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Abstract

Cloud computing promises large-scale and seamless ac-

cess to vast quantities of data across the globe. Appli-

cations will demand the reliability, consistency, and per-

formance of a traditional cluster file system regardless

of the physical distance between data centers.

Panache is a scalable, high-performance, clustered file

system cache for parallel data-intensive applications that

require wide area file access. Panache is the first file

system cache to exploit parallelism in every aspect of

its design—parallel applications can access and update

the cache from multiple nodes while data and metadata

is pulled into and pushed out of the cache in parallel.

Data is cached and updated using pNFS, which performs

parallel I/O between clients and servers, eliminating the

single-server bottleneck of vanilla client-server file ac-

cess protocols. Furthermore, Panache shields applica-

tions from fluctuating WAN latencies and outages and

is easy to deploy as it relies on open standards for high-

performancefile serving and does not require any propri-

etary hardware or software to be installed at the remote

cluster.

In this paper, we present the overall design and imple-

mentation of Panache and evaluate its key features with

multiple workloads across local and wide area networks.

1 Introduction

Next generation data centers, global enterprises, and

distributed cloud storage all require sharing of massive

amounts of file data in a consistent, efficient, and re-

liable manner across a wide-area network. The two

emerging trends of offloading data to a distributed stor-

age cloud and using the MapReduce [11] framework

for building highly parallel data-intensive applications,

have highlighted the need for an extremely scalable in-

frastructure for moving, storing, and accessing mas-

sive amounts of data across geographically distributed

sites. While large cluster file systems, e.g., GPFS [26],

Lustre [3], PanFS [29] and Internet-scale file systems,

e.g., GFS [14], HDFS [6] can scale in capacity and ac-

cess bandwidth to support a large number of clients and

petabytes of data, they cannot mask the latency and fluc-

tuating performance of accessing data across a WAN.

Traditionally, NFS (for Unix) and CIFS (for Win-

dows) have been the protocols of choice for remote file

serving. Originally designed for local area access, both

are rather “chatty” and therefore unsuited for wide-area

access. NFSv4 has numerous optimizations for wide-

area use, but its scalability continues to suffer from

the ”single server” design. NFSv4.1, which includes

pNFS, improves I/O performance by enabling parallel

data transfers between clients and servers. Unfortu-

nately, while NFSv4 and pNFS can improve network and

I/O performance, they cannot completely maskWAN la-

tencies nor operate during intermittent network outages.

As “storage cloud” architectures evolve from a single

high bandwidth data-center towards a larger multi-tiered

storage delivery architecture, e.g., Nirvanix SDN [7],

file data needs to be efficiently moved across loca-

tions and be accessible using standard file system APIs.

Moreover, for data-intensive applications to function

seamlessly in “compute clouds”, the data needs to be

cached closer to or at the site of the computation. Con-

sider a typical multi-site compute cloud architecture that

presents a virtualized environment to customer applica-

tions running at multiple sites within the cloud. Applica-

tions run inside a virtual machine (VM) and access data

from a virtual LUN, which is typically stored as a file,

e.g., VMware’s .vmdk file, in one of the data centers.

Today, whenever a new virtual machine is configured,

migrated, or restarted on failure, the OS image and its

virtual LUN (greater than 80 GB of data) must be trans-

ferred between sites causing long delays before the ap-

plication is ready to be online. A better solution would

store all files at a central core site and then dynamically

cache the OS image and its virtual LUN at an edge site

closer to the physical machine. The machine hosting the

VMs (e.g., the ESX server) would connect to the edge

site to access the virtual LUNs over NFS while the data

would move transparently between the core and edge

sites on demand. This enormously simplifies both the

time and complexity of configuring new VMs and dy-

namically moving them across a WAN.

Research efforts on caching file system data have

mostly been limited to improving the performance of

a single client machine [18, 25, 22]. Moreover, most

available solutions are NFS client based caches [15, 18]



and cannot function as a standalone file system (with-

out network connectivity) that can be used by a POSIX-

dependent application. What is needed is the ability

to pull and push data in parallel, across a wide-area

network, store it in a scalable underlying infrastructure

while guaranteeing file system consistency semantics.

In this paperwe describe Panache, a read-write, multi-

node file system cache built for scalability and perfor-

mance. The distributed and parallel nature of the sys-

tem completely changes the design space and requires

re-architecting the entire stack to eliminate bottlenecks.

The key contribution of Panache is a fully parallelizable

design that allows every aspect of the file system cache

to operate in parallel. These include:

• parallel ingest wherein, on a miss, multiple files
and multiple chunks of a file are pulled into the

cache in parallel from multiple nodes,

• parallel access wherein a cached file is accessible
immediately from all the nodes of the cache,

• parallel update where all nodes of the cache can
write and queue, for remote execution, updates to

the same file in parallel or update the data andmeta-

data of multiple files in parallel,

• parallel delayed data write-back wherein the writ-
ten file data is asynchronously flushed in parallel

frommultiple nodes of the cache to the remote clus-

ter, and

• parallel delayed metadata write-back where all
metadata updates (file creates, removes etc.) can

be made from any node of the cache and asyn-

chronously flushed back in parallel from multiple

nodes of the cache. The multi-node flush preserves

the order in which dependent operations occurred

to maintain correctness.

There is, by design, no single metadata server and no

single network end point to limit scalability as is the

case in typical NAS systems. In addition, all data and

metadata updates made to the cache are asynchronous.

This is essential to support WAN latencies and outages

as high performance applications cannot function if ev-

ery update operation requires a WAN round-trip (with

latencies running from 30ms to more than 200ms).

While the focus in this paper is on the parallel as-

pects of the design, Panache is a fully functioning

POSIX-compliant caching file system with additional

features including disconnected operations, persistence

across failures, and consistency management, that are

all needed for a commercial deployment. Panache also

borrows from Coda [25] the basic premise of conflict

handling and conflict resolution when supporting dis-

connected mode operations and manages them in a clus-

tered setting. However, these are beyond the scope of

this paper. In this paper, we present the overall design

and implementation of Panache and evaluate its key fea-

tures with multiple workloads across local and wide area

networks.

The rest of the paper is organized as follows. In

the next two sections we provide a brief background

of pNFS and GPFS, the two essential components of

Panache. Section 4 provides an overview of the Panache

architecture. The details of how synchronous and asyn-

chronous operations are handled are described in Sec-

tion 5 and Section 6. Section 7 presents the evaluation

of Panache using different workloads. Finally, Section 8

discusses the related work and Section 9 presents our

conclusions.

2 Background

In order to better understand the design of Panache let

us review its two basic components: GPFS, the paral-

lel cluster file system used to store the cached data, and

pNFS, the nascent industry-standard protocol for trans-

ferring data between the cache and the remote site.

GPFS: General Parallel File System [26] is IBM’s

high-performance shared-disk cluster file system. GPFS

achieves its extreme scalability through a shared-disk ar-

chitecture. Files are wide-striped across all disks in the

file system where the number of disks can range from

tens to several thousand disks in the largest GPFS instal-

lations. In addition to balancing the load on the disks,

striping achieves the full throughput that the disk sub-

system is capable of by reading and writing data blocks

in parallel.

The switching fabric that connects file system nodes

to disks may consist of a storage area network (SAN),

e.g., Fibre Channel, iSCSI, or, a general-purpose net-

work by using I/O server nodes. GPFS uses distributed

locking to synchronize access to shared disks where all

nodes share responsibility for data and metadata consis-

tency. GPFS distributed locking protocols ensure file

system consistency is maintained regardless of the num-

ber of nodes simultaneously reading from and writing

to the file system, while at the same time allowing the

parallelism necessary to achieve maximum throughput.

pNFS: The pNFS protocol, now an integral part of

NFSv4.1, enables clients for direct and parallel access

to storage while preserving operating system, hardware

platform, and file system independence [16]. pNFS

clients and servers are responsible for control and file

management operations, but delegate I/O functionality

to a storage-specific layout driver on the client.

To perform direct and parallel I/O, a pNFS client first

requests layout information from a pNFS server. A lay-

out contains the information required to access any byte

of a file. The layout driver uses the information to trans-

late I/O requests from the pNFS client into I/O requests
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(a) pNFS Reads
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(b) pNFS Writes

Figure 1: pNFS Read and Write performance. pNFS performance scales with available hardware and network bandwidth
while NFSv4 performance remains constant due to the single server bottleneck.

directed to the data servers. For example, the NFSv4.1

file-based storage protocol stripes files across NFSv4.1

data servers, with only READ, WRITE, COMMIT, and

session operations sent on the data path. The pNFS

metadata server can generate layout information itself

or request assistance from the underlying file system.

3 pNFS for Scalable Data Transfers

Panache leverages pNFS to increase the scalability and

performance of data transfers between the cache and re-

mote site. This section describes how pNFS performs in

comparison to vanilla NFSv4.

NFS and CIFS have become the de-facto file serv-

ing protocols and follow the traditional multiple client–

single server model. With the single-server design,

which binds one network endpoint to all files in a file

system, the back-end cluster file system is exported by a

single NFS server or multiple independent NFS servers.

In contrast, pNFS removes the single server bot-

tleneck by using the storage protocol of the underly-

ing cluster file system to distribute I/O across the bi-

sectional bandwidth of the storage network between

clients and data servers. In combination, the elimination

of the single server bottleneck and direct storage access

by clients yields superior remote file access performance

and scalability [16].

Figure 2 displays the pNFS-GPFS architecture. The

nodes in the cluster exporting data for pNFS access are

divided into (possibly overlapping) groups of state and

data servers. pNFS client metadata requests are par-

titioned among the available state servers while I/O is

distributed across all of the data servers. The pNFS

client requests the data layout from the state server us-

ing a LAYOUTGET operation. It then accesses data

in parallel by using the layout information to send

NFSv4 READ andWRITE operations to the correct data

servers. For writes, once the I/O is complete, the client

Figure 2: pNFS-GPFS Architecture. Servers are divided
into (possibly overlapping) groups of state and data servers.

pNFS/NFSv4.1 clients use the state servers for metadata oper-

ations and use the file-based layout to perform parallel I/O to

the data servers.

sends an NFSv4 COMMIT operation to the state server.

This single COMMIT operation flushes data to stable

storage on every data server. The underlying cluster file

system management protocol maintains the freshness of

NFSv4 state information among servers.

To demonstrate the effectiveness of pNFS for scalable

file access, Figures 1(a) and 1(b) compare the aggregate

I/O performance of pNFS and standard NFSv4 export-

ing a seven server GPFS file system. GPFS returns a

file layout to the pNFS client that stripes files across all

data servers using a round-robin order and continually

alternates the first data server of the stripe. Experiments

use the IORmicro-benchmark [2] to increase the number

of clients accessing individual large files. As the num-

ber of NFSv4 clients accessing a single NFSv4 server is

increased, performance remains constant. On the other

hand, pNFS can better utilize the available bandwidth.

With reads, pNFS clients completely saturate the local

network bandwidth. Write throughput ascends to 3.8x

of standard NFSv4 performance with five clients before

reaching the limitations of the storage controller.



(a) Node Block Diagram (b) Cache Cluster Architecture

Figure 3: Panache Caching Architecture. (a) Block diagram of an application and gateway node. On tje gateway node, Panache
communicates with the pNFS client kernel module through the VFS layer. The application and gateway nodes communicate via

custom RPCs through the user-space daemon. (b) The cache cluster architecture. The gateway nodes of the cache cluster act as

pNFS/NFS clients to access the data from the remote cluster. The application nodes access data from the cache cluster.

4 Panache Architecture Overview

The design of the Panache architecture is guided by the

following performance and operational requirements:

• Data and metadata read performance, on a cache
hit, matches that of a cluster file system. Thus,

reads should be limited only by the aggregate disk

bandwidth of the local cache site and not by the

WAN.

• Read performance, on a cache miss, is limited only
by the network bandwidth between the sites.

• Data and metadata update performance matches
that of a cluster file system update.

• The cache can operate as a standalone fileserver (in
the presence of intermittent or no network connec-

tivity), ensuring that applications continue to see a

POSIX compliant file system.

Panache is implemented as a multi-node caching

layer, integrated within the GPFS, that can persistently

and consistently cache data and metadata from a remote

cluster. Every node in the Panache cache cluster has di-

rect access to cached data and metadata. Thus, once data

is cached, applications running on the Panache cluster

achieve the same performance as if they were running

directly on the remote cluster. If the data is not in the

cache, Panache acts as a caching proxy to fetch the data

in parallel both by using a parallel read across multiple

cache cluster nodes to drive the ingest, and from mul-

tiple remote cluster nodes using pNFS. Panache allows

updates to be made to the cache cluster at local cluster

performance by asynchronously pushing all updates of

data and metadata to the remote cluster.

More importantly, Panache, compared to other single-

node file caching solutions, can function both as a stand-

alone clustered file system and as a clustered caching

proxy. Thus applications can run on the cache cluster

using POSIX semantics and access, update, and traverse

the directory tree even when the remote cluster is of-

fline. As the cache mimics the same namespace as the

remote cluster, browsing through the cache cluster (say

with ls -R) shows the same listing of directories and files,

as well as most of their remote attributes. Furthermore,

NFS/pNFS clients can access the cache and see the same

view of the data (as defined by NFS consistency seman-

tics) as NFS clients accessing the data directly from the

remote cluster. In essence, both in terms of consistency

and performance, applications can operate as if theWAN

did not exist.

Figure 3(b) shows the schematic of the Panache ar-

chitecture with the cache cluster and the remote cluster.

The remote cluster can be any file system or NAS filer

exporting data over NFS/pNFS. Panache can operate on

a multi-node cluster (henceforth called the cache cluster)

where all nodes need not be identical in terms of hard-

ware, OS, or support for remote network connectivity.

Only a set of designated nodes, called Gateway nodes,

need to have the hardware and software support for re-

mote access. These nodes internally act as NFS/pNFS

client proxies to fetch the data in parallel from the re-

mote cluster. The remaining nodes of the cluster, called

Application nodes, service the application data requests

from the Panache cluster. The split between application

and gateway nodes is conceptual and any node in the

cache cluster can function both as a gateway node or a

application node based on its configuration. The gate-



way nodes can be viewed as the edge of the cache clus-

ter that can communicate with the remote cluster while

the application nodes interface with the application. Fig-

ure 3(a) illustrates the internal components of a Panache

node. Gateway nodes communicate with the pNFS ker-

nel module via the VFS layer, which in turn communi-

cates with the remote cluster. Gateway and application

nodes communicate with each other via 26 different in-

ternal RPC requests from the user space daemon.

When an application request cannot be satisfied by the

cache, due to a cache miss or to invalid cached data, the

application node sends a read request to one of the gate-

way nodes. The gateway node then accesses the data

from the remote cluster and returns it to the application

node. Panache supports different mechanisms for gate-

way nodes to share the data with application nodes. One

option is for the gateway nodes to write the remote data

to the shared storage, which the application nodes can

then read and return the data to the application. Another

option is for gateway nodes to transfer the data directly

to the application nodes using the cluster interconnect.

Our current Panache prototype shares data through the

storage subsystem, which can generally give higher per-

formance than a typical network link.

All updates to the cache cause an application node to

send and queue a command message on one or more

gateway nodes. Note that this message includes no file

data or metadata. At a later time, the gateway node(s)

will read the data in parallel from the storage system and

push it to the remote cluster over pNFS.

The selection of a gateway node to service a request

needs to ensure that dependent requests are executed in

the intended order. The application node selects a gate-

way node using a hash function based on a unique iden-

tifier of the object on which a file system operation is

requested. Sections 5 and 6 describe how this identifier

is chosen and how Panache executes read and update op-

erations in more detail.

4.1 Consistency

Consistency in Panache can be controlled across various

dimensions and can be defined relative to the cache clus-

ter, the remote cluster and the network connectivity.

Definition 1 Locally consistent: The cached data is

considered locally consistent if a read from a node of

the cache cluster returns the last write from any node of

the cache cluster.

Definition 2 Validity Lag: The time delay between a

read at the cache cluster reflecting the last write at the

remote cluster.

Definition 3 Synchronization Lag: The time delay be-

tween a read at the remote cluster reflecting the last

write at the cache cluster.

Definition 4 Eventually Consistent: After recovering

from a node or network failure, in the absence of further

failures, the cache and remote cluster data will eventu-

ally become consistent within the bounds of the lags.

Panache, by virtue of relying on the cluster-wide dis-

tributed locking mechanism of the underlying clustered

file system, is always locally consistent for the updates

made at the cache cluster. Accesses are serialized by

electing one of the nodes to be the token manager and

issuing read and write tokens [26]. Local consistency

within the cache cluster basically translates to the tradi-

tional definition of strong consistency [17].

For cross-cluster consistency across the WAN,

Panache allows both the validity lag and the synchro-

nization (synch) lag to be tunable based on the workload.

For example, setting the validity lag to zero ensures that

data is always validated with the remote cluster on an

open and setting the synch lag to zero ensures that up-

dates are flushed to the remote cluster immediately.

NFS uses a attribute timeout value (typically 30s)

to recheck with the server if the file attributes have

changed. Dependence on NFS consistency semantics

can be removed via the O DIRECT parameter (which

disables NFS client data caching) and/or by disabling

attribute caching (effectively setting the attribute time-

out value to 0). NFSv4 file delegations can reduce the

overhead of consistency management by having the re-

mote cluster’s NFS/pNFS server transfer ownership of a

file to the cache cluster. This allows the cache cluster to

avoid periodically checking the remote file’s attributes

and safely assume that the data is valid.

When the synch lag is greater than zero, all updates

made to the cache are asynchronously committed at the

remote cluster. In fact, the semantics will no longer be

close-to-open as updates will ignore the file close and

will be time delayed. Asynchronous updates can result

in conflicts which, in Panache, are resolved using poli-

cies as discussed in Section 6.3.

When there is a network or remote cluster failure both

the validation lag and synch lag become indeterminate.

When connectivity is restored, the cache and remote

clusters are eventually synchronized.

5 Synchronous Operations

Synchronous operations block until the remote operation

completes, either because an object does not exist in the

cache, i.e., a cache miss, or the object exists in the cache

but needs to be revalidated. In either case, the object

or its attributes need to be fetched or validated from the

remote cluster on an application request. All file system

data and metadata “read” operations, e.g., lookup, open,

read, readdir, getattr, are synchronous. Unlike typical

caching systems, Panache ingests the data and metadata



in parallel frommultiple gateway nodes so that the cache

miss or pre-populate time is limited only by the network

bandwidth between the caching and remote clusters.

5.1 Metadata Reads

The first time an application node accesses an object via

the VFS lookup or open operations, the object is created

in the cache cluster as an empty object with no data. The

mapping with the remote object is through the NFS file-

handle that is stored with the inode as an extended at-

tribute. The flow of messages proceeds as follows: i)

the application node sends a request to the designated

gateway node based on a hash of the inode number or

its parent inode number if the object doesn’t exist ii)

the gateway node sends a request to the remote cluster’s

NFS/pNFS server(s), iii) on success at the remote clus-

ter, the filehandle and attributes of the object are returned

back to the gateway node which then creates the object

in the cache, marks it as empty, and stores the remote

filehandle mapping, iv) the gateway node then returns

success back to the application node. On a later read

or prefetch request the data in the empty object will be

populated.

5.2 Parallel Data Reads

On an application read request, the application node first

checks if the object exists in the local cache cluster. If

the object exists but is empty or incomplete, the ap-

plication node, as before, requests the designated gate-

way node to read in the requested offset and size. The

gateway node, based on the prefetch policy, fetches the

requested bytes or the entire file and writes it to the

cache cluster. With prefetching, the whole file is asyn-

chronously read after the byte-range requested by the ap-

plication is ingested. Panache supports both whole file

and partial file (segments consisting of a set of contigu-

ous blocks) caching. Once the data is ingested, the ap-

plication node reads the requested bytes from the local

cache and returns them to the application as if they were

present locally all along. Recall that the application and

gateway nodes exchange only request and response mes-

sages while the actual data is accessed locally via the

shared storage subsystem. On a later cache hit, the ap-

plication node(s) can directly service the file read request

from the local cache cluster. The cache miss perfor-

mance is, therefore, limited by the network bandwidth

to the remote cluster, while the cache hit performance is

limited only by the local storage subsystem bandwidth

(as shown in Table 1).

Panache scales I/O performance by using multiple

gateway nodes to read chunks of a single file in paral-

lel from the multiple nodes over NFS/pNFS. One of the

gateway nodes (based on the hash function) becomes the

coordinator for a file. It, in turn, divides the requests

Figure 4: Multiple gateway node configurations. The top
setup is a single pNFS client reading a file from multiple data

servers in parallel. The middle setup is multiple gateway nodes

acting as NFS clients reading parts of the file from the remote

cluster’s NFS servers. The bottom setup has multiple gateway

nodes acting as pNFS clients reading parts of the file in paral-

lel from multiple data servers.

File Read 2 gateway nodes 3 gateway nodes

Miss 1.456 Gb/s 1.952 Gb/s

Hit 8.24 Gb/s 8.24 Gb/s

Direct over pNFS 1.776 Gb/s 2.552 Gb/s

Table 1: Panache (with pNFS) and pNFS read perfor-
mance using the IOR benchmark. Clients read 20 files of

5GB each using 2 and 3 gateway nodes with gigabit ethernet

connecting to a 6-node remote cluster. Panache scales on both

cache miss and cache hit. On cache miss, Panache incurs the

overhead of passing data through the SAN, while on a cache

hit it saturates the SAN.

among the other gateway nodes which can proceed to

read the data in parallel. Once a node is finished with

its chunk it requests the coordinator for more chunks to

read. When all the requested chunks have been read the

gateway node responds to the application node that the

requested blocks of the object are now in cache. If the

remote cluster file system does not support pNFS but

does support NFS access to multiple servers, data can

still be read in parallel. Given N gateway nodes at the

cache cluster and M nodes exporting data at the remote

cluster, a file can be read either in 1xM (pNFS case) par-

allel streams, or min{N,M} 1x1 parallel streams (mul-
tiple gateway parallel reads with NFS) or NxM parallel

streams (multiple gateway parallel reads with pNFS) as

shown in Figure 4.

5.3 Namespace Caching

Panache provides a standard POSIX file system in-

terface for applications. When an application tra-



verses the namespace directory tree, Panache reflects

the view of the corresponding tree at the remote clus-

ter. For example, an “ls -R” done at the cache clus-

ter presents the same list of entries as one done at the

remote cluster. Note that Panache does not simply re-

turn the directory listing with dirents containing the

< name, inode num > pairs from the remote cluster

( as an NFS client would). Instead, Panache first creates

the directory entries in the local cluster and then returns

the cached name and inode number to the application.

This is done to ensure application nodes can continue to

traverse the directory tree if a network or server outage

occurs. In addition, if the cache simply returns the re-

mote inode numbers to the application, and later a file is

created in the cache with that inode number, the applica-

tion may observe different inode numbers for the same

file.

One approach to returning consistent inode numbers

to the application on a readdir (directory listing) or

lookup and getattr, e.g., file stat, is by mandating that

the remote cluster and the cache cluster mirror the same

inode space. This can be impossible to implement where

remote inode numbers conflict with inode numbers of

reserved files and clearly limits the choice of the remote

cluster file systems. A simple approach is to fetch the at-

tributes of all the directory entries, i.e., an extra lookup

across the network and create the files locally on a read-

dir request. This approach of creating files on a directory

access has an obvious performance penalty for directo-

ries with a large number of files.

To solve the performance problems with creates on a

readdir and allow for the cache cluster to operate with a

separate inode space, we create only the directory entries

in the local cluster and create placeholders for the actual

files and directories. This is done by allocating but not

creating or using inodes for the new entries. This allows

us to satisfy the readdir request with locally allocated in-

ode numbers without incurring the overhead of creating

all the entries. These allocated, but not yet created, en-

tries are termed orphans. On a subsequent lookup, the

allocated inode is ”filled” with the correct attributes and

created on disk. Orphan inodes cause interesting prob-

lems on fsck, file deletes, and cache eviction and have to

be handled separately in each case. Table 2 shows the

performance (in secs) of reading a directory for 3 cases:

i) where the files are created on a readdir, ii) when only

orphan inodes are created, and iii) when the readdir is

returned locally from the cache.

5.4 Data and Attribute Revalidation

The data validity in the cache cluster is controlled by

a revalidation timeout, in a manner similar to the NFS

attribute timeout, whose value is determined by the de-

sired validity lag of the workload. The cache cluster’s

Files per dir readdir & readdir & readdir

creates orphan inodes from cache

100 1.952 (s) 0.77 (s) 0.032 (s)

1,000 3.122 1.26 0.097

10,000 7.588 2.825 0.15

100,000 451.76 25.45 1.212

Table 2: Cache traversal with a readdir. Performance (in
secs.) of a readdir on a cache miss where the individual files

are created vs. the orphan inodes. The last column shows the

performance of readdir on a cache hit.

inode stores both the local modification timemtimelocal

and inode change time ctimelocal along with the re-

mote mtimeremote, ctimeremote. When the object is

accessed after the revalidation timeout has expired the

gateway node gets the remote object’s time attributes

and compares them with the stored values. A change in

mtimeremote indicates that the object’s data was modi-

fied and a change in ctimeremote, indicates that the ob-

ject’s inode was changed as the attributes or data was

modified 1. In case the remote cluster supports NFSv4

with delegations, some of this overhead can be removed

by assuming the data is valid when there is an active del-

egation. However, every time the delegation is recalled,

the cache falls back to timeout based revalidation.

During a network outage or remote server failure, the

revalidation lag becomes indeterminate. By policy, ei-

ther the requests are made blocking where they wait till

connectivity is restored or all synchronous operations

are handled locally by the cache cluster and no request

is sent to the gateway node for remote execution.

6 Asynchronous Operations

One important design decision in Panache was to mask

the WAN latencies by ensuring applications see the

cache cluster’s performance on all data writes and meta-

data updates. Towards that end, all data writes and meta-

data updates are done asynchronously—the application

proceeds after the update is “committed” to the cache

cluster with the update being pushed to the remote clus-

ter at a later time governed by the synch lag. Moreover,

executing updates to the remote cluster is done in par-

allel across multiple gateway nodes. Most caching sys-

tems delay only data writes and perform all the metadata

and namespace updates synchronously, preventing dis-

connected operation. By allowing asynchronous meta-

data updates, Panache allows data and metadata updates

at local speeds and also masks remote cluster failures

and network outages.

In Panache asynchronous operations consist of oper-

ations that encapsulate modifications to the cached file

1Currently we ignore the possibility that the mtime may not change

on update. This may require content based signatures or a kernel sup-

ported change info to verify.



system. These include relatively simple modify requests

that involve a single file or directory, e.g., write, trun-

cate, and modification of attributes such as ownership,

times, and more complex requests that involve changes

to the name space through updates of one or more direc-

tories, e.g., creation, deletion or renaming of a file and

directory or symbolic links.

6.1 Dependent Metadata Operations

In contrast to synchronous operations, asynchronous op-

erations modify the data and metadata at the cache clus-

ter and then are simply queued at the gateway nodes for

delayed execution at the remote cluster. Each gateway

node maintains an in-memory queue of asynchronous

requests that were sent by the application nodes. Each

message contains the unique object identifier fileId: <

inode num, gen num, fsid > of one or more objects be-

ing operated upon and the parameters of the command.

If there is a single gateway node and all the requests

are queued in FIFO order, then operations will execute

remotely in the same order as they did in the cache clus-

ter. When multiple gateway nodes can push commands

to the remote cluster, the distributed multi-node queue

has to be controlled to maintain the desired ordering. To

better understand this, let’s first define some terms.

Definition 5 A pair of update commands

Ci(X), Cj(X), on an object X, executed at the
cache cluster at time ti < tj are said to be time

ordered , denoted by Ci → Cj , if they need to be

executed in the same relative order at the remote cluster.

For example, commands CREATE(File X) and

WRITE(File X, offset, length) are time ordered as the

data writes cannot be pushed to the remote cluster until

the file gets created.

Observation 1 If commands Ci, Cj , Ck are pair-wise

time ordered, i.e.,Ci → Cj andCj → Ck then the three

commands form a time ordered sequence Ci → Cj →
Ck

Definition 6 A pair of objects Ox, Oy , are said to be

dependent objects if there exists queued commands Ci

and Cj such that Ci(Ox) and Cj(Oy) are time ordered.

For example, creating a file FileX and its parent di-

rectory DirY make X and Y dependent objects as the

parent directory create has to be pushed before the file

create.

Observation 2 If objects Ox, Oy , and Oy, Oz are pair-

wise dependent, thenOx, Oz are also dependent objects.

Observe that the creation of a file depends on the cre-

ation of its parent directory, which in turn depends on

the creation of its parent directory, and so on. Thus, a

create of a directory tree creates a chain of dependent

objects. The removes follow the reverse order where the

rmdir depends on the directory being empty so that the

removes of the children need to execute earlier.

Definition 7 A set of commands over a set of objects,

C1(Ox), C2(Oy)...Cn(Oz), are said to be permutable
if they are neither time ordered nor contain dependent

objects.

Thus permutable commands can be pushed out in par-

allel from multiple gateway nodes without affecting cor-

rectness. For example, create file A, create file B are

permutable among themselves.

Based on these definitions, if all commands on a given

object are queued and pushed in FIFO order at the same

gateway node we trivially get the time order require-

ments satisfied for all commands on that object. Thus,

Panache hashes on the object’s unique identifier, e.g., in-

ode number and generation number, to select a gateway

node on which to queue an object. It is dependent ob-

jects queued on different gateway nodes that make dis-

tributed queue ordering a challenge. To further compli-

cate the issue, some commands such as rename and link

involve multiple objects.

To maintain the distributed time ordering among de-

pendent objects across multiple gateway node queues,

we build upon the GPFS distributed token management

infrastructure. This infrastructure currently coordinates

access to shared objects such as inodes and byte-range

locks and is explained in detail elsewhere [26]. Panache

extends this distributed token infrastructure to coordi-

nate execution of queued commands among multiple

gateway nodes. The key idea is that an enqueued com-

mand acquires a shared token on objects on which it

operates. Prior to the execution of a command to the

remote cluster, it upgrades these tokens to exclusive,

which in turn forces a token revoke on the shared tokens

that are currently held by other commands on dependent

objects on other gateway nodes. When a command re-

ceives a token revoke, it then also upgrades its tokens to

exclusive, which results in a chain reaction of token re-

vokes. Once a command acquires an exclusive token on

its objects, it is executed and dequeued. This process re-

sults in all commands being pushed out of the distributed

queues in dependent order.

The link and rename commands operate on multiple

objects. Panache uses the hash function to queue these

commands on multiple gateway nodes. When a multi-

object request is executed, only one of the queued com-

mands will execute to the remote cluster, with the oth-

ers simply acting as placeholders to ensure intra-gateway

node ordering.



6.2 Data Write Operations

On a write request, the application node first writes the

data locally to the cache cluster and then sends a mes-

sage to the designated gateway node to perform the write

operation at the remote cluster. At a later time, the gate-

way node reads the data from the cache cluster and com-

pletes the remote write over pNFS.

The delayed nature of the queued write requests al-

low some optimizations that would not otherwise be pos-

sible if the requests had been synchronously serviced.

One such optimization is write coalescing that groups

the write request to match the optimal GPFS and NFS

buffer sizes. The queue is also evaluated before requests

are serviced to eliminate transient data updates, e.g., the

creation and deletion of temporary files. All such “can-

celing” operations are purged without affecting the be-

havior of the remote cluster.

In case of remote cluster failures and network out-

ages, all asynchronous operations can still update the

cache cluster and return successfully to the application.

The requests simply remain queued at the gateway nodes

pending execution at the remote cluster. Any such fail-

ure, however, will affect the synchronization lag making

the consistency semantics fall back to a looser eventual

consistency guarantee.

6.3 Discussion

Conflict Handling Clearly, asynchronous updates can

result in non-serializable executions and conflicting up-

dates. For example, the same file may be created or

updated by both the cache cluster and the remote clus-

ter. Panache cannot prevent such conflicts, but it will

detect them and resolve them based on simple policies.

For example, one policy could have the cache cluster al-

ways override any conflict; another policy could move a

copy of the conflicting file to a special “.conflicts” direc-

tory for manual inspection and intervention, similar to

the lost+found directory generated on a normal file sys-

tem check (fsck) scan. Further, it is possible to merge

some types of conflicts without intervention. For exam-

ple, a directory with two new files, one created by the

cache and another by the remote system can be merged

to form the directory containing both files. Earlier re-

search on conflict handling of disconnected operations

in Coda [25] and Intermezzo have inspired some of the

techniques used in Panache after being suitably modified

to handle a cluster setting.

Access control and authentication: One aspect of the

caching system is that data is no more vulnerable to

wrongful access as it was at the remote cluster. Panache

requires userid mappings to make sure that file access

permissions and ACLs setup at the remote cluster are

enforced at the cache. Similarly, authentication via

NFSv4’s RPCSEC GSS mechanism can be forwarded

to the remote cluster to make sure end-to-end authenti-

cation can be enforced.

Recovery on Failure: The queue of pending updates

can be lost due to memory pressures or a cache cluster

node reboot. To avoid losing track of application up-

dates, Panache stores sufficient persistent state to recre-

ate the updates and synchronize the data with the remote

cluster. The persistent state is stored in the inode on

disk and relies on the GPFS fast inode scan to deter-

mine which inodes have been updated. Inode scans are

very efficient as they can be done in parallel across mul-

tiple nodes and are basically a sequential read of the in-

ode file. For example, in our test environment, a simple

inode scan (with file attributes) on a single application

node of 300K files took 2.24 seconds.

7 Evaluation

In this section we assess the performance of Panache

as a scalable cache. We first use the IOR micro-

benchmark [2] to analyze the amount of overhead

Panache incurs along the data path to the remote cluster.

We then use the mdtest micro-benchmark [4] to measure

the overhead Panache incurs to queue and flush metadata

operations on the gateway nodes. Finally, we run a par-

allel visualization application and a Hadoop application

to analyze Panache with an HPC access pattern.

7.1 Experimental Setup

All experiments use a sixteen-node cluster connected

via gigabit Ethernet, with each node assigned a differ-

ent role depending on the experiment. Each node is

equipped with dual 3 GHz Xeon processors, 4 GB mem-

ory and runs an experimental version of Linux 2.6.27

with pNFS. GPFS uses a 1 MB stripe size. All NFS

experiments use 32 server threads and 512 KB wsize

and rsize. All nodes have access to the SAN, which

is comprised of a 16-port FC switch connected to a

DS4800 storage controller with 12 LUNs configured for

the cache cluster.

7.2 I/O Performance

Ideally, the design of Panache is such that it should

match the storage subsystem throughput on a cache hit

and saturate the network bandwidth on a cache miss (as-

suming that the network bandwidth is less than the disk

bandwidth of the cache cluster).

In the first experiment, we measure the performance

reading separate 8 GB files in parallel from the remote

cluster. Our local Panache cluster uses up to 5 applica-

tion and gateway nodes, while the remote 5 node GPFS

cluster has all nodes configured to be pNFS data servers.

As we increase the number of application (client) nodes,
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Figure 6: Aggregate Write Throughput. (a) pNFS and NFSv4 scale with available disk bandwidth. (b) Panache local write
performance matches standard GPFS, demonstrating the negligible overhead of queuing write messages on the gateway nodes.

the number of gateway nodes increases as well since

the miss requests are evenly dispatched. Figure 5(a)

displays how the underlying data transfer mechanisms

used by Panache can scale with the available bandwidth.

NFSv4 with a single server is limited to the bandwidth

of the single remote server while NFSv4 with multiple

servers and pNFS can take advantage of all 5 available

remote servers. With each NFSv4 client mounting a sep-

arate server, aggregate read throughput reaches a maxi-

mum of 516.49 MB/s with 5 clients. pNFS scales in

a similar manner, reaching a maximum aggregate read

throughput of 529.37 with 5 clients.

Figure 5(b) displays the aggregate read throughput of

Panache utilizing pNFS and NFSv4 as its underlying

transfer mechanism. The performance of Panache using

NFSv4 with a single server is 5-10% less than standard

NFSv4 performance. This performance hit comes from

our Panache prototype, which does not fully pipeline the

data between the application and gateway nodes. When

Panache uses pNFS and NFSv4 using multiple servers,

increasing the number of clients gives a maximum ag-

gregate throughput of 247.16 MB/s due to a saturation

of the storage network. A more robust SAN would shift

the bottleneck back on the network between the local

and remote clusters.

Finally, Figure 5(c) demonstrates that once a file is

cached, Panache stays out of the I/O path, allowing the

aggregate read throughput of Panache to match the ag-

gregate read throughput of standard GPFS.

In the second experiment we increase the number of

clients writing to a separate 8 GB files. As shown in

Figure 6(b), the aggregate write throughput of Panache

matches the aggregate write throughput of standard

GPFS. For Panache, writes are done locally to GPFS

while a write request is queued on a gateway node for

asynchronous execution to the remote cluster. This ex-

periment demonstrates that the extra step of queuing the

write request on the gateway node does not impact write

performance. Therefore, application write throughput is

not constrained by the network bandwidth or the number

of pNFS data servers, but rather by the same constraints

as standard GPFS.

Eventually, data written to the cache must be syn-

chronized to the remote cluster. Depending on the ca-

pabilities of the remote cluster, Panache can use three

I/O methods: standard NFSv4 to a single server, stan-

dard NFSv4 with each client mounting a separate re-

mote server, and pNFS. Figure 6(a) displays the ag-
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gregate write performance of writing separate 8 GB

files to the remote cluster using these three I/O meth-

ods. Unsurprisingly, aggregate write throughput for

standard NFSv4 with a single server remains flat. With

each NFSv4 client mounting a separate server, aggregate

write throughput reaches a maximum of 413.77 MB/s

with 5 clients. pNFS scales in a similar manner, reaching

a maximum aggregate write throughput of 380.78 MB/s

with 5 clients. Neither NFSv4 with multiple servers nor

pNFS saturate the available network bandwidth due to

limitations in the disk subsystem.

It is important to note that although the performance

of pNFS and NFSv4 with multiple servers appears on

the surface to be similar, the lack of coordinated access

in NFSv4 creates several performance hurdles. For in-

stance, if there are a greater number of gateway nodes

than remote servers, NFSv4 clients will not be evenly

load balanced among the servers, creating possible hot

spots. pNFS avoids this by always balancing I/O re-

quests among the remote servers evenly. In addition,

NFSv4 unaligned file writes across multiple servers can

create false sharing of data blocks, causing the cluster

file system to lock and flush data unnecessarily.

7.3 Metadata Performance

To measure the metadata update performance in the

cache cluster we use the mdtest benchmark, which per-

forms file creates frommultiple nodes in the cluster. Fig-

ure 7(a) shows the aggregate throughput of 1000 file

create operations per cluster node. With 4 application

nodes simultaneously creating a total of 4000 files, the

Panache throughput (2574 ops/s) is roughly half that of

the local GPFS (4370 ops/s) performance. The Panache

code path has the added overhead of first creating the

file locally and then sending a RPC to queue the oper-

ation on a gateway node. As the graph shows, as the
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number of nodes increases, we can saturate the single

gateway node. To see the impact of increasing the num-

ber of gateway nodes, Figure 7(b) demonstrates the scale

up when the number of application nodes and gateway

nodes increase in tandem, up to a maximum of 8 cache

and remote nodes.

As all updates are asynchronous, we also demonstrate

the performance of flushing file creates to the remote

cluster in Figure 8. By increasing the number of gateway

and remote nodes in tandem, we can scale the number of

creates per second from 400 to 2000, a five fold increase

for 7 additional nodes. The lack of linear increase is

due to our prototype’s inefficient use of the GPFS token

management service.

7.4 WAN Performance

To validate the effectiveness of Panache over a WAN

we used the IOR parallel file read benchmark and the

Linux tc command. The WAN represented the 30ms la-
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tency link between the IBM San Jose and Tucson facili-

ties. The cache and remote clusters both contain 8 nodes,

keeping the gateway and remote nodes in tandem. Fig-

ure 9 shows the aggregate bandwidth on both a hit and

a miss for an increasing number of nodes in the cluster.

The hit bandwidth matches that of a local GPFS read.

For cache miss, while Panache can utilize parallel ingest

to increase performance initially, both Panache and NFS

eventually suffer from slow network bandwidth.

7.5 Visualization for Cognitive Models

This section evaluates Panache with a real supercomput-

ing application that visualizes the 8x106 neural firings of

a large scale cognitive model of a mouse brain [23]. The

cognitive model runs at a remote cluster (a BlueGene/L

system with 4096 nodes) and the visualization applica-

tion runs at the cache cluster and creates a ”movie” as

output. In the experiment in Table 3, we copied a frac-

tion of the data (64 files of 200MB each) generated by

the cognitive model to our 5 node remote cluster and

ran the visualization application on the Panache cluster.

The application reads in the data and creates a movie

file of 250MB. Visualization is a CPU-bound operation,

but asynchronous writes helped Panache reduce runtime

over pNFS by 14 percent. Once the data is cached, time

to regenerate the visualization files is reduced by an ad-

ditional 17.6 percent.

pNFS Panache (miss) Panache (hit)

46.74 (s) 40.2 (s) 31.96 (s)

Table 3: Supercomputing application. pNFS includes re-
mote cluster reads and writes. Panache Miss reads from the

remote and asynchronous write back. Panache Hit reads from

the cache and asynchronous write back.

7.6 MapReduce Application

The MapReduce framework provides a programmable

infrastructure to build highly parallel applications that

operate on large data sets [11]. Using this framework,

applications define a map function that defines a key and

operates on a chunk of the data. The reduce function

aggregates the results for a given key. Developers may

write several MapReduce programs to extract different

properties from a single data set, building a use case

for remote caching. We use the MapReduce framework

fromHadoop 0.20.1 [6] and configured it to use Panache

as the underlying distributed store (instead of the HDFS

file system it uses by default).

Table 4 presents the performance of Distributed Grep,

a canonicalMapReduce example application, over a data

set of 16 files, 500MB each, running in parallel across 8

nodes with the remote cluster also consisting of 8 nodes.

The GPFS result was the baseline result where the data

was already available in the local GPFS cluster. In the

Panache miss case, as the distributed grep application

accessed the input files, the gateway nodes dynamically

ingested the data in parallel from the remote cluster. In

the hit case, Panache revalidated the data every 15 secs

with the remote cluster. This experiment validates our

assertion that data can be dynamically cached and imme-

diately available for parallel access from multiple nodes

within the cluster.

Hadoop+GPFS Hadoop+Panache

Local Miss LAN Miss WAN Hit

81.6 (s) 113.1 (s) 140.6 (s) 86.5 (s)

Table 4: MapReduce application. Distributed Grep using
the Hadoop framework over GPFS and Panache. The WAN

results are over a 30ms latency link.

8 Related Work

Distributed file systems have been an active area of re-

search for almost two decades. NFS is among the most

widely-used distributed networked file systems. Other

variants of NFS, Spritely NFS [28] and NQNFS [20]

added stronger consistency semantics to NFS by adding

server callbacks and leases. NFSv4 greatly enhances

wide-area access support, optimizes consistency support

via delegations, and improves compatibility with Win-

dows. The latest revision, NFSv4.1, also adds parallel

data access across a variety of clustered file and stor-

age systems. In the non-Unix world, the Common In-

ternet File System (CIFS) protocol is used to allow MS-

Windows hosts to share data over the Internet. While

these distributed file systems provide remote file access

and some limited in-memory client caching they cannot

operate across multiple nodes and in the presence of net-



work and server failures.

Apart from NFS, another widely studied globally

distributed file system is AFS [17]. It provides

close-to-open consistency, supports client-side persis-

tent caching, and relies on client callbacks as the primary

mechanism for cache revalidation. Later, Coda [25] and

Ficus [24] dealt with replication for better scalability

while focusing on disconnected operations for greater

data availability in the event of a network partition.

More recently, the work on TierStore applies some of

the same principles for the development and deployment

of applications in bandwidth challenged networks [13].

It defines Delay Tolerant Networking with a store-and-

forward network overlay and a publish/subscribe-based

multicast replication protocol. In limited bandwidth en-

vironments, LBFS takes a different approach by focus-

ing on reducing bandwidth usage by eliminating cross-

file similarities [22]. Panache can easily absorb some

of its similarity techniques to reduce the data transfer to

and from the cache.

A plethora of commercial WAFS and WAN accelera-

tion products provide caching for NFS and CIFS using

custom devices and proprietary protocols [1]. Panache

differs fromWAFS solutions as it relies on standard pro-

tocols between the remote and cache sites. Muntz and

Honeyman [21] looked at multi-level caching to solve

scaling problems in distributed file systems but ques-

tioned its effectiveness. However, their observations

may not hold today as the advances in network band-

width, web-based applications, and the emerging trends

of cloud stores have substantially increased remote col-

laboration. Furthermore, cooperative caching, both in

the web and file system space, has been extensively stud-

ied [10]. The primary focus, however, has been to ex-

pand the cache space available by sharing data across

sites to improve hit rates.

Lustre [3] and PanFS [29] are highly-scalable object

based cluster file systems. These efforts have focused on

improving file-serving performance and are not designed

for remotely accessing data from existing file servers and

NAS appliances over a WAN.

FS-Cache is a single-node caching file system layer

for Linux that can be used to enhance the performance of

a distributed file system such as NFS [18]. FS-Cache is

not a standalone file system; instead it is meant to work

with the front and back file systems. Unlike Panache,

it does not mimic the namespace of the remote file sys-

tem and does not provide direct POSIX access to the

cache. Moreover, FS-Cache is a single node system and

is not designed for multiple nodes of a cluster accessing

the cache concurrently. Similar implementations such

as CacheFS are available on other platforms such as So-

laris and as a stackable file system with improved cache

policies [27].

A number of research efforts have focused on build-

ing large scale distributed storage facilities using cus-

tomized protocols and replication. The Bayou [12]

project introduced eventual consistency across repli-

cas, an idea that we borrowed in Panache for converg-

ing to a consistent state after failure. The Oceanstore

project [19] used Byzantine agreement techniques to co-

ordinate access between the primary replica and the sec-

ondaries. The PRACTI replication framework [9] sep-

arated the flow of cache invalidation traffic from that

of data itself. Others like Farsite [8] enabled unreli-

able servers to combine their resources into a highly-

available and reliable file storage facility.

Recently the success of file sharing on the Web, es-

pecially BitTorrent [5] which has been widely studied,

has triggered renewed effort for applying similar ideas to

build peer-to-peer storage systems. BitTorrent’s chunk-

based data retrieval method that enables clients to fetch

data in parallel from multiple remote sources is similar

to the implementation of parallel reads in Panache.

9 Conclusions

This paper introduced Panache, a scalable, high-

performance, clustered file system cache that promises

seamless access to massive and remote datasets.

Panache supports a POSIX interface and employs a fully

parallelizable design, enabling applications to saturate

available network and compute hardware. Panache can

also mask fluctuatingWAN latencies and outages by act-

ing as a standalone file system under adverse conditions.
We evaluated Panache using several data and meta-
data micro-benchmarks in local and wide area networks,
demonstrating the scalability of using multiple gateway
nodes to flush and ingest data from a remote cluster. We
also demonstrated the benefits for both a visualization
and analytics application. As Panache achieves the per-
formance of a clustered file system on a cache hit, large
scale applications can leverage a clustered caching solu-
tion without paying the performance penalty of access-
ing remote data using out-of-band techniques.
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