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ABSTRACT
OceanStore is a utility infrastructure designed to span the globe
and provide continuous access to persistent information. Since
this infrastructure is comprised of untrusted servers, data is pro-
tected through redundancy and cryptographic techniques. To im-
prove performance, data is allowed to be cached anywhere, any-
time. Additionally, monitoring of usage patterns allows adapta-
tion to regional outages and denial of service attacks; monitoring
also enhances performance through pro-active movement of data.
A prototype implementation is currently under development.

1 INTRODUCTION
In the past decade we have seen astounding growth in the perfor-
mance of computing devices. Even more significant has been the
rapid pace of miniaturization and related reduction in power con-
sumption of these devices. Based on these trends, many envision
a world of ubiquitous computing devices that add intelligence and
adaptability to ordinary objects such as cars, clothing, books, and
houses. Before such a revolution can occur, however, computing
devices must become so reliable and resilient that they are com-
pletely transparent to the user [50].

In pursuing transparency, one question immediately comes to
mind: where does persistent information reside? Persistent infor-
mation is necessary for transparency, since it permits the behavior
of devices to be independent of the devices themselves, allowing
an embedded component to be rebooted or replaced without losing
vital configuration information. Further, the loss or destruction of a
device does not lead to lost data. Note that a uniform infrastructure
for accessing and managing persistent information can also pro-
vide for transparent synchronization among devices. Maintaining
the consistency of these devices in the infrastructure allows users
to safely access the same information from many different devices
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simultaneously [38]. Today, such sharing often requires laborious,
manual synchronization.

Ubiquitous computing places several requirements on a persis-
tent infrastructure. First, some form of (possibly intermittent) con-
nectivity must be provided to computing devices, no matter how
small. Fortunately, increasing levels of connectivity are being pro-
vided to consumers through cable-modems, DSL, cell-phones and
wireless data services. Second, information must be kept secure
from theft and denial-of-service (DoS). Since we assume wide-
scale connectivity, we need to take extra measures to make sure
that information is protected from prying eyes and malicious hands.
Third, information must be extremely durable. Therefore changes
should be submitted to the infrastructure at the earliest possible mo-
ment; sorting out the proper order for consistent commitment may
come later. Further, archiving of information should be automatic
and reliable.

Finally, information must be divorced from location. Central-
ized servers are subject to crashes, DoS attacks, and unavailability
due to regional network outages. Although bandwidth in the core
of the Internet has been doubling at a incredible rate, latency has
not been improving as quickly. Further, connectivity at the leaves
of the network is intermittent, of high latency, and of low band-
width. Thus, to achieve uniform and highly-available access to in-
formation, servers must be geographically distributed and should
exploit caching close to (or within) clients. As a result, we envi-
sion a model in which information is free to migrate to wherever it
is needed, somewhat in the style of COMA shared memory multi-
processors [21].

As a rough estimate, we imagine providing service to roughly
1010 users, each with at least 10,000 files. OceanStore must there-
fore support over 1014 files.

1.1 OceanStore: a True Data Utility
We envision a cooperative utility model in which consumers pay
a monthly fee in exchange for access to persistent storage. Such
a utility should be highly-available from anywhere in the network,
employ automatic replication for disaster recovery, use strong se-
curity by default, and provide performance that is similar to that of
existing LAN-based networked storage systems under many cir-
cumstances. Services would be provided by a confederation of
companies. Each user would pay their fee to one particular “util-
ity provider”, although they could consume storage and bandwidth
resources from many different providers; providers would buy and
sell capacity among themselves to make up the difference. Air-
ports or small cafés could install servers on their premises to give
customers better performance; in return they would get a small div-
idend for their participation in the global utility.
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Ideally, a user would entrust all of his or her data to OceanStore;
in return, the utility’s economies of scale would yield much better
availability, performance, and reliability than would be available
otherwise. Further, the geographic distribution of servers would
support deep archival storage, i.e. storage that would survive ma-
jor disasters and regional outages. In a time when desktop worksta-
tions routinely ship with tens of gigabytes of spinning storage, the
management of data is far more expensive than the storage media.
OceanStore hopes to take advantage of this excess of storage space
to make the management of data seamless and carefree.

1.2 Two Unique Goals
The OceanStore system has two design goals that differentiate it
from similar systems: (1) the ability to be constructed from an un-
trusted infrastructure and (2) support of nomadic data.

Untrusted Infrastructure: OceanStore assumes that the infras-
tructure is fundamentally untrusted. Servers may crash without
warning or leak information to third parties. This lack of trust is in-
herent in the utility model and is different from other cryptographic
systems such as [35]. Only clients can be trusted with cleartext—all
information that enters the infrastructure must be encrypted. How-
ever, rather than assuming that servers are passive repositories of
information (such as in CFS [5]), we allow servers to be able to
participate in protocols for distributed consistency management. To
this end, we must assume that most of the servers are working cor-
rectly most of the time, and that there is one class of servers that we
can trust to carry out protocols on our behalf (but not trust with the
content of our data). This responsible party is financially responsi-
ble for the integrity of our data.

Nomadic Data: In a system as large as OceanStore, locality is
of extreme importance. Thus, we have as a goal that data can be
cached anywhere, anytime, as illustrated in Figure 1. We call this
policy promiscuous caching. Data that is allowed to flow freely is
called nomadic data. Note that nomadic data is an extreme con-
sequence of separating information from its physical location. Al-
though promiscuous caching complicates data coherence and loca-
tion, it provides great flexibility to optimize locality and to trade off
consistency for availability. To exploit this flexibility, continuous
introspective monitoring is used to discover tacit relationships be-
tween objects. The resulting “meta-information” is used for local-
ity management. Promiscuous caching is an important distinction
between OceanStore and systems such as NFS [43] and AFS [23]
in which cached data is confined to particular servers in particular
regions of the network. Experimental systems such as XFS [3] al-
low “cooperative caching” [12], but only in systems connected by
a fast LAN.

The rest of this paper is as follows: Section 2 gives a system-level
overview of the OceanStore system. Section 3 shows sample ap-
plications of the OceanStore. Section 4 gives more architectural
detail, and Section 5 reports on the status of the current prototype.
Section 6 examines related work. Concluding remarks are given in
Section 7.

2 SYSTEM OVERVIEW
An OceanStore prototype is currently under development. This sec-
tion provides a brief overview of the planned system. Details on the
individual system components are left to Section 4.

The fundamental unit in OceanStore is the persistent object.
Each object is named by a globally unique identifier, or GUID.

pool

pool

pool

pool

pool

pool

pool

Figure 1: The OceanStore system. The core of the system is
composed of a multitude of highly connected “pools”, among
which data is allowed to “flow” freely. Clients connect to one or
more pools, perhaps intermittently.

Objects are replicated and stored on multiple servers. This replica-
tion provides availability1 in the presence of network partitions and
durability against failure and attack. A given replica is independent
of the server on which it resides at any one time; thus we refer to
them as floating replicas.

A replica for an object is located through one of two mecha-
nisms. First, a fast, probabilistic algorithm attempts to find the
object near the requesting machine. If the probabilistic algorithm
fails, location is left to a slower, deterministic algorithm.

Objects in the OceanStore are modified through updates. Up-
dates contain information about what changes to make to an ob-
ject and the assumed state of the object under which those changes
were developed, much as in the Bayou system [13]. In principle,
every update to an OceanStore object creates a new version2. Con-
sistency based on versioning, while more expensive to implement
than update-in-place consistency, provides for cleaner recovery in
the face of system failures [49]. It also obviates the need for backup
and supports “permanent” pointers to information.

OceanStore objects exist in both active and archival forms. An
active form of an object is the latest version of its data together
with a handle for update. An archival form represents a permanent,
read-only version of the object. Archival versions of objects are
encoded with an erasure code and spread over hundreds or thou-
sands of servers [18]; since data can be reconstructed from any suf-
ficiently large subset of fragments, the result is that nothing short
of a global disaster could ever destroy information. We call this
highly redundant data encoding deep archival storage.

An application writer views the OceanStore as a number of ses-
sions. Each session is a sequence of read and write requests related
to one another through the session guarantees, in the style of the
Bayou system [13]. Session guarantees dictate the level of con-
sistency seen by a session’s reads and writes; they can range from
supporting extremely loose consistency semantics to supporting the
ACID semantics favored in databases. In support of legacy code,
OceanStore also provides an array of familiar interfaces such as the
Unix file system interface and a simple transactional interface.

1If application semantics allow it, this availability is provided at the expense
of consistency.
2In fact, groups of updates are combined to create new versions, and we
plan to provide interfaces for retiring old versions, as in the Elephant File
System [44].
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Finally, given the flexibility afforded by the naming mechanism
and to promote hands-off system maintenance, OceanStore exploits
a number of dynamic optimizations to control the placement, num-
ber, and migration of objects. We classify all of these optimizations
under the heading of introspection, an architectural paradigm that
formalizes the automatic and dynamic optimization employed by
“intelligent” systems.

3 APPLICATIONS
In this section we present applications that we are considering for
OceanStore. While each of these applications can be constructed
in isolation, OceanStore enables them to be developed more eas-
ily and completely by providing a single infrastructure for their
shared, difficult problems. These problems include consistency, se-
curity, privacy, wide-scale data dissemination, dynamic optimiza-
tion, durable storage, and disconnected operation. OceanStore
solves these problems once, allowing application developers to fo-
cus on higher-level concerns.

One obvious class of applications for OceanStore is that of
groupware and personal information management tools, such as
calendars, email, contact lists, and distributed design tools. These
applications are challenging to implement because they must allow
for concurrent updates from many people. Further, they require
that users see an ever-progressing view of shared information, even
when conflicts occur. OceanStore’s flexible update mechanism
solves many of these problems. It provides ways to merge infor-
mation and detect conflicts, as well as the infrastructure to dissemi-
nate information to all interested parties. Additionally, OceanStore
provides ubiquitous access to data so that any device can access the
information from anywhere.

Email is a particularly interesting groupware target for
OceanStore. Although email applications appear mundane on the
surface, their implementations are difficult because the obvious so-
lution of filtering all messages through a single email server does
not scale well, and distributed solutions have complicated internal
consistency issues. For example, an email inbox may be simulta-
neously written by numerous different users while being read by
a single user. Further, some operations, such as message move
operations, must occur atomically even in the face of concurrent
access from several clients to avoid data loss. In addition, email
requires privacy and security by its very nature. OceanStore al-
leviates the need for clients to implement their own locking and
security mechanisms, while enabling powerful features such as no-
madic email collections and disconnected operation. Introspection
permits a user’s email to migrate closer to his client, reducing the
round trip time to fetch messages from a remote server. OceanStore
enables disconnected operation through its optimistic concurrency
model—users can operate on locally cached email even when dis-
connected from the network; modifications are automatically dis-
seminated upon reconnection.

In addition to groupware applications, OceanStore can be used to
create very large digital libraries and repositories for scientific data.
Both of these applications require massive quantities of storage,
which in turn require complicated management. OceanStore pro-
vides a common mechanism for storing and managing these large
data collections. It replicates data for durability and availability. Its
deep archival storage mechanisms permit information to survive in
the face of global disaster. Further, OceanStore benefits these ap-
plications by providing for seamless migration of data to where it
is needed. For example, OceanStore can quickly disseminate vast
streams of data from physics laboratories to the researchers around
the world who analyze such data.

Finally, OceanStore provides an ideal platform for new stream-
ing applications, such as sensor data aggregation and dissemina-
tion. Many have speculated about the utility of data that will
emanate from the plethora of small MEMS sensors in the future;
OceanStore provides a uniform infrastructure for transporting, fil-
tering, and aggregating the huge volumes of data that will result.

4 SYSTEM ARCHITECTURE
In this section, we will describe underlying technologies that sup-
port the OceanStore system. We start with basic issues, such as
naming and access control. We proceed with a description of the
data location mechanism, which must locate objects anywhere in
the world. Next, we discuss the OceanStore update model and the
issues involved with consistency management in an untrusted in-
frastructure. After a brief word on the architecture for archival stor-
age, we discuss the OceanStore API as presented to clients. Finally,
we provide a description of the role of introspection in OceanStore.

4.1 Naming
At the lowest level, OceanStore objects are identified by a globally
unique identifier (GUID), which can be thought of as a pseudo-
random, fixed-length bit string. Users of the system, however, will
clearly want a more accessible naming facility. To provide a facility
that is both decentralized and resistant to attempts by adversaries to
“hijack” names that belong to other users, we have adapted the idea
of self-certifying path names due to Mazières [35].

An object GUID is the secure hash3 of the owner’s key and some
human-readable name. This scheme allows servers to verify an
object’s owner efficiently, which facilitates access checks and re-
source accounting4.

Certain OceanStore objects act as directories, mapping human-
readable names to GUIDs. To allow arbitrary directory hierarchies
to be built, we allow directories to contain pointers to other direc-
tories. A user of the OceanStore can choose several directories as
“roots” and secure those directories through external methods, such
as a public key authority. Note, however, that such root directories
are only roots with respect to the clients that use them; the system
as a whole has no one root. This scheme does not solve the prob-
lem of generating a secure GUID mapping, but rather reduces it to
a problem of secure key lookup. We address this problem using the
locally linked name spaces from the SDSI framework [1, 42].

Note that GUIDs identify a number of other OceanStore entities
such as servers and archival fragments. The GUID for a server is a
secure hash of its public key; the GUID for an archival fragment is
a secure hash over the data it holds. As described in Section 4.3, en-
tities in the OceanStore may be addressed directly by their GUID.

4.2 Access control
OceanStore supports two primitive types of access control, namely
reader restriction and writer restriction. More complicated ac-
cess control policies, such as working groups, are constructed from
these two.

Restricting readers: To prevent unauthorized reads, we encrypt
all data in the system that is not completely public and distribute
the encryption key to those users with read permission. To revoke
read permission, the owner must request that replicas be deleted or
re-encrypted with the new key. A recently-revoked reader is able

3Our prototype system uses SHA-1 [37] for its secure hash.
4Note that each user might have more than one public key. They might also
choose different public keys for private objects, public objects, and objects
shared with various groups.
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to read old data from cached copies or from misbehaving servers
that fail to delete or re-key; however, this problem is not unique
to OceanStore. Even in a conventional system, there is no way to
force a reader to forget what has been read.

Restricting writers: To prevent unauthorized writes, we require
that all writes be signed so that well-behaved servers and clients
can verify them against an access control list (ACL). The owner
of an object can securely choose the ACL x for an object foo by
providing a signed certificate that translates to “Owner says use
ACL x for object foo”. The specified ACL may be another object
or a value indicating a common default. An ACL entry extending
privileges must describe the privilege granted and the signing key,
but not the explicit identity, of the privileged users. We make such
entries publicly readable so that servers can check whether a write
is allowed. We plan to adopt ideas from systems such as Taos and
PolicyMaker to allow users to express and reason formally about a
wide range of possible policies [52, 6].

Note the asymmetry that has been introduced by encrypted data:
reads are restricted at clients via key distribution, while writes are
restricted at servers by ignoring unauthorized updates.

4.3 Data Location and Routing
Entities in the OceanStore are free to reside on any of the
OceanStore servers. This freedom provides maximum flexibility
in selecting policies for replication, availability, caching, and mi-
gration. Unfortunately, it also complicates the process of locating
and interacting with these entities. Rather than restricting the place-
ment of data to aid in the location process, OceanStore tackles the
problem of data location head-on. The paradigm is that of query
routing, in which the network takes an active role in routing mes-
sages to objects.

4.3.1 Distributed Routing in OceanStore
Every addressable entity in the OceanStore (e.g. floating replica,
archival fragment, or client) is identified by one or more GUIDs.
Entities that are functionally equivalent, such as different replicas
for the same object, are identified by the same GUID. Clients in-
teract with these entities with a series of protocol messages, as de-
scribed in subsequent sections. To support location-independent
addressing, OceanStore messages are labeled with a destination
GUID, a random number, and a small predicate. The destination
IP address does not appear in these messages. The role of the
OceanStore routing layer is to route messages directly to the closest
node that matches the predicate and has the desired GUID.

In order perform this routing process, the OceanStore network-
ing layer consults a distributed, fault-tolerant data structure that ex-
plicitly tracks the location of all objects. Routing is thus a two
phase process. Messages begin by routing from node to node along
the distributed data structure until a destination is discovered. At
that point, they route directly to the destination. It is important to
note that the OceanStore routing layer does not supplant IP routing,
but rather provides additional functionality on top of IP.

There are many advantages to combining data location and rout-
ing in this way. First and foremost, the task of routing a particular
message is handled by the aggregate resources of many different
nodes. By exploiting multiple routing paths to the destination, this
serves to limit the power of compromised nodes to deny service
to a client. Second, messages route directly to their destination,
avoiding the multiple round-trips that a separate data location and
routing process would incur. Finally, the underlying infrastructure
has more up-to-date information about the current location of en-

31

2

n n

10101

n

n

1

3

4

(0, 1, 3)

X

2

5

4b

4a

11010

11010

11011

00011

00011

11100

11100

Figure 2: The probabilistic query process. The replica at n1 is
looking for object X, whose GUID hashes to bits 0, 1, and 3. (1)
The local Bloom filter for n1 (rounded box) shows that it does
not have the object, but (2) its neighbor filter (unrounded box)
for n2 indicates thatn2 might be an intermediate node en route
to the object. The query moves ton2, (3) whose Bloom filter
indicates that it does not have the document locally, (4a) that
its neighborn4 doesn’t have it either, but (4b) that its neighbor
n3 might. The query is forwarded to n3, (5) which verifies that
it has the object.

tities than the clients. Consequently, the combination of location
and routing permits communication with “the closest” entity, rather
than an entity that the client might have heard of in the past. If repli-
cas move around, only the network, not the users of the data, needs
to know.

The mechanism for routing is a two-tiered approach featuring a
fast, probabilistic algorithm backed up by a slower, reliable hier-
archical method. The justification for this two-level hierarchy is
that entities that are accessed frequently are likely to reside close to
where they are being used; mechanisms to ensure this locality are
described in Section 4.7. Thus, the probabilistic algorithm routes
to entities rapidly if they are in the local vicinity. If this attempt
fails, a large-scale hierarchical data structure in the style of Plaxton
et. al. [40] locates entities that cannot be found locally. We will
describe these two techniques in the following sections.

4.3.2 Attenuated Bloom Filters
The probabilistic algorithm is fully distributed and uses a con-
stant amount of storage per server. It is based on the idea of hill-
climbing; if a query cannot be satisfied by a server, local infor-
mation is used to route the query to a likely neighbor. A modified
version of a Bloom filter [7]—called an attenuated Bloom filter—is
used to implement this potential function.

An attenuated Bloom filter of depth D can be viewed as an ar-
ray of D normal Bloom filters. In the context of our algorithm, the
first Bloom filter is a record of the objects contained locally on the
current node. The ith Bloom filter is the union of all of the Bloom
filters for all of the nodes a distance i through any path from the
current node. An attenuated Bloom filter is stored for each directed
edge in the network. A query is routed along the edge whose filter
indicates the presence of the object at the smallest distance. This
process is illustrated in Figure 2. Our current metric of distance
is hop-count, but in the future we hope to include a more precise
measure corresponding roughly to latency. Also, “reliability fac-
tors” can be applied locally to increase the distance to nodes that
have abused the protocol in the past, automatically routing around
certain classes of attacks.
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Figure 3: A portion of the global mesh, rooted at node 4598.
Paths from any node to the root of any tree can be traversed
by resolving the root’s ID one digit at a time; the bold arrow
shows a route from node 0325 to node 4598. Data location uses
this structure. Note that most object searches do not travel all
the way to the root (see text).

4.3.3 The Global Algorithm: Wide-scale Distributed
Data Location

The global algorithm for the OceanStore is a variation on Plax-
ton et. al.’s randomized hierarchical distributed data structure [40],
which embeds multiple random trees in the network. Although
OceanStore uses a highly-redundant version of this data structure,
it is instructive to understand the basic Plaxton scheme. In that
scheme, every server in the system is assigned a random (and
unique) node-ID. These node-IDs are then used to construct a mesh
of neighbor links, as shown in Figure 3. In this figure, each link is
labeled with a level number that denotes the stage of routing that
uses this link. In the example, the links are constructed by taking
each node-ID and dividing it into chunks of four bits. The Nth level
neighbor-links for some Node X point at the 16 closest neighbors5

whose node-IDs match the lowest N-1 nibbles of Node X’s ID and
who have different combinations of the Nth nibble; one of these
links is always a loopback link. If a link cannot be constructed be-
cause no such node meets the proper constraints, then the scheme
chooses the node that matches the constraints as closely as possible.
This process is repeated for all nodes and levels within a node.

The key observation to make from Figure 3 is that the links
form a series of random embedded trees, with each node as the
root of one of these trees. As a result, the neighbor links can be
used to route from anywhere to a given node, simply by resolving
the node’s address one link at a time—first a level-one link, then
a level-two link, etc. To use this structure for data location, we
map each object to a single node whose node-ID matches the ob-
ject’s GUID in the most bits (starting from the least significant);
call this node the object’s root. If information about the GUID
(such as its location) were stored at its root, then anyone could
find this information simply by following neighbor links until they
reached the root node for the GUID. As described, this scheme has
nice load distribution properties, since GUIDs become randomly
mapped throughout the infrastructure.

5“Closest” means with respect to the underlying IP routing infrastructure.
Roughly speaking, the measurement metric is the time to route via IP.

This random distribution would appear to reduce locality; how-
ever, the Plaxton scheme achieves locality as follows: when a
replica is placed somewhere in the system, its location is “pub-
lished” to the routing infrastructure. The publishing process works
its way to the object’s root and deposits a pointer at every hop along
the way. This process requires O(log n) hops, where n is the num-
ber of servers in the world. When someone searches for informa-
tion, they climb the tree until they run into a pointer, after which
they route directly to the object. In [40], the authors show that the
average distance traveled is proportional to the distance between
the source of the query and the closest replica that satisfies this
query.

Achieving Fault Tolerance: The basic scheme described above is
sensitive to a number of different failures. First, each object has a
single root, which becomes a single point of failure, the potential
subject of denial of service attacks, and an availability problem.
OceanStore addresses this weakness in a simple way: it hashes
each GUID with a small number of different salt values. The re-
sult maps to several different root nodes, thus gaining redundancy
and simultaneously making it difficult to target a single node with
a denial of service attack against a range of GUIDs.

A second problem with the above scheme is sensitivity to cor-
ruption in the links and pointers. An important observation, how-
ever, is that the above structure has sufficient redundancy to tol-
erate small amounts of corruption. Bad links can be immediately
detected, and routing can be continued by jumping to a random
neighbor node6. To increase this redundancy, the OceanStore loca-
tion structure supplements the basic links of the above scheme with
additional neighbor links. Further, the infrastructure continually
monitors and repairs neighbor links (a form of introspection—see
Section 4.7), and servers slowly repeat the publishing process to
repair pointers.

The Advantages of Distributed Information: The advantages of
a Plaxton-like data structure in the OceanStore are many. First, it
is a highly redundant and fault-tolerant structure that spreads data
location load evenly while finding local objects quickly. The com-
bination of the probabilistic and global algorithms should comfort-
ably scale to millions of servers. Second, the aggregate informa-
tion contained in this data structure is sufficient to recognize which
servers are down and to identify data that must be reconstructed
when a server is permanently removed. This feature is impor-
tant for maintaining a minimum level of redundancy for the deep
archival storage. Finally, the Plaxton links form a natural substrate
on which to perform network functions such as admission control
and multicast.

Achieving Maintenance-Free Operation: While existing work
on Plaxton-like data structures did not include algorithms for on-
line creation and maintenance of the global mesh, we have pro-
duced recursive node insertion and removal algorithms. These
make use of the redundant neighbor links mentioned above. Fur-
ther, we have generalized our publication algorithm to support
replicated roots, which remove single-points of failure in data lo-
cation. Finally, we have optimized failure modes by using soft-
state beacons to detect faults more quickly, time-to-live fields to
react better to routing updates, and a second-chance algorithm to
minimize the cost of recovering lost nodes. This information is
coupled with continuous repair mechanisms that recognize when

6Each tree spans every node, hence any node should be able to reach the
root.
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servers have been down for a long time and need to have their data
reconstructed7. The practical implication of this work is that the
OceanStore infrastructure as a whole automatically adapts to the
presence or absence of particular servers without human interven-
tion, greatly reducing the cost of management.

4.4 Update Model
Several of the applications described in Section 3 exhibit a high
degree of write sharing. To allow for concurrent updates while
avoiding many of the problems inherent with wide-area locking,
OceanStore employs an update model based on conflict resolu-
tion. Conflict resolution was introduced in the Bayou system [13]
and supports a range of consistency semantics—up to and includ-
ing ACID semantics. Additionally, conflict resolution reduces the
number of aborts normally seen in detection-based schemes such
as optimistic concurrency control [29].

Although flexible, conflict resolution requires the ability to per-
form server-side computations on data. In an untrusted infrastruc-
ture, replicas have access only to ciphertext, and no one server is
trusted to perform commits. Both of these issues complicate the up-
date architecture. However, the current OceanStore design is able
to handle many types of conflict resolution directly on encrypted
data. The following paragraphs describe the issues involved and
our progress towards solving them.

4.4.1 Update Format and Semantics
Changes to data objects within OceanStore are made by client-
generated updates, which are lists of predicates associated with ac-
tions. The semantics of an update are as follows: to apply an update
against a data object, a replica evaluates each of the update’s predi-
cates in order. If any of the predicates evaluates to true, the actions
associated with the earliest true predicate are atomically applied to
the data object, and the update is said to commit. Otherwise, no
changes are applied, and the update is said to abort. The update
itself is logged regardless of whether it commits or aborts.

Note that OceanStore update semantics are similar to those of
the Bayou system, except that we have eliminated the merge pro-
cedure used there, since arbitrary computations and manipulations
on ciphertext are still intractable. Nevertheless, we preserve the
key functionality of their model, which they found to be expressive
enough for a number of sample applications including a group cal-
endar, a shared bibliographic database, and a mail application [14].
Furthermore, the model can be applied to other useful applications.
For instance, Coda [26] provided specific merge procedures for
conflicting updates of directories; this type of conflict resolution is
easily supported under our model. Slight extensions to the model
can support Lotus Notes-style conflict resolution, where unresolv-
able conflicts result in a branch in the object’s version stream [25].
Finally, the model can be used to provide ACID semantics: the
first predicate is made to check the read set of a transaction, the
corresponding action applies the write set, and there are no other
predicate-action pairs.

4.4.2 Extending the Model to Work over Ciphertext
OceanStore replicas are not trusted with unencrypted information.
This complicates updates by restricting the set of predicates that
replicas can compute and the set of actions they are able to apply.
However, the following predicates are currently possible: compare-
version, compare-size, compare-block, and search. The first two
predicates are trivial since they are over the unencrypted meta-data

7Note that the read-only nature of most of the information in the OceanStore
makes this reconstruction particularly easy; see Section 4.5.
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encrypted

Block 43
Block 42
Block 41

Block 41.5

Block 41
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Block 42

Figure 4: Block insertion on ciphertext. The client wishes to
insert block 41.5, so she appends it and block 42 to the object,
then replaces the old block 42 with a block pointing to the two
appended blocks. The server learns nothing about the contents
of any of the blocks.

of the object. The compare-block operation is easy if the encryption
technology is a position-dependent block cipher: the client simply
computes a hash of the encrypted block and submits it along with
the block number for comparison. Perhaps the most impressive
of these predicates is search, which can be performed directly on
ciphertext [47]; this operation reveals only that a search was per-
formed along with the boolean result. The cleartext of the search
string is not revealed, nor can the server initiate new searches on its
own.

In addition to these predicates, the following operations can be
applied to ciphertext: replace-block, insert-block, delete-block, and
append. Again assuming a position-dependent block cipher, the
replace-block and append operations are simple for the same rea-
sons as compare-block.

The last two operations, insert-block and delete-block, can be
performed by grouping blocks of the object into two sets, index
blocks and data blocks, where index blocks contain pointers to
other blocks elsewhere in the object. To insert, one replaces the
block at the insertion point with a new block that points to the old
block and the inserted block, both of which are appended to the ob-
ject. This scheme is illustrated in Figure 4. To delete, one replaces
the block in question with an empty pointer block. Note that this
scheme leaks a small amount of information and thus might be sus-
ceptible to compromise by a traffic-analysis attack; users uncom-
fortable with this leakage can simply append encrypted log records
to an object and rely on powerful clients to occasionally generate
and re-encrypt the object in whole from the logs.

The schemes presented in this section clearly impact the format
of objects. However, these schemes are the subject of ongoing re-
search; more flexible techniques will doubtless follow.

4.4.3 Serializing Updates in an Untrusted
Infrastructure

The process of conflict resolution starts with a series of updates,
chooses a total order among them, then applies them atomically
in that order. The easiest way to compute this order is to require
that all updates pass through a master replica. Unfortunately, trust-
ing any one replica to perform this task is incompatible with the
untrusted infrastructure assumption on which OceanStore is built.
Thus, we replace this master replica with a primary tier of replicas.
These replicas cooperate with one another in a Byzantine agree-
ment protocol [30] to choose the final commit order for updates8.
A secondary tier of replicas communicates among themselves and
the primary tier via an enhanced epidemic algorithm, as in Bayou.

The decision to use two classes of floating replicas is motivated
by several considerations. First, all known protocols that are toler-

8A Byzantine agreement protocol is one in which we assume that no more
than m of the total n = 3m + 1 replicas are faulty.
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Figure 5: The path of an update. (a) After generating an update, a client sends it directly to the object’s primary tier, as well as
to several other random replicas for that object. (b) While the primary tier performs a Byzantine agreement protocol to commit
the update, the secondary replicas propagate the update among themselves epidemically. (c) Once the primary tier has finished its
agreement protocol, the result of the update is multicast down the dissemination tree to all of the secondary replicas.

ant to arbitrary replica failures are too communication-intensive to
be used by more than a handful of replicas. The primary tier thus
consists of a small number of replicas located in high-bandwidth,
high-connectivity regions of the network9. To allow for later, off-
line verification by a party who did not participate in the protocol,
we are exploring the use of proactive signature techniques [4] to
certify the result of the serialization process. We hope to extend the
protocol in [10] to use such techniques.

Some applications may gain performance or availability by re-
quiring a lesser degree of consistency than ACID semantics. These
applications motivate the secondary tier of replicas in OceanStore.
Secondary replicas do not participate in the serialization protocol,
may contain incomplete copies of an object’s data, and can be more
numerous than primary replicas. They are organized into one or
more application-level multicast trees, called dissemination trees,
that serve as conduits of information between the primary tier and
secondary tier. Among other things, the dissemination trees push
a stream of committed updates to the secondary replicas, and they
serve as communication paths along which secondary replicas pull
missing information from parents and primary replicas. This ar-
chitecture permits dissemination trees to transform updates into in-
validations as they progress downward; such a transformation is
exploited at the leaves of the network where bandwidth is limited.

Secondary replicas contain both tentative10 and committed data.
They employ an epidemic-style communication pattern to quickly
spread tentative commits among themselves and to pick a tentative
serialization order. To increase the chances that this tentative or-
der will match the final ordering chosen by the primary replicas,
clients optimistically timestamp their updates. Secondary repli-
cas order tentative updates in timestamp order, and the primary tier
uses these same timestamps to guide its ordering decisions. Since
the serialization decisions of the secondary tier are tentative, they
may be safely decided by untrusted replicas; applications requiring
stronger consistency guarantees must simply wait for their updates
to reach the primary tier.

4.4.4 A Direct Path to Clients and Archival Storage
The full path of an update is shown in Figure 5. Note that this
path is optimized for low latency and high throughput. Under ideal
9The choice of which replicas to include in the primary tier is left to the
client’s responsible party, which must ensure that its chosen group satisfies
the Byzantine assumption mentioned above.

10Tentative data is data that the primary replicas have not yet committed.

circumstances, updates flow directly from the client to the primary
tier of servers, where they are serialized and then multicast to the
secondary servers. All of the messages shown here are addressed
through GUIDs, as described in Section 4.3. Consequently, the
update protocol operates entirely without reference to the physical
location of replicas.

One important aspect of OceanStore that differs from existing
systems is the fact that the archival mechanisms are tightly coupled
with update activity. After choosing a final order for updates, the
inner tier of servers signs the result and sends it through the dis-
semination tree. At the same time, these servers generate encoded,
archival fragments and distribute them widely. Consequently, up-
dates are made extremely durable as a direct side-effect of the com-
mitment process. Section 4.5 discusses archival storage in more
detail.

4.4.5 Efficiency of the Consistency Protocol
There are two main points of interest when considering the effi-
ciency of the consistency protocol: the amount of network band-
width the protocol demands, and the latency between when an up-
date is created and when the client receives notification that it has
committed or aborted. Assuming that a Byzantine agreement pro-
tocol like that in [10] is used, the total cost an update in bytes sent
across the network, b, is given by the equation:

b = c1n
2 + (u+ c2)n+ c3

where u is the size of the update, n is the number of replicas in
the primary tier, and c1, c2, and c3 are the sizes of small protocol
messages. While this equation appears to be dominated by the n2

term, the constant c1 is quite small, on the order of 100 bytes. Thus
for sufficiently small n and large updates, the equation is dominated
by the n term. Since there are n replicas, the minimum amount of
bytes that must be transfered to keep all replicas up to date is un.

Figure 6 shows the cost of an update, normalized to this mini-
mum amount, as a function of update size. Note that for m = 4 and
n = 13, the normalized cost approaches 1 for update sizes around
100k bytes, but it approaches 2 at update sizes of only around 4k
bytes.11 Thus for updates of 4k bytes or more, our system uses less
than double the minimum amount of network bandwidth necessary
to keep all the replicas in the primary tier up to date.

11Recall that m is the number of faulty replicas tolerated by the Byzantine
agreement protocol.
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Figure 6: The cost of an update in bytes sent across the net-
work, normalized to the minimum cost needed to send the up-
date to each of the replicas.

Unfortunately, latency estimates for the consistency protocol are
more difficult to come by without a functioning prototype. For this
reason, let us suffice it to say that there are six phases of messages
in the protocol we have described. Assuming latency of messages
over the wide area dominates computation time and that each mes-
sage takes 100ms, we have an approximate latency per update of
less than a second. We believe this latency is reasonable, but we
will need to complete our prototype system before we can verify
the accuracy of this rough estimate.

4.5 Deep Archival Storage
The archival mechanism of OceanStore employs erasure codes,
such as interleaved Read-Solomon codes [39] and Tornado
codes [32]. Erasure coding is a process that treats input data as
a series of fragments (say n) and transforms these fragments into
a greater number of fragments (say 2n or 4n). As mentioned in
Section 4.4, the fragments are generated in parallel by the inner tier
of servers during the commit process. The essential property of the
resulting code is that any n of the coded fragments are sufficient to
construct the original data12.

Assuming that we spread coded fragments widely, it is very un-
likely that enough servers will be down to prevent the recovery of
data. We call this argument deep archival storage. A simple exam-
ple will help illustrate this assertion. Assuming uncorrelated faults
among machines, one can calculate the reliability at a given instant
of time according to the following formula:

P =

rfX

i=0

�
m

i

��
n�m

f�i

�
�
n

f

�

where P is the probability that a document is available, n is the
number of machines, m is the number of currently unavailable
machines, f is the number of fragments per document, and rf is
the maximum number of unavailable fragments that still allows the
document to be retrieved. For instance, with a million machines,
ten percent of which are currently down, simple replication with-
out erasure codes provides only two nines (0:99) of reliability. A
1=2-rate erasure coding of a document into 16 fragments gives the
document over five nines of reliability (0:999994), yet consumes
the same amount of storage. With 32 fragments, the reliability
increases by another factor of 4000, supporting the assertion that

12Tornado codes, which are faster to encode and decode, require slightly
more than n fragments to reconstruct the information.

fragmentation increases reliability. This is a consequence of the
law of large numbers.

To preserve the erasure nature of the fragments (meaning that
a fragment is either retrieved correctly and completely, or not at
all), we use a hierarchical hashing method to verify each fragment.
We generate a hash over each fragment, and recursively hash over
the concatenation of pairs of hashes to form a binary tree. Each
fragment is stored along with the hashes neighboring its path to the
root. When it is retrieved, the requesting machine may recalculate
the hashes along that path. We can use the top-most hash as the
GUID to the immutable archival object, making every fragment in
the archive completely self-verifying.

For the user, we provide a naming syntax which explicitly in-
corporates version numbers. Such names can be included in other
documents as a form of permanent hyper-link. In addition, inter-
faces will exist to examine modification history and to set version-
ing policies [44]. Although in principle every version of every ob-
ject is archived, clients can choose to produce versions less fre-
quently. Archival copies are also produced when objects are idle
for a long time or before objects become inactive. When generat-
ing archival fragments, the floating replicas of an object participate
together: they each generate a disjoint subset of the fragments and
disseminate them into the infrastructure.

To maximize the survivability of archival copies, we identify
and rank administrative domains by their reliability and trustwor-
thiness. We avoid dispersing all of our fragments to locations that
have a high correlated probability of failure. Further, the number of
fragments (and hence the durability of information) is determined
on a per-object basis. OceanStore contains processes that slowly
sweep through all existing archival data, repairing or increasing the
level of replication to further increase durability.

To reconstruct archival copies, OceanStore sends out a request
keyed off the GUID of the archival versions. Note that we can
make use of excess capacity to insulate ourselves from slow servers
by requesting more fragments than we absolutely need and recon-
structing the data as soon as we have enough fragments. As the
request propagates up the location tree (Section 4.3), fragments are
discovered and sent to the requester. This search has nice locality
properties since closer fragments tend to be discovered first.

4.6 The OceanStore API
OceanStore draws much strength from its global scale, wide dis-
tribution, epidemic propagation method, and flexible update pol-
icy. The system as a whole can have rather complicated behavior.
However, the OceanStore application programming interface (API)
enables application writers to understand their interaction with the
system.

This base API provides full access to OceanStore functionality
in terms of sessions, session guarantees, updates, and callbacks. A
session is a sequence of reads and writes to potentially different
objects that are related to one another through session guarantees.
Guarantees define the level of consistency seen by accesses through
a session. The API provides mechanisms to develop arbitrarily
complex updates in the form described in Section 4.4. The API
also provides a callback feature to notify applications of relevant
events. An application can register an application-level handler to
be invoked at the occurrence of relevant events, such as the commit
or abort of an update.

Applications with more basic requirements are supported
through facades to the standard API. A facade is an interface to
the API that provides a traditional, familiar interface. For exam-
ple, a transaction facade would provide an abstraction atop the
OceanStore API so that the developer could access the system

8



Optimization

Computation

Observation

Figure 7: The Cycle of Introspection

in terms of traditional transactions. The facade would simplify
the application writer’s job by ensuring proper session guarantees,
reusing standard update templates, and automatically computing
read sets and write sets for each update.

Of course, OceanStore is a new system in a world of legacy code,
and it would be unreasonable to expect the authors of existing ap-
plications to port their work to an as yet undeployed system. There-
fore, OceanStore provides a number of legacy facades that imple-
ment common APIs, including a Unix file system, a transactional
database, and a gateway to the World Wide Web. These interfaces
exist as libraries or “plugins” to existing browsers or operating sys-
tems. They permit users to access legacy documents while enjoy-
ing the ubiquitous and secure access, durability, and performance
advantages of OceanStore.

4.7 Introspection
As envisioned, OceanStore will consist of millions of servers
with varying connectivity, disk capacity, and computational power.
Servers and devices will connect, disconnect, and fail sporadically.
Server and network load will vary from moment to moment. Man-
ually tuning a system so large and varied is prohibitively complex.
Worse, because OceanStore is designed to operate using the utility
model, manual tuning would involve cooperation across adminis-
trative boundaries.

To address these problems, OceanStore employs introspection,
an architectural paradigm that mimics adaptation in biological sys-
tems. As shown in Figure 7, introspection augments a system’s
normal operation (computation), with observation and optimiza-
tion. Observation modules monitor the activity of a running system
and keep a historical record of system behavior. They also employ
sophisticated analyses to extract patterns from these observations.
Optimization modules use the resulting analysis to adjust or adapt
the computation.

OceanStore uses introspective mechanisms throughout the sys-
tem. Although we have insufficient space to describe each use in
detail, we will give a flavor of our techniques below.

4.7.1 Architecture
We have designed a common architecture for introspective systems
in OceanStore (see Figure 8). These systems process local events,
forwarding summaries up a distributed hierarchy to form approx-
imate global views of the system. Events include any incoming
message or noteworthy physical measurement. Our three-point ap-
proach provides a framework atop which we are developing spe-
cific observation and optimization modules.

The high event rate13 precludes extensive online processing. In-
stead, a level of fast event handlers summarizes local events. These
summaries are stored in a local database. At the leaves of the hier-
archy, this database may reside only in memory; we loosen durabil-
ity restrictions for local observations in order to attain the necessary
event rate.

13Each machine initiates and receives roughly as many messages as local
area network files systems. In addition, the routing infrastructure requires
communication proportional to the logarithm of the size of the network.
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Figure 8: Fast event handlers summarize and respond to local
events. For efficiency, the “database” may be only soft state
(see text). Further processing analyzes trends and aggregate
information across nodes.

We describe all event handlers in a simple domain-specific lan-
guage. This language includes primitives for operations like av-
eraging and filtering, but explicitly prohibits loops. We expect
this model to provide sufficient power, flexibility, and extensibility,
while enabling the verification of security and resource consump-
tion restrictions placed on event handlers.

A second level of more powerful algorithms periodically pro-
cesses the information in the database. This level can perform so-
phisticated analyses and incorporate historical information, allow-
ing the system to detect and respond to long-term trends.

Finally, after processing and responding to its own events, a third
level of each node forwards an appropriate summary of its knowl-
edge to a parent node for further processing on the wider scale. The
infrastructure uses the standard OceanStore location mechanism to
locate that node, which is identified by its GUID. Conversely, we
could distribute the information to remote optimization modules as
OceanStore objects that would also be accessed via the standard
location mechanism.

4.7.2 Uses of Introspection
We use introspection to manage a number of subsystems in the
OceanStore. Below, we will discuss several of these components.

Cluster Recognition: Cluster recognition attempts to identify and
group closely related files. Each client machine contains an event
handler triggered by each data object access. This handler incre-
mentally constructs a graph representing the semantic distance [28]
among data objects, which requires only a few operations per ac-
cess.

Periodically, we run a clustering algorithm that consumes this
graph and detects clusters of strongly-related objects. The fre-
quency of this operation adapts to the stability of the input and
the available processing resources. The result of the clustering
algorithm is forwarded to a global analysis layer that publishes
small objects describing established clusters. Like directory list-
ings, these objects help remote optimization modules collocate and
prefetch related files.

Replica Management: Replica management adjusts the number
and location of floating replicas in order to service access requests
more efficiently. Event handlers monitor client requests and system
load, noting when access to a specific replica exceeds its resource
allotment. When access requests overwhelm a replica, it forwards
a request for assistance to its parent node. The parent, which tracks
locally available resources, can create additional floating replicas
on nearby nodes to alleviate load.

Conversely, replica management eliminates floating replicas that
have fallen into disuse. Notification of a replica’s termination also
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propagates to parent nodes, which can adjust that object’s dissemi-
nation tree.

In addition to these short-term decisions, nodes regularly analyze
global usage trends, allowing additional optimizations. For exam-
ple, OceanStore can detect periodic migration of clusters from site
to site and prefetch data based on these cycles. Thus users will find
their project files and email folder on a local machine during the
work day, and waiting for them on their home machines at night.

Other Uses: OceanStore uses introspective mechanisms in many
other aspects as well. Specifically, introspection improves the man-
ageability and performance of the routing structure, enables con-
struction of efficient update dissemination trees, ensures the avail-
ability and durability of archival fragments, identifies unreliable
peer organizations, and performs continuous confidence estimation
on its own optimizations in order to reduce harmful changes and
feedback cycles.

5 STATUS
We are currently implementing an OceanStore prototype that we
will deploy for testing and evaluation. The system is written in
Java with a state machine-based request model for fast I/O [22].
Initially, OceanStore will communicate with applications through
a UNIX file system interface and a read-only proxy for the World
Wide Web in addition to the native OceanStore API.

We have explored the requirements that our security guarantees
place on a storage architecture. Specifically, we have explored dif-
ferences between enforcing read and write permissions in an un-
trusted setting, emphasizing the importance of the ability of clients
to validate the correctness of any data returned to them. This ex-
ploration included not only checking the integrity of the data itself,
but also checking that the data requested was the data returned, and
that all levels of metadata were protected as strongly as the data
itself. A prototype cryptographic file system provided a testbed for
specific security mechanisms.

A prototype for the probabilistic data location component has
been implemented and verified. Simulation results show that our
algorithm finds nearby objects with near-optimal efficiency.

We have implemented prototype archival systems that use both
Reed-Solomon and Tornado codes for redundancy encoding. Al-
though only one half of the fragments were required to recon-
struct the object, we found that issuing requests for extra fragments
proved beneficial due to dropped requests.

We have implemented the introspective prefetching mechanism
for a local file system. Testing showed that the method correctly
captured high-order correlations, even in the presence of noise. We
will combine that mechanism with an optimization module appro-
priate for the wide-area network.

6 RELATED WORK
Distributed systems such as Taos [52] assume untrusted networks
and applications, but rely on some trusted computing base. Crypto-
graphic file systems such as Blaze’s CFS [5] provide end-to-end se-
crecy, but include no provisions for sharing data, nor for protecting
integrity independently from secrecy. The Secure File System [24]
supports sharing with access control lists, but fails to provide in-
dependent support for integrity, and trusts a single server to dis-
tribute encryption keys. The Farsite project [8] is more similar to
OceanStore than these other works, but while it assumes the use of
untrusted clients, it does not address a wide-area infrastructure.

SDSI [1] and SPKI [15] address the problem of securely dis-
tributing keys and certificates in a decentralized manner. Policy-

Maker [6] deals with the description of trust relations. Mazi`eres
proposes self-certifying paths to separate key management from
system security [35].

Bloom filters [7] are commonly used as compact representa-
tions of large sets. The R* distributed database [33] calculates
them on demand to implement efficient semijoins. The Summary
Cache [16] pushes Bloom filters between cooperating web caches,
although their method does not scale well in the number of caches.

Distributing data for performance, availability, or survivability
has been studied extensively in both the file systems and database
communities. A summary of distributed file systems can be found
in [31]. In particular, Bayou [13] and Coda [26] use replication
to improve availability at the expense of consistency and intro-
duce specialized conflict resolution procedures. Sprite [36] also
uses replication and caching to improve availability and perfor-
mance, but has a guarantee of consistency that incurs a performance
penalty in the face of multiple writers. None of these systems ad-
dresses the range of security concerns that OceanStore does, al-
though Bayou examines some problems that occur when replicas
are corrupted [48].

Gray et. al. argue against promiscuous replication in [19].
OceanStore differs from the class of systems they describe because
it does not bind floating replicas to specific machines, and it does
not replicate all objects at each server.

OceanStore’s second tier of floating replicas are similar to trans-
actional caches; in the taxonomy of [17] our algorithm is detection-
based and performs its validity checks at commit time. In contrast
to similar systems, our merge predicates should decrease the num-
ber of transactions aborted due to out-of-date caches.

Many previous projects have explored feedback-driven adapta-
tion in extensible operating systems [45], databases [11], file sys-
tems [34], global operating systems [9], and storage devices [51].
Although these projects employ differing techniques and terminol-
ogy, each could be analyzed with respect to theintrospective model.

The Seer project formulated the concept of semantic dis-
tance [28] and collects clusters of related files for automated hoard-
ing. Others have used file system observation to drive automatic
prefetching [20, 27].

Introspective replica management for web content was examined
in AT&T’s Radar project [41], which considers read-only data in a
trusted infrastructure. The Mariposa project [46] addresses inter-
domain replication with an economic model. Others optimize com-
munication cost when selecting a new location for replica place-
ment [2] within a single administrative domain.

Similar to OceanStore, the Intermemory project [18] uses
Cauchy Reed-Solomon Codes to archive wide scale durability. We
anticipate that our combination of active and archival object forms
will allow greater update performance while retaining Intermem-
ory’s survivability benefits.

7 CONCLUSION
The rise of ubiquitous computing has spawned an urgent need for
persistent information. In this paper we presented OceanStore, a
utility infrastructure designed to span the globe and provide secure,
highly available access to persistent objects.

Several properties distinguish OceanStore from other systems:
theutility model, theuntrusted infrastructure, support for trulyno-
madic data, and use ofintrospection to enhance performance and
maintainability. A utility model makes the notion of a global sys-
tem possible, but introduces the possibility of untrustworthy servers
in the system. To this end, we assume that servers may be run by
adversaries and cannot be trusted with cleartext; as a result, server-
side operations such as conflict-resolution must be performed di-

10



rectly on encrypted information. Nomadic data permits a wide
range of optimizations for access to information by bringing it
“close” to where it is needed, and enables rapid response to re-
gional outages and denial-of-service attacks. These optimizations
are assisted by introspection, the continuous online collection and
analysis of access patterns.

OceanStore is under construction. This paper presented many
of the design elements and algorithms of OceanStore; several have
been implemented. Hopefully, we have convinced the reader that
an infrastructure such as OceanStoreis possible to construct; that it
is desirable should be obvious.
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