficient, because if a large subtree is being 

renamed, it may be not be manageable by a single 

server. The latter approach may be plausible, but 

coupling delegation to rename restricts the system’s 

ability to use delegation for its primary purpose of load 

balancing. It also precludes clean software layering, 

wherein a file’s semantic attributes, including its name, 

are built on an abstraction that hides a file’s mobility. 

The problems with partitioning by path name arise 

from a name’s mutability. We avoid these problems by 

partitioning according to file identifiers, which are not 

mutable. Our file identifiers have a tree structure, which 

supports arbitrarily fine-grained partitioning (§ 4.1). 

This partitioning is not user-visible, because operations 

can span multiple servers (§ 4.2). Despite partitioning, 

the name space is kept consistent – in a scalable fashion 

– by means of recursive path leases (§ 4.3). 

4.1 Tree-structured file identifiers 

4.1.1 Previous approach: flat file identifiers 

Partitioning by file identifier is not original to Farsite; it 

is also the approach taken by AFS [19] and xFS [2]. All 

three systems need to efficiently store and retrieve 

information on which server manages each identifier. 

Fig. 1: Orphaned Loop from Two Renames 
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AFS addresses this problem with volumes [34], and xFS 

addresses it with a similar unnamed abstraction. 

An AFS file identifier is the concatenation of two 

components:  The “volume identifier,” which indicates 

the volume to which the file belongs, and the “file 

number,” which uniquely identifies a file within the 

volume. All files in a volume reside on the same server. 

Volumes can be dynamically relocated among servers, 

but files cannot be dynamically repartitioned among 

volumes without reassigning file identifiers. An xFS 

“file index number” is similar; we defer more detailed 

discussion to Section 10 on related work. 

4.1.2 File identifier design issues 

A main design goal for Farsite’s file identifiers was to 

enable metadata repartitioning without reassigning file 

identifiers. Specifically, we considered four issues: 

1. To maximize delegation-policy freedom, 

regions of identifier space should be 

partitionable with arbitrary granularity. 

2. To permit growth, each server should manage 

an unbounded region of file-identifier space. 

3. For efficiency, file identifiers should have a 

compact representation. 

4. Also for efficiency, the (dynamic) mapping 

from file identifiers to servers should be stored 

in a time- and space-efficient structure. 

4.1.3 Abstract structure 

Abstractly, a file identifier is a sequence of positive 

integers, wherein the null sequence identifies the file-

system root. Each server manages identifiers beginning 

with a specified prefix, except for those it has explicitly 

delegated away to other servers. Fig. 2 shows a system 

of six servers, A – F. The root server, A, manages all 

files except those whose identifiers are prefixed by 〈1〉, 

〈3〉, or 〈4〉; server B manages all files with identifiers 

prefixed by 〈1〉 but not by 〈1.3〉; and so forth. The file 

identifier space is thus a tree, and servers manage 

subtrees of this space. 

At any moment, some portion of each file identifier 

determines which server manages the file; however, the 

size of this portion is not fixed over time, unlike AFS 

file identifiers. For example, in the partitioning of Fig. 

2, a file with identifier 〈1.3.3.1〉 is managed by server 

D, because the longest delegated prefix of 〈1.3.3.1〉 is 

〈1.3〉. If server D later delegates prefix 〈1.3.3〉, the file’s 

managing server will be determined by the first three 

integers in the file identifier, namely 〈1.3.3〉. This 

arbitrary partitioning granularity addresses issue 1 

above. 

Because file identifiers have unbounded sequence 

length, each server manages an infinite set of file 

identifiers. For example, server D can create a new file 

identifier by appending any integer sequence to prefix 

〈1.3〉, as long as the resulting identifier is not prefixed 

by 〈1.3.1〉 or 〈1.3.3.2〉. This addresses issue 2. 

4.1.4 Implementation 

A file identifier’s integer sequence is encoded into a bit 

string using a variant of Elias γ´ coding [13]. Because of 

the rule by which new file identifiers are assigned 

(§ 4.1.5), the frequency distribution of integers within 

file identifiers nearly matches the frequency distribution 

of files per directory. We chose γ´ coding because it is 

optimally compact for the distribution we measured in a 

large-scale study [9], thereby addressing issue 3. 

Variable-length identifiers may be unusual, but 

they are not complicated in practice. Our code includes 

a file-identifier class that stores small identifiers in an 

immediate variable and spills large identifiers onto the 

heap. Class encapsulation hides the length variability 

from all other parts of the system. 

To store information about which servers manage 

which regions of file-identifier space, clients use a file 

map, which is similar to a Sprite prefix table [43], 

except it operates on prefixes of file identifiers rather 

than of path names. The file map is stored in an index 

structure adapted from Lampson et al.’s system for 

performing longest-matching-prefix search via binary 

search [23]. With respect to the count of mapped 

prefixes, the storage cost is linear, and the lookup time 

is logarithmic, thereby addressing issue 4. 

Fig. 2: Delegation of File Identifier Space 
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4.1.5 Creating and renaming files 

Each newly created file is assigned an identifier formed 

from its parent’s identifier suffixed by an additional 

integer. For example, in Fig. 3, the file named “y” 

under file 〈1.3〉 was created with identifier 〈1.3.5〉. This 

rule tends to keep files that are close in the name space 

also close in the identifier space, so partitioning the 

latter produces few cuts in the former. This minimizes 

the work of path resolution, which is proportional to the 

number of server regions along a path. 

Renames can disrupt the alignment of the name 

and identifier spaces. For example, Fig. 3 shows file 

〈1.3.3〉 having been renamed from its original name 

under file 〈1.3〉 to name “m” under file 〈3〉. Unless 

renames occur excessively, there will still be enough 

alignment to keep the path-resolution process efficient. 

4.2 Multi-server operations 

The Windows rename operation atomically updates 

metadata for three files: the source directory, the 

destination directory, and the file being renamed. (Our 

protocol does not support POSIX-style rename, which 

enables a fourth file to be overwritten by the rename, 

although our protocol could possibly be extended to 

handle this case.) These files may be managed by three 

separate servers, so the client must obtain leases from 

all three servers before performing the rename. Before 

the client returns its leases, thus transferring authority 

over the metadata back to the managing servers, its 

metadata update must be validated by all three servers 

with logical atomicity. 

The servers achieve this atomicity with two-phase 

locking:  The server that manages the destination 

directory acts as the leader, and the other two servers 

act as followers. Each follower validates its part of the 

rename, locks the relevant metadata fields, and notifies 

the leader. The leader decides whether the update is 

valid and tells the followers to abort or commit their 

updates, either of which unlocks the field. While a field 

is locked, the server will not issue a lease on the field. 

Since a follower that starts a multi-server operation 

is obligated to commit if the leader commits, a follower 

cannot unlock a field on its own, even to timeout a 

spurious update from a faulty client. Instead, the leader 

centrally handles timeouts by setting a timer for each 

notification it receives from a follower. 

The followers must guarantee that the rename’s 

preconditions still hold by the time the commit is 

received, which they can do because their preconditions 

are local and therefore lockable. The leader, which 

manages the destination server, can afford to check the 

one non-local condition, namely that the file being 

moved is not an ancestor of the destination. This check 

is facilitated by means of a path lease, as described in 

the following section. 

4.3 Recursive path leases 

As described in Section 3.2, servers require a consistent 

view of the name space to ensure that a rename 

operation does not produce an orphaned loop. More 

generally, Farsite provides name-space consistency for 

all path-based operations. The naive way to do this is 

for the servers managing all files along a path to issue 

individual leases on their files’ children; however, this 

approach has poor scaling properties. In particular, it 

makes the root server responsible for providing leases 

to all interested parties in the system. 

Our solution to this problem is the mechanism of 

recursive path leases. A file’s path lease is a read-only 

lease on the chain of file identifiers of all files on the 

path from the file-system root to the file. For example, a 

path lease on file 〈4〉 in Fig. 3 would cover the chain 

{〈〉, 〈2〉, 〈2.1〉, 〈4〉}. Path leases are recursive, in that 

they are issued to other files, specifically to the children 

of the file whose path is being leased; a path lease on a 

file can be issued only when the file holds a path lease 

from its parent. A path lease is accessible to the server 

that manages the file holding the lease, and if the file is 

delegated to another server, its path lease migrates with 

it. The recursive nature of path leases makes them 

scalable; in particular, the root server need only deal 

with its immediate child servers, not with every 

interested party in the system. 

When a rename operation causes a server to change 

the sequence of files along a path, the server must recall 

any relevant path leases before making the change, 

which in turn recalls dependent path leases, and so on 

down the entire subtree. The time to perform a rename 

thus correlates with the size of the subtree whose root is 

being renamed. This implies that renames near the root 

of a large file system may take considerable time to 

execute. Such renames have considerable semantic 

impact, so this slowness appears unavoidable. 

5 Hotspot mitigation 

No one, including us, has ever deployed a file system 

with no user-visible partitions at our target scale of ~10
5

 

clients, so we do not know how such a system would be 

used in practice. Nonetheless, to plausibly argue that 

our system can reach such a scale, we believe it 

necessary to address the problem of workload 

hotspotting. 

At the scales of existing deployments, file-system 

workloads exhibit little sharing, and this sharing is 

mainly commutative, meaning that the comparative 

ordering of two clients’ operations is not significant [3, 

20]. However, even non-commutative sharing can result 

in hotspotting if the metadata structure induces false 

sharing. We avoid false sharing by means of file-field 

leases and disjunctive leases. 



5.1 File-field leases 

Rather than a single lease over all metadata of a file, 

Farsite has a lease over each metadata field. The fields 

are each file attribute, a hash of the file content, the 

file’s deletion disposition [16], a list of which clients 

have handles open, lists of which clients have the file 

open for each of Windows’ access/locking modes [16], 

the file identifier of the file’s parent, and the child file 

identifier corresponding to each child name. For the 

latter fields, since there are infinitely many potential 

child names, we have a shorthand representation of 

lease permission over all names other than an explicitly 

excluded set; we call this the infinite child lease. 

File-field leases are beneficial when, for example, 

two clients edit two separate files in the same directory 

using GNU Emacs [36], which repeatedly creates, 

deletes, and renames files using a primary name and a 

backup name. Even though create and rename 

operations modify the directory’s metadata, different 

filenames are used by each client, so the clients access 

different metadata fields of the directory. 

5.2 Disjunctive leases 

For some fields, even a lease per field can admit false 

sharing. In particular, this applies to the field defining 

which clients have handles open and to the fields 

defining which clients have the file open for each of 

Windows’ access/locking modes. Unlike Unix’s 

advisory file locking, file locking in Windows is 

binding and integral with open and close operations 

[16]. So, to process an open correctly, a client must 

determine whether another client has the file open for a 

particular mode. 

For example, if some client X has a file open for 

read access, no other client Y can open the file with a 

mode that excludes others from reading. So, to know 

whether a “read-exclusive” open operation should result 

in an error, client Y requires read access to the file’s 

“read-mode” field to see if it contains any client 

identifiers. If, at the same time, client Z opens the file 

for read access, it will require write access to the read-

mode field, which conflicts with client Y’s read access. 

This is a case of false sharing, because Y’s and Z’s 

opens are semantically commutative with each other. 

In Farsite, this false sharing is avoided by applying 

disjunctive leases [12] to each the above fields. For a 

disjunctive leased field, each client has a Boolean self 

value that it can write and a Boolean other value that it 

can read. The other value for each client x is defined as: 

∑
≠

=

xy

yx
selfother  

where the summation symbol indicates a logical OR. 

In the example above, when client X opens the file 

for read access, it sets its self value for the read-mode 

field to TRUE, which causes client Y’s other value to be 

TRUE, informing Y that some client has the file open for 

read access. When client Z opens the file for read 

access, it sets its self value to TRUE, but this does not 

change the other value that Y sees. 

Each client’s self value is protected by a write 

lease, and its other value is protected by a read lease. 

The server manages these leases to allow a client to 

access its values when this does not conflict with the 

accesses of other clients. For example, if client X does 

not hold a self-write lease, it is not allowed to change 

its self value; if this value is currently TRUE, then the 

server can simultaneously grant other-read access to 

client Y and self-write access to client Z. 

Disjunctive leases are beneficial for, for example, a 

popular Microsoft Word [18] document. By default, 

Word attempts to open a file for exclusive access, and if 

it fails, it then opens the file with shared access. All 

clients after the first can read and write the appropriate 

disjunctive mode bits without forcing the server to 

recall other clients’ leases. 

6 Design lessons learned 

This section enumerates some lessons that we learned 

while designing Farsite’s distributed directory service. 

A single field has a single meaning. It might seem 

natural that if a client has a handle open for write access 

on a file, the client has the ability to write the file’s 

content. However, this does not follow. It is 

semantically permissible for two clients to have write-

access handles open concurrently, but it is not 

logistically permissible for them to hold write leases on 

the file content concurrently. At one point, we 

attempted to capture these separate meanings in a single 

field to “simplify” the system, but this actually 

produced greater complexity and subtlety. 

Authority is rigorously defined. In a distributed 

system wherein servers delegate authority to other 

servers and lease authority to clients, it is crucial to 

define which data is authoritative. When we were 

careless about this, it led to circularities. For example, 

we once had a write lease that granted authority over all 

unused names for a file’s children; however, whether a 

name is unused is determined by the machine that has 

authority over the corresponding metadata field, which 

is the client if and only if it holds a write lease. In our 

final design, the lease that grants authority over all-but-

a-few child names now explicitly identifies the names it 

excludes, rather than implicitly excluding names that 

are used. 

The lease mechanism is not overloaded with 

semantics. In one of our designs, if a client tried to 

open a file that was already open for exclusive access 

by another client, the server would refuse to issue the 

client a lease, which the client would interpret as an 

indication of a mode conflict. Not only does this 

introduce a special case into the lease logic, but it also 



obviates a key benefit of leases:  If the client repeatedly 

tries to open the file, it will repeatedly ask the server for 

a lease, and the server will repeatedly refuse until the 

file is closed by the other client. By contrast, mode 

conflicts are now indicated by issuing the client an 

other-read disjunctive lease (§ 5.2) on the incompatible 

mode. With this lease, clients can locally determine 

whether the open operation should succeed. 

Operations are performed on clients and 

replayed on servers. This arrangement is common for 

file-content writes in prior distributed file systems, and 

we found it just as applicable to metadata updates. In an 

early design, we had considered abandoning this 

strategy for multi-server rename operations, because we 

thought it might be simpler for the servers to somehow 

perform the rename “on behalf of” the client. In testing 

design alternatives, we found that the regular approach 

was simpler even for multi-server rename, because it 

provides a simple operational model:  The client obtains 

leases from all relevant servers, performs the operation 

locally in a single logical step, and lazily sends the 

update to the servers. For multi-server operations, the 

servers coordinate the validation of updates (§ 4.2). 

Message recipients need not draw inferences. In 

one of our design variants, when a client released a 

lease, it did not indicate to the server whether it was 

releasing a read lease or a write lease. Because these 

leases are mutually exclusive, the server could infer 

which type of lease the client was releasing. However, 

although this inference was always logically possible, it 

added some subtlety in a few corner cases, which led to 

design bugs. The lease-release message now explicitly 

identifies the lease, because we found that such changes 

vastly simplify program logic with only a small 

additional expense in message length. 

Leases do not indicate values; they indicate 

knowledge of values. Before our design was explicit 

about the fact that leases convey knowledge, we had a 

function called NameIsUsed that retuned TRUE when 

the client held a lease over a name field with a non-null 

value. This led us to carelessly write !NameIsUsed(x) 

when we really meant NameIsUnused(x). It is easier 

to spot the error when the functions are named 

IKnowNameIsUsed and IKnowNameIsUnused. This is 

even more important when the server validates a 

client’s update with logic such as, “I know that the 

client knew that name X was unused.” 

7 Implementation 

7.1 Code structure 

The directory-service code is split into two main pieces: 

application logic and an atomic-action substrate. The 

substrate provides an interface for executing blocks of 

application code with logical atomicity, thus relegating 

all concerns about intra-machine race conditions to an 

application-generic substrate of about 5K semicolon-

lines in C++. 

We developed the application logic in the TLA+ 

system-specification language [22] and then translated 

it into about 25K semicolon-lines of C++, nearly half of 

which is data-structure definitions and support routines 

that were mechanically extracted from the TLA+ spec. 

Within the application logic, all aspects of mobility 

are handled in a bottom layer. Higher-layer client code 

is written to obtain leases “from files” and to send 

updates “to files,” not from and to servers. 

The directory service does not currently employ 

Byzantine fault tolerance, but the code is structured as a 

deterministic state machine, so we expect integration 

with Farsite’s existing BFT substrate to be relatively 

straightforward. As a consequence of the lack of BFT, a 

machine failure in the current implementation can 

damage the name space, which is clearly not acceptable 

for a real deployment. 

7.2 Provisional policies 

Our emphasis has been on mechanisms that support a 

seamlessly distributed and dynamically partitioned file 

system. We have not yet developed optimal policies for 

managing leases or determining when servers should 

delegate metadata. For our experimental evaluation, we 

have developed some provisional policies that appear to 

work reasonably well. 

7.2.1 Lease-management policies 

Servers satisfy lease requests in first-come/first-serve 

order. If a lease request arrives when no conflicting 

lease is outstanding and no conflicting request is ahead 

in the queue, the request is satisfied immediately. 

For efficiency, a server might choose to promote a 

set of child-field leases to an infinite child lease (§ 5.1). 

Our current policy never does so; infinite child leases 

are issued only for operations that need to know that the 

file has no children, namely delete and close. 

The procedures for managing disjunctive leases 

(§ 5.2) are fairly involved, as detailed in our tech report 

[12]. There are two cases that present policy freedom, 

both of which allow the option of recalling self-write 

leases from some clients, in the hope that a client’s self 

value is TRUE, thereby coercing all remaining clients’ 

other values to TRUE. Our current policy never exercises 

this option. When processing an other-read request, we 

recall all self-write leases, and when processing a self-

write request, we recall other-read leases. 

7.2.2 Delegation policy 

A server considers a file to be active if the file’s 

metadata has been accessed within a five-minute 

interval. The load on a region of file-identifier space is 

the count of active files in the region. Machines 



periodically engage in a pairwise exchange of load 

information, and a machine that finds its load to be 

greater than twice the load on another machine will 

delegate to the less-loaded machine. 

To minimize fine-grained repartitioning, which can 

reduce the efficiency of the file map (§ 4.1.4), our 

policy uses hysteresis to avoid excessive rebalancing, 

and it transfers load in a few, heavily-loaded subtrees 

rather than in many lightly-loaded subtrees. 

8 Evaluation 

We experimentally evaluate our directory service in a 

system of 40 machines driven by microbenchmarks, 

file-system traces, and a synthetic workload. We report 

on the effectiveness of our techniques as well as the 

ability of those techniques to seamlessly distribute and 

dynamically repartition metadata among servers. 

8.1 Experimental configuration 

We ran our experiments on 40 slightly out-of-date 

machines reclaimed from people’s desktops. Farsite 

requires no distinction between client and server 

machines, but for clarity of analysis, we designate half 

of the machines as clients and half as a pool for servers; 

this allows us to vary their counts independently. The 

machines are a mix of single- and dual-processor PIII’s 

with speeds ranging from 733 to 933 MHz and memory 

from 512 to 1024 MB. 

Because Farsite’s servers are intended to run on 

random people’s desktop machines, we do not want the 

server process to consume a significant fraction of a 

machine’s resources. In a real deployment, we might 

adaptively regulate the server process to keep it from 

interfering with the user’s local processes [10]. For 

purposes of our experiments, we simulate the limited 

usability of server machine resources by restricting 

each server’s rate of disk I/O (Farsite’s bottleneck 

resource) to little more than what is needed to support 

the metadata workload generated by a single client. 

8.2 Workloads 

We evaluate our system with six workloads: a server 

snapshot, three microbenchmarks, a file-system trace 

from a desktop machine, and a synthetic workload that 

mimics a set of eight user tasks. 

8.2.1 Departmental server snapshot 

Our simplest workload copies the metadata of a 

departmental file server into Farsite. The file server 

contains 2.3M data files and 168K directories. 

8.2.2 Conflicting renames 

This microbenchmark performs a repeating sequence of 

four renames issued by two clients, as illustrated in Fig. 

1. Client X attempts to transform Fig. 1a into Fig. 1b 

and back again, while client Y attempts to transform 

Fig. 1a into Fig. 1c and back again. 

8.2.3 Common-directory editing 

This microbenchmark has two clients edit two separate 

files in the same directory. Each client’s operations 

follow the pattern of GNU Emacs [36], as mentioned in 

Section 5.1. Each save in the editor results in a creation, 

a deletion, and a rename, all of which modify child 

fields in the directory’s metadata. 

8.2.4 Common-file opening 

This microbenchmark has a client create a file using 

shared-read/exclusive-write access. Then, 12 clients 

each repeatedly open and close the file, in the manner 

mentioned in Section 5.2: Each open is first attempted 

with shared-read/exclusive-write access, and when this 

fails, the open is repeated with shared-read access. 

8.2.5 Desktop file-system trace 

To demonstrate a real client workload, we use a one-

hour trace of file-system activity. This particular hour 

within this particular trace was selected because it 

exhibits the statistically most-typical activity profile of 

10am-to-5pm file-system usage among 100 developers’ 

desktop machines we instrumented at Microsoft. 

We also drove the system with 15 desktop traces 

running on 15 clients concurrently. However, multiple 

traces from independent desktop machines exhibit no 

sharing, so such an experiment demonstrates no more 

than a single trace does. 

8.2.6 Synthetic workload 

To demonstrate a workload with a moderate rate of 

shared metadata access, we use a synthetic workload 

driver that models file-system workload with gremlins, 

each of which mimics a user task according to random 

distributions. Four of the gremlins simulate tasks that 

exhibit no sharing: entering data into a database; editing 

text files in GNU Emacs [36]; editing, compiling, and 

linking a code project; and downloading, caching, and 

retrieving web pages. Each client runs an instance of all 

four gremlins, with their control parameters set to make 

their collective activity roughly match the rate and 

profile of the desktop file-system trace described above. 

To this mix, we add four additional types of 

gremlins that coordinate among multiple clients:  One 

gremlin simulates shared document editing, with the 

active reader and/or writer changing every ~3 minutes. 

Another gremlin simulates an email clique using a 

maildir [40] file-system-based email system; each client 

begins a session every ~15 minutes, reads all new email 

with ~15-second peruse times, and sends ~2 new 

messages with ~2-minute composition times. A third 



gremlin simulates an RCS [39] revision-control system; 

each client begins a session every ~30 minutes, checks 

out (co), edits ~5 files, and checks in (ci). Lastly, a 

custodial gremlin, once per ~30 minutes, renames 

directories near the root of the file-system tree, above 

where the other gremlins are working. All indicated 

times and counts are means of random distributions. 

We choose a 15-client/15-server configuration as a 

basis, and we also vary the count of clients and servers. 

For each experiment with N clients, we instantiate one 

custodial gremlin and N of each other gremlin. We run 

the gremlin workload for 4 hours. 

In the basis experiment, the 15 clients performed 

390 operations/second in aggregate. This resulted in an 

aggregate rate of 3.6 lease requests, 8.3 lease grants, 

and 0.8 batched updates per second. 

8.3 Results 

This section reports on the effectiveness of our main 

techniques: tree-structured file identifiers, multi-server 

operations, path leases, file-field leases, and disjunctive 

leases. It also reports on the results of those techniques, 

namely the load balancing, proportional scaling, and 

semantic correctness of our directory service. 

8.3.1 Tree-structured file identifiers 

To validate our hypothesis that tree-structured file 

identifiers can compactly represent real directory-size 

and directory-depth distributions, we drive the system 

with a server snapshot (§ 8.2.1). New file identifiers are 

created according to Farsite’s rule for keeping files that 

are close in the name space also close in the identifier 

space (§ 4.1.5). As a control, we use simulation to 

evaluate the use of conventional fixed-size identifiers to 

satisfy this same condition. Specifically, our control 

uses non-oracle greedy assignment, which successively 

halves sub-regions of the flat identifier space for each 

new subdirectory in a directory, and it assigns file 

identifiers to files in a directory linearly within the 

directory’s sub-region of identifier space. When the 

optimal sub-region is filled up, new identifiers spill into 

ancestor regions. 

In the experimental run, the mean identifier length 

is 52 bits, the maximum is 107 bits, and the 99th 

percentile is 80 bits. Because file identifiers grow 

logarithmically with file-system size, a much larger file 

system would produce only slightly larger identifiers. 

We performed three control runs. With 32-bit file 

identifiers, only 16% of the server’s files were assigned 

identifiers within their designated sub-region, and only 

the first 62% were assigned identifiers at all, because 

eventually there were no free identifiers on the path 

from the parent identifier all the way to the root. When 

the file-identifier length is increased to 48 bits, which is 

the same size as the immediate representation of our 

tree-structured file identifiers, all files obtained 

identifiers; however, 46% of them spilled outside their 

designated sub-region. Even with 107-bit identifiers, 

which is the maximum size tree-structured identifier 

needed for this workload, 5% of files spilled outside 

their designated sub-region. Moreover, any fixed-size 

identifier scheme has a spillage cliff that will eventually 

be reached as the file system grows. 

8.3.2 Multi-server operations and path leases 

To characterize the multi-server rename protocol and its 

use of path leases, we drive the system with a worst-

case workload of conflicting renames (§ 8.2.2), wherein 

all six relevant files are on different servers. 

Over 400 rename operations, the run produced 

2404 messages relating to requesting, recalling, issuing, 

and releasing path leases. It also produced 2400 inter-

server messages related to the two-phase locking in our 

multi-server move protocol. On average, there were 12 

server-to-server messages per rename operation in this 

extreme worst case. 

8.3.3 File-field leases 

To validate our hypotheses that file-field leases prevent 

an instance of false sharing, we drive the system with a 

workload of common-directory editing (§ 8.2.3). As a 

control, we replace file-field leases with a single lease 

per file. 

After 100 editor saves, the control run issued 202 

file leases, whereas the experimental run issued 6 child-

field leases. In the control run, the count of leases is 

proportional to editor saves, but in the experimental 

run, the count of leases is constant. 

The synthetic workload (§ 8.2.6) also demonstrates 

the benefit of file-filed leases. Of the 110k leases the 

servers issued, 59% did not require recalling other 

leases but would have required recalls if the lease 

conflicts had been computed per file. This actually 

understates the benefit, because a client whose lease has 

been recalled is likely to want it back, leading to an 

arbitrarily greater degree of lease ping-ponging. 

8.3.4 Disjunctive leases 

To validate our hypotheses that disjunctive leases 

prevent an instance of false sharing, we drive the 

system with a workload of common-file opening 

(§ 8.2.4). As a control, we replace each disjunctive 

lease with a single-writer/multiple-reader lease. 

After 100 iterations per client, the control run 

issued 1237 mode-field leases and recalled 1203 of 

them, whereas the experimental run issued 13 mode-

field leases and recalled one. In the control run, the 

lease count is proportional to client open attempts, but 

in the experimental run, the lease count is merely 

proportional to the count of clients. 



8.3.5 Load balancing 

To validate our hypothesis that dynamic partitioning 

effectively balances metadata load, we look at the loads 

on the 15 server machines in a basis run of the synthetic 

workload (§ 8.2.6). Fig. 4 shows the loads over the first 

90 minutes of the 4-hour run. Initially, the entire load is 

on the root server, but this is quickly delegated away to 

other servers. If the load were perfectly balanced, each 

server would handle 1/15th of the load, but the actual 

load on machines varies from 3% to 14%, indicating 

that there is room for improvement in our delegation 

policy. 

As a control, we modify our delegation policy to 

delegate each file at most once. This approximates an 

alternative system design that attempts to balance load 

by statically assigning each file to a server when the file 

is created. We could not implement this alternative 

directly, because Farsite assumes that a file is created 

on the same server as its parent. However, our control is 

a conservative approximation, because it can look at a 

file’s activity for an arbitrary period after creation 

before deciding on an appropriate server for the file. 

Fig. 5 shows the loads for the control, which initially 

does a passable job of balancing the loads, but they 

become progressively less balanced as time goes on. 

8.3.6 Proportional scaling 

A key aspect of Farsite’s deployment scenario is that 

every client can also be a server. To demonstrate that 

Farsite is able to use a proportional server pool 

effectively, we ran the synthetic workload (§ 8.2.6) in a 

suite of experiments with N clients and N server 

machines, varying N from 1 to 20. Fig. 6 illustrates the 

mean and median client throughput relative to the 15-

client/15-server basis described above. The graph 

shows that per-client throughput holds approximately 

constant as the system size varies; there is some random 

variation, but it is not correlated to system scale. This 

experiment shows that, at least at these modest scales, 

our mechanisms are effective at preventing the root 

server (or any other resource) from becoming a 

bottleneck that causes a decrease in throughput as scale 

increases. 

For contrast, we ran a suite of experiments with N 

server machines but a fixed load of 15 clients, as shown 

in Fig. 7. As long as the count of servers is not much 

below the count of clients, the per-client throughput is 

not noticeably throttled by available server resources. 

Because we throttle the servers’ I/O rates, smaller 

server pools cause a drop in client throughput. This 

illustrates the need for distributing the directory service 

in Farsite. 
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Fig. 4: Server Load vs. Time, Full Delegation 
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Fig. 5: Server Load vs. Time, Limited Delegation 
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Fig. 6: Throughput, Equal Clients and Servers 
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Fig. 7: Throughput, 15 Clients 



8.3.7 Semantic correctness 

Experiments with all of the workloads demonstrate that 

our mechanisms successfully preserve file-system 

semantics, even when the metadata is dynamically 

partitioned among servers. In the file-system trace 

workload (§ 8.2.5), the results of the submitted 

operations match the results when the trace is run on a 

local file system. The microbenchmarks (§§ 8.2.2–4) 

and the gremlins (§ 8.2.6) know what the results of their 

operations should be, and they verify that the system 

functions correctly. 

In the gremlin basis experiment, 8 operations 

spanned multiple servers. Although this is a small 

fraction of the 2.1M operations performed, even a 

single semantic failure is enough to annoy a real user. If 

Farsite’s metadata partitioning were user-visible, these 

8 operations could not have been performed. 

9 Future work 

We see several areas for future work, including further 

analysis, additional mechanism, improved policy, and 

completing integration with the rest of Farsite. 

9.1 Further analysis 

Our synthetic workload (§ 8.2.6) exhibits a moderate 

degree of shared metadata access, as indicated by 

measurements of distributed-file-system usage [3]. It 

would be valuable to study the sensitivity of the system 

to variations in the degree of sharing. 

We would like to study Farsite’s behavior at scales 

far larger than we could test in our lab. Simulation may 

help to understand the behavior of our distributed 

algorithms at the target scale of 10
5

 machines. 

9.2 Mitigating super-hotspots 

If a very large number of clients request concurrent, 

non-conflicting access to a particular metadata field, the 

managing server may become overwhelmed by the load 

of issuing and recalling leases. We envision diffusing 

this load with a blanket lease: a signed certificate that 

declares the field to have a certain value guaranteed for 

a certain time, thus effectively granting every client 

read access to the field. Whenever the count of lease 

requests exceeds a threshold, a blanket lease is sent to 

all connected clients via a distribution tree. 

Because such leases cannot be recalled, if a client 

requests a lease that conflicts with a blanket lease, the 

server must wait for the blanket lease to expire before it 

can issue the conflicting lease. To prevent the clients 

that had been using the blanket lease from hammering 

the server with new lease requests, the server distributes 

a stifle certificate, which tells the clients not to make 

any requests for the metadata until an indicated time, 

thus giving the server a chance to satisfy the conflicting 

request and then issue a new blanket lease. 

9.3 Improved delegation policy 

Our current delegation policy (§ 7.2.2) attempts to 

balance the distribution of load, under some basic 

constraints to minimize fragmentation. There is much 

opportunity both to improve efficiency and to reduce 

fine-grained repartitioning. 

The delegation policy could also be extended to 

account for variations in machine availability, similar to 

Farsite’s policy for file-content placement [11]. 

9.4 Complete system integration 

The directory service is not yet fully integrated with the 

rest of the Farsite system. In particular, there is no 

bridge to the components that manage file content. The 

main hurdle is modifying Farsite’s kernel-level file-

system driver to understand the leases used by the 

distributed directory service, which differ considerably 

from those used by Farsite’s earlier centralized 

directory service. 

The directory service code is not currently built on 

top of Farsite’s BFT substrate. However, we structured 

the code with BFT in mind, so this integration should 

not be a significant challenge. 

10 Related work 

For comparison with our system, a convenient way to 

categorize distributed file systems is by the method they 

use to partition metadata. 

10.1 Dynamically partitioning the name tree 

Weil et al. [42] propose a file-system metadata service 

that dynamically partitions metadata by subtrees of the 

name space. They evaluate this proposal via simulation 

rather than by implementation and experimentation. 

Despite their use of simulation, they only study 

configurations up to 50 machines, which is not much 

larger than our evaluation. They conclude that subtree 

partitioning is more efficient than either hash-based 

metadata partitioning or a hybrid of the two. 

Although their proposed partitioning scheme bears 

similarity to ours, a key difference is that our dynamic 

partitioning is based on tree-structured file identifiers 

rather than the name-space tree, which we argue (§ 4) 

poses significant challenges for rename operations. It is 

not clear that Weil et al.’s simulations assess the cost of 

performing renames in their proposed system. 

10.2 Statically partitioning the name tree 

Several distributed file systems partition their metadata 

statically by path name. Examples include NFS and the 



Automounter from Sun, CIFS and Dfs from Microsoft, 

and Sprite. 

NFS [31] and CIFS [17] both afford remote access 

to server-based file systems, but neither one provides a 

global name space. A collection of NFS “mountpoints” 

can be made to appear as a global name space when 

mounted uniformly with the client-side Automounter 

[5]. A collection if CIFS “shares” can be assembled into 

a global name space by the Dfs [25] client/server 

redirection system. NFS and CIFS both require all 

client operations to be sent to the server for processing. 

The Automounter and Dfs both operate on path names. 

Sprite [27] partitions the file-system name space 

into “domains.” Clients find the managing server for a 

domain initially by broadcast and thereafter by use of a 

prefix table [43], which maps path names to servers 

according to longest-matching-prefix. Farsite’s file map 

(§ 4.1.4) is similar to Sprite’s prefix table, except that it 

operates on file identifiers rather than path names. 

Mountpoints, shares, and domains are all user-

visible. It is not possible to perform rename operations 

across them, unlike Farsite’s transparent partitions. 

Furthermore, none of these systems provides support 

for automatic load balancing. 

10.3 Partitioning groups of file identifiers 

AFS [19] partitions files using a hybrid scheme based 

partly on file name and partly on file identifier. As in 

Sprite, the name space is statically partitioned by path 

name into partial subtrees. Each subtree, known as a 

“volume,” is dynamically assigned to a server. Files are 

partitioned among volumes according to file identifier, 

which embeds a volume identifier. Like Sprite’s shares, 

AFS volumes are user-visible with regard to rename. 

xFS [2] partitions metadata by file identifier, which 

it calls the “file index number.” A globally replicated 

manager map uses a portion of a file’s index number to 

determine which machine manages the file’s metadata. 

All files whose index numbers correspond to the same 

manager-map entry are managed by the same machine, 

so they correspond closely to an AFS volume, although 

xFS presents no name for this abstraction. Whereas 

AFS volumes provide name-space locality, xFS files 

are partitioned according to which client originally 

created the file. Relocating groups of files, which 

requires consistently modifying the global manager 

map, is not implemented in the xFS prototype. xFS is 

intended to have no user-visible partitions, but the 

paper includes no discussion of the rename operation or 

of any name-space consistency mechanisms. 

In both AFS and xFS, fine-grained repartitioning of 

files requires changing files’ identifiers, which entails 

significant administrator intervention. 

10.4 Partitioning by hashing file names 

Another way to partition metadata is to use a distributed 

hash table. CFS [8] and PAST [29] are scalable, 

distributed storage systems based, respectively, on the 

Chord [37] and PASTRY [30] distributed hash tables. 

CFS and PAST provide only flat name spaces, unlike 

the hierarchical name space provided by Farsite. 

10.5 Partitioning at the block level 

A markedly different approach is commonly employed 

by cluster file systems, which construct a distributed, 

block-level storage substrate for both file content and 

metadata. The metadata is partitioned at the level of the 

block-storage substrate. At the file-system level, all 

metadata is accessible to all servers in the cluster, 

which use a distributed lock manager to coordinate their 

metadata accesses. 

A typical example is the Global File System [35], 

which builds a “network storage pool” from a diverse 

collection of network-attached storage devices. High-

speed connectivity between all servers and all storage 

devices is provided by a storage area network (SAN). 

Servers do not communicate directly with each other; 

rather, lock management of shared storage devices is 

provided by storage device controllers. 

Instead of running over a SAN, the Frangipani [38] 

file system is built on the Petal [24] distributed virtual 

disk, which pools the storage resources of multiple 

server machines into logically centralized disk. High-

speed connectivity is provided by a switched ATM 

network. Frangipani servers use a message-based lock-

management scheme, and they maintain consistent 

configuration information using Paxos [21]. 

Because these systems do not partition metadata, 

their performance can suffer due to contention. IBM’s 

GPFS [33] introduces several techniques to decrease 

the likelihood of contended metadata access. First, 

shared-write locks allow concurrent updating of non-

name-space-critical metadata. Specifically, updates to 

file size and modification time are committed lazily. 

Second, the allocation map is divided into large regions. 

A single allocation manager server keeps the allocation 

map loosely up-to-date and directs different servers to 

different regions of the map. Deletions are shipped to 

the servers managing the relevant regions of the map. 

Third, distributed lock management employs a token 

protocol. Although this is supervised by a central token 

manager, several optimizations reduce the message 

load, including batching, prefetching, and hysteresis. 

These systems all require tight coupling via SAN 

or switched network, unlike Farsite, which runs over a 

LAN. Because their metadata is partitioned at the level 

of opaque blocks, lock contention can limit the 

scalability of some metadata operations [33 (Fig. 4)]. 



10.6 Not partitioning 

The Google File System [14] does not partition 

metadata at all. All metadata updates are centralized on 

a single server. The metadata workload is kept low by 

providing a limited operational interface for append-

only or append-mostly applications that can tolerate 

duplicated writes. 

11 Summary and conclusions 

We have developed a distributed directory service for 

Farsite [1], a logically centralized file system physically 

distributed among a wired network of desktop machines 

on the campus of a large corporation or university. 

Farsite provides the benefits of a central file server 

without the additional hardware cost, susceptibility to 

geographically localized faults, and frequent reliance on 

system administrators entailed by a central server. 

Prior to this work, Farsite’s metadata service was 

centralized on a single BFT group of machines, which 

could not scale to the normal file-system metadata loads 

[41] of the ~10
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 desktop computers [4] in our target 

environment. In designing a distributed replacement for 

this service, a key goal was to automate the balancing 

of workload among servers, so as to minimize the need 

for human system administration. 

A significant concern was that as file metadata is 

dynamically relocated among servers to balance load, 

users might observe confusingly varying semantics over 

time. To avoid this situation, we designed our directory 

service so that the partitioning of files among servers is 

not user-visible. Specifically, Farsite supports a fully 

functional rename operation, which allows renames to 

be performed anywhere in the name space, unlike in 

previous distributed file systems [19, 25, 27]. Since a 

rename operation may thus span multiple servers, the 

servers employ two-phase locking to coordinate their 

processing of a rename. 

The name space is strongly consistent. Although 

necessary only for rename to prevent the accidental 

disconnection of parts of the directory tree, strong 

consistency is maintained for all path-based operations. 

To avoid the scalability limitation of having servers 

issue leases on their files’ children to all interested 

parties, we employ recursive path leases, which are 

successively issued from each file to its child files, and 

which inform a file of its current path name. 

We partition files among servers according to file 

identifier, because the alternative of partitioning by file 

name is complicated by the mutability of names under 

the rename operation. Our file identifiers have a tree 

structure that stays approximately aligned with the tree 

structure of the name space, so files can be efficiently 

partitioned with arbitrary granularity while making few 

cuts in the name space. 

To mitigate the hotspots that might arise in a 

deployed system, our service has a separate lease over 

each metadata field of a file, rather than a single lease 

over all metadata of a file. For certain fields relating to 

Windows’ deletion semantics and access/locking modes 

[16], we break down fields even further by means of 

disjunctive leases, wherein each client supplies an 

independent Boolean value for its part of the field, and 

each client observes the logical OR of other clients’ 

values. With the exception of disjunctive leases, all of 

our techniques are directly applicable to non-Windows 

file systems. 

Although our emphasis was on mechanisms, we 

also developed some provisional policies to drive those 

mechanisms. For managing leases, we used the simplest 

approaches we could: issuing leases on a first-come/ 

first-serve basis, promoting leases only when necessary, 

and pessimistically recalling all potentially conflicting 

disjunctive leases. To relocate file metadata, machines 

attempt to balance recent file activity, using a pairwise 

exchange with hysteresis. 

We experimentally evaluated our service in a 

system of 40 machines, using a server snapshot, 

microbenchmarks, traces, and a synthetic workload. 

The snapshot shows that tree-structured file identifiers 

can compactly represent a real file-server directory 

structure. Microbenchmarks show that file-field leases 

and disjunctive leases mitigate hotspots by preventing 

instances of false sharing. The trace and synthetic 

workloads show that dynamic partitioning effectively 

balances metadata load. They also show that the system 

workload capacity increases in proportion to the system 

size, which is a crucial property for achieving our target 

scale of ~10
5

 machines. 
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