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Abstract
In this paper, we propose a new paradigm for network file
system design, serverless network file systems. While
traditional network file systems rely on a central server
machine, a serverless system utilizes workstations
cooperating as peers to provide all file system services. Any
machine in the system can store, cache, or control any block
of data. Our approach uses this location independence, in
combination with fast local area networks, to provide better
performance and scalability than traditional file systems.
Further, because any machine in the system can assume the
responsibilities of a failed component, our serverless design
also provides high availability via redundant data storage. To
demonstrate our approach, we have implemented a prototype
serverless network file system called xFS. Preliminary
performance measurements suggest that our architecture
achieves its goal of scalability. For instance, in a 32-node
xFS system with 32 active clients, each client receives nearly
as much read or write throughput as it would see if it were
the only active client.

1. Introduction
A serverless network file system distributes storage,

cache, and control over cooperating workstations. This
approach contrasts with traditional file systems such as
Netware [Majo94], NFS [Sand85], Andrew [Howa88], and
Sprite [Nels88] where a central server machine stores all data
and satisfies all client cache misses. Such a central server is
both a performance and reliability bottleneck. A serverless
system, on the other hand, distributes control processing and
data storage to achieve scalable high performance, migrates
the responsibilities of failed components to the remaining
machines to provide high availability, and scales gracefully
to simplify system management.

Three factors motivate our work on serverless network
file systems: the opportunity provided by fast switched
LANs, the expanding demands of users, and the fundamental
limitations of central server systems.

The recent introduction of switched local area networks
such as ATM or Myrinet [Bode95] enables serverlessness by
providing aggregate bandwidth that scales with the number of
machines on the network. In contrast, shared media networks
such as Ethernet or FDDI allow only one client or server to
transmit at a time. In addition, the move towards low latency
network interfaces [vE92, Basu95] enables closer
cooperation between machines than has been possible in the
past. The result is that a LAN can be used as an I/O
backplane, harnessing physically distributed processors,
memory, and disks into a single system.

Next generation networks not only enable serverlessness,
they require it by allowing applications to place increasing
demands on the file system. The I/O demands of traditional
applications have been increasing over time [Bake91]; new
applications enabled by fast networks — such as multimedia,
process migration, and parallel processing — will further
pressure file systems to provide increased performance. For
instance, continuous media workloads will increase file
system demands; even a few workstations simultaneously
running video applications would swamp a traditional central
server [Rash94]. Coordinated Networks of Workstations
(NOWs) allow users to migrate jobs among many machines
and also permit networked workstations to run parallel jobs
[Doug91, Litz92, Ande95]. By increasing the peak
processing power available to users, NOWs increase peak
demands on the file system [Cyph93].

Unfortunately, current centralized file system designs
fundamentally limit performance and availability since all
read misses and all disk writes go through the central server.
To address such performance limitations, users resort to
costly schemes to try to scale these fundamentally unscalable
file systems. Some installations rely on specialized server
machines configured with multiple processors, I/O channels,
and I/O processors. Alas, such machines cost significantly
more than desktop workstations for a given amount of
computing or I/O capacity. Many installations also attempt to
achieve scalability by distributing a file system among
multiple servers by partitioning the directory tree across
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multiple mount points. This approach only moderately
improves scalability because its coarse distribution often
results in hot spots when the partitioning allocates heavily
used files and directory trees to a single server [Wolf89]. It is
also expensive, since it requires the (human) system manager
to effectively become part of the file system — moving users,
volumes, and disks among servers to balance load. Finally,
Andrew [Howa88] attempts to improve scalability by
caching data on client disks. Although this made sense on an
Ethernet, on today’s fast LANs fetching data from local disk
can be an order of magnitude slower than from server
memory or remote striped disk.

Similarly, a central server represents a single point of
failure, requiring server replication [Walk83, Kaza89,
Pope90, Lisk91, Kist92, Birr93] for high availability.
Replication increases the cost and complexity of central
servers, and can also increase latency on writes since the
system must replicate data at multiple servers.

In contrast to central server designs, our objective is to
build a truly distributed network file system — one with no
central bottleneck. We have designed and implemented xFS,
a prototype serverless network file system, to investigate this
goal. xFS illustrates serverless design principles in three
ways. First, xFS dynamically distributes control processing
across the system on a per-file granularity by utilizing a new
serverless management scheme. Second, xFS distributes its
data storage across storage server disks by implementing a
software RAID [Patt88, Chen94] using log-based network
striping similar to Zebra’s [Hart95]. Finally, xFS eliminates
central server caching by taking advantage of cooperative
caching [Leff91, Dahl94b] to harvest portions of client
memory as a large, global file cache.

This paper makes two sets of contributions. First, xFS
synthesizes a number of recent innovations that, taken
together, provide a basis for serverless file system design.
xFS relies on previous work in areas such as scalable cache
consistency (DASH [Leno90] and Alewife [Chai91]),
cooperative caching, disk striping (RAID and Zebra), and log
structured file systems (Sprite LFS [Rose92] and BSD LFS
[Selt93]). Second, in addition to borrowing techniques
developed in other projects, we have refined them to work
well in our serverless system. For instance, we have
transformed DASH’s scalable cache consistency approach
into a more general, distributed control system that is also
fault tolerant. We have also improved upon Zebra to
eliminate bottlenecks in its design by using distributed
management, parallel cleaning, and subsets of storage servers
called stripe groups. Finally, we have actually implemented
cooperative caching, building on prior simulation results.

The primary limitation of our serverless approach is that
it is only appropriate in a restricted environment — among
machines that communicate over a fast network and that trust
one another’s kernels to enforce security. However, we
expect such environments to be common in the future. For

instance, NOW systems already provide high-speed
networking and trust to run parallel and distributed jobs.
Similarly, xFS could be used within a group or department
where fast LANs connect machines and where uniform
system administration and physical building security allow
machines to trust one another. A file system based on
serverless principles would also be appropriate for “scalable
server” architectures currently being researched [Kubi93,
Kusk94]. Untrusted clients can also benefit from the scalable,
reliable, and cost-effective file service provided by a core of
xFS machines via a more restrictive protocol such as NFS.

We have built a prototype that demonstrates most of
xFS’s key features, including distributed management,
cooperative caching, and network disk striping with parity
and multiple groups. As Section 7 details, however, several
pieces of implementation remain to be done; most notably,
we must still implement the cleaner and much of the recovery
and dynamic reconfiguration code. The results in this paper
should thus be viewed as evidence that the serverless
approach is promising, not as “proof” that it will succeed. We
present both simulation results of the xFS design and a few
preliminary measurements of the prototype. Because the
prototype is largely untuned, a single xFS client’s
performance is slightly worse than that of a single NFS client;
we are currently working to improve single-client
performance to allow one xFS client to significantly
outperform one NFS client by reading from or writing to the
network-striped disks at its full network bandwidth.
Nonetheless, the prototype does demonstrate remarkable
scalability. For instance, in a 32 node xFS system with 32
clients, each client receives nearly as much read or write
bandwidth as it would see if it were the only active client.

The rest of this paper discusses these issues in more detail.
Section 2 provides an overview of recent research results
exploited in the xFS design. Section 3 explains how xFS
distributes its data, metadata, and control. Section 4 describes
xFS’s distributed log cleaner, Section 5 outlines xFS’s
approach to high availability, and Section 6 addresses the
issue of security and describes how xFS could be used in a
mixed security environment. We describe our prototype in
Section 7, including initial performance measurements.
Section 8 describes related work, and Section 9 summarizes
our conclusions.

2. Background
xFS builds upon several recent and ongoing research

efforts to achieve our goal of distributing all aspects of file
service across the network. xFS’s network disk storage
exploits the high performance and availability of Redundant
Arrays of Inexpensive Disks (RAIDs). We organize this
storage in a log structure as in the Sprite and BSD Log-
structured File Systems (LFS), largely because Zebra
demonstrated how to exploit the synergy between RAID and
LFS to provide high performance, reliable writes to disks that
are distributed across a network. To distribute control across
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the network, xFS draws inspiration from several
multiprocessor cache consistency designs. Finally, since xFS
has evolved from our initial proposal [Wang93], we describe
the relationship of the design presented here to previous
versions of the xFS design.

2.1.  RAID
xFS exploits RAID-style disk striping to provide high

performance and highly available disk storage [Patt88,
Chen94]. A RAID partitions a stripe of data into N-1 data
blocks and a parity block — the exclusive-OR of the
corresponding bits of the data blocks. It stores each data and
parity block on a different disk. The parallelism of a RAID’s
multiple disks provides high bandwidth, while its parity
storage provides fault tolerance — it can reconstruct the
contents of a failed disk by taking the exclusive-OR of the
remaining data blocks and the parity block. xFS uses single
parity disk striping to achieve the same benefits; in the future
we plan to cope with multiple workstation or disk failures
using multiple parity blocks [Blau94].

RAIDs suffer from two limitations. First, the overhead of
parity management can hurt performance for small writes; if
the system does not simultaneously overwrite all N-1 blocks
of a stripe, it must first read the old parity and some of the old
data from the disks to compute the new parity. Unfortunately,
small writes are common in many environments [Bake91],
and larger caches increase the percentage of writes in disk
workload mixes over time. We expect cooperative
caching — using workstation memory as a global cache — to
further this workload trend. A second drawback of
commercially available hardware RAID systems is that they
are significantly more expensive than non-RAID commodity
disks because the commercial RAIDs add special-purpose
hardware to compute parity.

2.2.  LFS
xFS implements log-structured storage based on the

Sprite and BSD LFS prototypes [Rose92, Selt93] because
this approach provides high-performance writes, simple
recovery, and a flexible method to locate file data stored on
disk. LFS addresses the RAID small write problem by
buffering writes in memory and then committing them to disk
in large, contiguous, fixed-sized groups called log segments;
it threads these segments on disk to create a logical append-
only log of file system modifications. When used with a
RAID, each segment of the log spans a RAID stripe and is
committed as a unit to avoid the need to recompute parity.
LFS also simplifies failure recovery because all recent
modifications are located near the end of the log.

Although log-based storage simplifies writes, it
potentially complicates reads because any block could be
located anywhere in the log, depending on when it was
written. LFS’s solution to this problem provides a general
mechanism to handle location-independent data storage. LFS
uses per-file inodes, similar to those of the Fast File System

(FFS) [McKu84], to store pointers to the system’s data
blocks. However, where FFS’s inodes reside in fixed
locations, LFS’s inodes move to the end of the log each time
they are modified. When LFS writes a file’s data block,
moving it to the end of the log, it updates the file’s inode to
point to the new location of the data block; it then writes the
modified inode to the end of the log as well. LFS locates the
mobile inodes by adding a level of indirection, called an
imap. The imap contains the current log pointers to the
system’s inodes; LFS stores the imap in memory and
periodically checkpoints it to disk.

These checkpoints form a basis for LFS’s efficient
recovery procedure. After a crash, LFS reads the last
checkpoint in the log and then rolls forward, reading the later
segments in the log to find the new location of inodes that
were written since the last checkpoint. When recovery
completes, the imap contains pointers to all of the system’s
inodes, and the inodes contain pointers to all of the data
blocks.

Another important aspect of LFS is its log cleaner that
creates free disk space for new log segments using a form of
generational garbage collection. When the system overwrites
a block, it adds the new version of the block to the newest log
segment, creating a “hole” in the segment where the data used
to reside. The cleaner coalesces old, partially empty segments
into a smaller number of full segments to create contiguous
space in which to store new segments.

The overhead associated with log cleaning is the primary
drawback of LFS. Although Rosenblum’s original
measurements found relatively low cleaner overheads, even a
small overhead can make the cleaner a bottleneck in a
distributed environment. Further, some workloads, such as
transaction processing, incur larger cleaning overheads
[Selt93, Selt95].

2.3.  Zebra
Zebra [Hart95] provides a way to combine LFS and RAID

so that both work well in a distributed environment. Zebra
uses a software RAID on commodity hardware (workstation,
disks, and networks) to address RAID’s cost disadvantage,
and LFS’s batched writes provide efficient access to a
network RAID. Further, the reliability of both LFS and RAID
makes it feasible to distribute data storage across a network.

LFS’s solution to the small write problem is particularly
important for Zebra’s network striping since reading old data
to recalculate RAID parity would be a network operation for
Zebra. As Figure 1 illustrates, each Zebra client coalesces its
writes into a private per-client log. It commits the log to the
disks using fixed-sized log segments, each made up of several
log fragments that it sends to different storage server disks
over the LAN. Log-based striping allows clients to efficiently
calculate parity fragments entirely as a local operation, and
then store them on an additional storage server to provide
high data availability.
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Zebra’s log-structured architecture significantly
simplifies its failure recovery. Like LFS, Zebra provides
efficient recovery using checkpoint and roll forward. To roll
the log forward, Zebra relies on deltas stored in the log. Each
delta describes a modification to a file system block,
including the ID of the modified block and pointers to the old
and new versions of the block, to allow the system to replay
the modification during recovery. Deltas greatly simplify
recovery by providing an atomic commit for actions that
modify state located on multiple machines: each delta
encapsulates a set of changes to file system state that must
occur as a unit.

Although Zebra points the way towards serverlessness,
several factors limit Zebra’s scalability. First, a single file
manager tracks where clients store data blocks in the log; the
manager also handles cache consistency operations. Second,
Zebra, like LFS, relies on a single cleaner to create empty
segments. Finally, Zebra stripes each segment to all of the
system’s storage servers, limiting the maximum number of
storage servers that Zebra can use efficiently.

2.4.  Multiprocessor Cache Consistency
Network file systems resemble multiprocessors in that

both provide a uniform view of storage across the system,
requiring both to track where blocks are cached. This
information allows them to maintain cache consistency by
invalidating stale cached copies. Multiprocessors such as
DASH [Leno90] and Alewife [Chai91] scalably distribute
this task by dividing the system’s physical memory evenly
among processors; each processor manages the cache
consistency state for its own physical memory locations.1

Figure 1. Log-based striping used by Zebra and xFS. Each
client writes its new file data into a single append-only log and
stripes this log across the storage servers. Clients compute parity
for segments, not for individual files.
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Unfortunately, the fixed mapping from physical memory
addresses to consistency managers makes this approach
unsuitable for file systems. Our goal is graceful recovery and
load rebalancing whenever the number of machines in xFS
changes; such reconfiguration occurs when a machine
crashes or when a new machine joins xFS. Further, as we
show in Section 3.2.4, by directly controlling which
machines manage which data, we can improve locality and
reduce network communication.

2.5.  Previous xFS Work
The design of xFS has evolved considerably since our

original proposal [Wang93, Dahl94a]. The original design
stored all system data in client disk caches and managed
cache consistency using a hierarchy of metadata servers
rooted at a central server. Our new implementation eliminates
client disk caching in favor of network striping to take
advantage of high speed, switched LANs. We still believe
that the aggressive caching of the earlier design would work
well under different technology assumptions; in particular, its
efficient use of the network makes it well-suited for both
wireless and wide area network use. Moreover, our new
design eliminates the central management server in favor of a
distributed metadata manager to provide better scalability,
locality, and availability.

We have also previously examined cooperative
caching — using client memory as a global file cache — via
simulation [Dahl94b] and therefore focus only on the issues
raised by integrating cooperative caching with the rest of the
serverless system.

3. Serverless File Service
The RAID, LFS, Zebra, and multiprocessor cache

consistency work discussed in the previous section leaves
three basic problems unsolved. First, we need scalable,
distributed metadata and cache consistency management,
along with enough flexibility to dynamically reconfigure
responsibilities after failures. Second, the system must
provide a scalable way to subset storage servers into groups
to provide efficient storage. Finally, a log-based system must
provide scalable log cleaning.

This section describes the xFS design as it relates to the
first two problems. Section 3.1 provides an overview of how
xFS distributes its key data structures. Section 3.2 then
provides examples of how the system as a whole functions for
several important operations. This entire section disregards
several important details necessary to make the design
practical; in particular, we defer discussion of log cleaning,
recovery from failures, and security until Sections 4
through 6.

1. In the context of scalable multiprocessor consistency, this state is
referred to as a directory. We avoid this terminology to prevent confusion
with file system directories that provide a hierarchical organization of file
names.
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3.1.  Metadata and Data Distribution
The xFS design philosophy can be summed up with the

phrase, “anything, anywhere.” All data, metadata, and control
can be located anywhere in the system and can be
dynamically migrated during operation. We exploit this
location independence to improve performance by taking
advantage of all of the system’s resources — CPUs, DRAM,
and disks — to distribute load and increase locality. Further,
we use location independence to provide high availability by
allowing any machine to take over the responsibilities of a
failed component after recovering its state from the redundant
log-structured storage system.

In a typical centralized system, the central server has four
main tasks:

1.The server stores all of the system’s data blocks on its
local disks.

2.The server manages disk location metadata that indicates
where on disk the system has stored each data block.

3.The server maintains a central cache of data blocks in its
memory to satisfy some client misses without accessing
its disks.

4.The server manages cache consistency metadata that lists
which clients in the system are caching each block. It
uses this metadata to invalidate stale data in client
caches.2

The xFS system performs the same tasks, but it builds on
the ideas discussed in Section 2 to distribute this work over
all of the machines in system. To provide scalable control of
disk metadata and cache consistency state, xFS splits
management among metadata managers similar to
multiprocessor consistency managers. Unlike multiprocessor
managers, xFS managers can alter the mapping from files to
managers. Similarly, to provide scalable disk storage, xFS
uses log-based network striping inspired by Zebra, but it
dynamically clusters disks into stripe groups to allow the
system to scale to large numbers of storage servers. Finally,
xFS replaces the server cache with cooperative caching that
forwards data among client caches under the control of the
managers. In xFS, four types of entities — the clients, storage
servers, and managers already mentioned and the cleaners
discussed in Section 4 — cooperate to provide file service as
Figure 2 illustrates.

The key challenge for xFS is locating data and metadata
in this dynamically changing, completely distributed system.
The rest of this subsection examines four key maps used for
this purpose: the manager map, the imap, file directories, and
the stripe group map. The manager map allows clients to
determine which manager to contact for a file, and the imap

2. Note that the NFS server does not keep caches consistent. Instead
NFS relies on clients to verify that a block is current before using it. We
rejected that approach because it sometimes allows clients to observe stale
data when a client tries to read what another client recently wrote.

allows each manager to locate where its files are stored in the
on-disk log. File directories serve the same purpose in xFS as
in a standard UNIX file system, providing a mapping from a
human readable name to a metadata locator called an index
number. Finally, the stripe group map provides mappings
from segment identifiers embedded in disk log addresses to
the set of physical machines storing the segments. The rest of
this subsection discusses these four data structures before
giving an example of their use in file reads and writes. For
reference, Table 1 provides a summary of these and other key
xFS data structures. Figure 3 in Section 3.2.1 illustrates how
these components work together.

3.1.1. The Manager Map
xFS distributes management responsibilities according to

a globally replicated manager map. A client uses this
mapping to locate a file’s manager from the file’s index
number by extracting some of the index number’s bits and
using them as an index into the manager map. The map itself
is simply a table that indicates which physical machines
manage which groups of index numbers at any given time.

This indirection allows xFS to adapt when managers enter
or leave the system; the map can also act as a coarse-grained
load balancing mechanism to split the work of overloaded
managers. Where distributed multiprocessor cache
consistency relies on a fixed mapping from physical
addresses to managers, xFS can change the mapping from
index number to manager by changing the manager map.

To support reconfiguration, the manager map should have
at least an order of magnitude more entries than there are
managers. This rule of thumb allows the system to balance
load by assigning roughly equal portions of the map to each
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Figure 2. Two simple xFS installations. In the first, each
machine acts as a client, storage server, cleaner, and manager,
while in the second each node only performs some of those roles.
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and cleaners access storage using the client interface, so all
machines acting as managers or cleaners must also be clients.
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Table 1. Summary of key xFS data structures. This table summarizes the purpose of the key xFS data structures. The location column
indicates where these structures are located in xFS, and the Section column indicates where in this paper the structure is described.

Data Structure Purpose Location Section

Manager Map Maps file’s index number → manager. Globally replicated. 3.1.1

Imap Maps file’s index number → disk log address of file’s index node. Split among managers. 3.1.2

Index Node Maps file offset → disk log address of data block. In on-disk log at storage servers. 3.1.2

Index Number Key used to locate metadata for a file. File directory. 3.1.3

File Directory Maps file’s name → file’s index number. In on-disk log at storage servers. 3.1.3

Disk Log Address Key used to locate blocks on storage server disks. Includes a stripe
group identifier, segment ID, and offset within segment.

Index nodes and the imap. 3.1.4

Stripe Group Map Maps disk log address → list of storage servers. Globally replicated. 3.1.4

Cache Consistency State Lists clients caching or holding the write token of each block. Split among managers. 3.2.1, 3.2.3

Segment Utilization State Utilization, modification time of segments. Split among clients. 4

S-Files On-disk cleaner state for cleaner communication and recovery. In on-disk log at storage servers. 4

I-File On-disk copy of imap used for recovery. In on-disk log at storage servers. 5

Deltas Log modifications for recovery roll forward. In on-disk log at storage servers. 5

Manager Checkpoints Record manager state for recovery. In on-disk log at storage servers. 5

manager. When a new machine joins the system, xFS can
modify the manager map to assign some of the index number
space to the new manager by having the original managers
send the corresponding part of their manager state to the new
manager. Section 5 describes how the system reconfigures
manager maps. Note that the prototype has not yet
implemented this dynamic reconfiguration of manager maps.

xFS globally replicates the manager map to all of the
managers and all of the clients in the system. This replication
allows managers to know their responsibilities, and it allows
clients to contact the correct manager directly — with the
same number of network hops as a system with a centralized
manager. We feel it is reasonable to distribute the manager
map globally because it is relatively small (even with
hundreds of machines, the map would be only tens of
kilobytes in size) and because it changes only to correct a load
imbalance or when a machine enters or leaves the system.

The manager of a file controls two sets of information
about it, cache consistency state and disk location metadata.
Together, these structures allow the manager to locate all
copies of the file’s blocks. The manager can thus forward
client read requests to where the block is stored, and it can
invalidate stale data when clients write a block. For each
block, the cache consistency state lists the clients caching the
block or the client that has write ownership of it. The next
subsection describes the disk metadata.

3.1.2. The Imap
Managers track not only where file blocks are cached, but

also where in the on-disk log they are stored. xFS uses the
LFS imap to encapsulate disk location metadata; each file’s
index number has an entry in the imap that points to that file’s
disk metadata in the log. To make LFS’s imap scale, xFS
distributes the imap among managers according to the
manager map so that managers handle the imap entries and
cache consistency state of the same files.

The disk storage for each file can be thought of as a tree
whose root is the imap entry for the file’s index number and
whose leaves are the data blocks. A file’s imap entry contains
the log address of the file’s index node. xFS index nodes, like
those of LFS and FFS, contain the disk addresses of the file’s
data blocks; for large files the index node can also contain log
addresses of indirect blocks that contain more data block
addresses, double indirect blocks that contain addresses of
indirect blocks, and so on.

3.1.3. File Directories and Index Numbers
xFS uses the data structures described above to locate a

file’s manager given the file’s index number. To determine
the file’s index number, xFS, like FFS and LFS, uses file
directories that contain mappings from file names to index
numbers. xFS stores directories in regular files, allowing a
client to learn an index number by reading a directory.

In xFS, the index number listed in a directory determines
a file’s manager. When a file is created, we choose its index
number so that the file’s manager is on the same machine as
the client that creates the file. Section 3.2.4 describes
simulation results of the effectiveness of this policy in
reducing network communication.

3.1.4. The Stripe Group Map
Like Zebra, xFS bases its storage subsystem on simple

storage servers to which clients write log fragments. To
improve performance and availability when using large
numbers of storage servers, rather than stripe each segment
over all storage servers in the system, xFS implements stripe
groups as have been proposed for large RAIDs [Chen94].
Each stripe group includes a separate subset of the system’s
storage servers, and clients write each segment across a stripe
group rather than across all of the system’s storage servers.
xFS uses a globally replicated stripe group map to direct
reads and writes to the appropriate storage servers as the
system configuration changes. Like the manager map, xFS
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globally replicates the stripe group map because it is small
and seldom changes. The current version of the prototype
implements reads and writes from multiple stripe groups, but
it does not dynamically modify the group map.

Stripe groups are essential to support large numbers of
storage servers for at least four reasons. First, without stripe
groups, clients would stripe each of their segments over all of
the disks in the system. This organization would require
clients to send small, inefficient fragments to each of the
many storage servers or to buffer enormous amounts of data
per segment so that they could write large fragments to each
storage server. Second, stripe groups match the aggregate
bandwidth of the groups’ disks to the network bandwidth of
a client, using both resources efficiently; while one client
writes at its full network bandwidth to one stripe group,
another client can do the same with a different group. Third,
by limiting segment size, stripe groups make cleaning more
efficient. This efficiency arises because when cleaners extract
segments’ live data, they can skip completely empty
segments, but they must read partially full segments in their
entirety; large segments linger in the partially-full state
longer than small segments, significantly increasing cleaning
costs. Finally, stripe groups greatly improve availability.
Because each group stores its own parity, the system can
survive multiple server failures if they happen to strike
different groups; in a large system with random failures this
is the most likely case. The cost for this improved availability
is a marginal reduction in disk storage and effective
bandwidth because the system dedicates one parity server per
group rather than one for the entire system.

The stripe group map provides several pieces of
information about each group: the group’s ID, the members
of the group, and whether the group is current or obsolete; we
describe the distinction between current and obsolete groups

below. When a client writes a segment to a group, it includes
the stripe group’s ID in the segment’s identifier and uses the
map’s list of storage servers to send the data to the correct
machines. Later, when it or another client wants to read that
segment, it uses the identifier and the stripe group map to
locate the storage servers to contact for the data or parity.

xFS distinguishes current and obsolete groups to support
reconfiguration. When a storage server enters or leaves the
system, xFS changes the map so that each active storage
server belongs to exactly one current stripe group. If this
reconfiguration changes the membership of a particular
group, xFS does not delete the group’s old map entry. Instead,
it marks that entry as “obsolete.” Clients write only to current
stripe groups, but they may read from either current or
obsolete stripe groups. By leaving the obsolete entries in the
map, xFS allows clients to read data previously written to the
groups without first transferring the data from obsolete
groups to current groups. Over time, the cleaner will move
data from obsolete groups to current groups [Hart95]. When
the cleaner removes the last block of live data from an
obsolete group, xFS deletes its entry from the stripe group
map.

3.2.  System Operation
This section describes how xFS uses the various maps we

described in the previous section. We first describe how
reads, writes, and cache consistency work and then present
simulation results examining the issue of locality in the
assignment of files to managers.

3.2.1. Reads and Caching
Figure 3 illustrates how xFS reads a block given a file

name and an offset within that file. Although the figure is
complex, the complexity in the architecture is designed to
provide good performance with fast LANs. On today’s fast
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LANs, fetching a block out of local memory is much faster
than fetching it from remote memory, which, in turn, is much
faster than fetching it from disk.

To open a file, the client first reads the file’s parent
directory (labeled 1 in the diagram) to determine its index
number. Note that the parent directory is, itself, a data file that
must be read using the procedure described here. As with
FFS, xFS breaks this recursion at the root; the kernel learns
the index number of the root when it mounts the file system.

As the top left path in the figure indicates, the client first
checks its local UNIX block cache for the block (2a); if the
block is present, the request is done. Otherwise it follows the
lower path to fetch the data over the network. xFS first uses
the manager map to locate the correct manager for the index
number (2b) and then sends the request to the manager. If the
manager is not co-located with the client, this message
requires a network hop.

The manager then tries to satisfy the request by fetching
the data from some other client’s cache. The manager checks
its cache consistency state (3a), and, if possible, forwards the
request to a client caching the data. That client reads the block
from its UNIX block cache and forwards the data directly to
the client that originated the request. The manager also adds
the new client to its list of clients caching the block.

If no other client can supply the data from memory, the
manager routes the read request to disk by first examining the
imap to locate the block’s index node (3b). The manager may
find the index node in its local cache (4a) or it may have to
read the index node from disk. If the manager has to read the
index node from disk, it uses the index node’s disk log
address and the stripe group map (4b) to determine which
storage server to contact. The manager then requests the
index block from the storage server, who then reads the block
from its disk and sends it back to the manager (5). The
manager then uses the index node (6) to identify the log
address of the data block. (We have not shown a detail: if the
file is large, the manager may have to read several levels of
indirect blocks to find the data block’s address; the manager
follows the same procedure in reading indirect blocks as in
reading the index node.)

The manager uses the data block’s log address and the
stripe group map (7) to send the request to the storage server
keeping the block. The storage server reads the data from its
disk (8) and sends the data directly to the client that originally
asked for it.

One important design decision was to cache index nodes
at managers but not at clients. Although caching index nodes
at clients would allow them to read many blocks from storage
servers without sending a request through the manager for
each block, doing so has three significant drawbacks. First,
by reading blocks from disk without first contacting the
manager, clients would lose the opportunity to use
cooperative caching to avoid disk accesses. Second, although
clients could sometimes read a data block directly, they

would still need to notify the manager of the fact that they
now cache the block so that the manager knows to invalidate
the block if it is modified. Finally, our approach simplifies the
design by eliminating client caching and cache consistency
for index nodes — only the manager handling an index
number directly accesses its index node.

3.2.2. Writes
Clients buffer writes in their local memory until

committed to a stripe group of storage servers. Because xFS
uses a log-based file system, every write changes the disk
address of the modified block. Therefore, after a client
commits a segment to a storage server, the client notifies the
modified blocks’ managers; the managers then update their
index nodes and imaps and periodically log these changes to
stable storage. As with Zebra, xFS does not need to
“simultaneously” commit both index nodes and their data
blocks because the client’s log includes a delta that allows
reconstruction of the manager’s data structures in the event of
a client or manager crash. We discuss deltas in more detail in
Section 5.1.

As in BSD LFS [Selt93], each manager caches its portion
of the imap in memory and stores it on disk in a special file
called the ifile. The system treats the ifile like any other file
with one exception: the ifile has no index nodes. Instead, the
system locates the blocks of the ifile using manager
checkpoints described in Section 5.1.

3.2.3. Cache Consistency
xFS utilizes a token-based cache consistency scheme

similar to Sprite [Nels88] and Andrew [Howa88] except that
xFS manages consistency on a per-block rather than per-file
basis. Before a client modifies a block, it must acquire write
ownership of that block. The client sends a message to the
block’s manager. The manager then invalidates any other
cached copies of the block, updates its cache consistency
information to indicate the new owner, and replies to the
client, giving permission to write. Once a client owns a block,
the client may write the block repeatedly without having to
ask the manager for ownership each time. The client
maintains write ownership until some other client reads or
writes the data, at which point the manager revokes
ownership, forcing the client to stop writing the block, flush
any changes to stable storage, and forward the data to the new
client.

xFS managers use the same state for both cache
consistency and cooperative caching. The list of clients
caching each block allows managers to invalidate stale
cached copies in the first case and to forward read requests to
clients with valid cached copies in the second.

3.2.4. Management Distribution Policies
xFS tries to assign files used by a client to a manager co-

located on that machine. This section presents a simulation
study that examines policies for assigning files to managers.
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We show that co-locating a file’s management with the client
that creates that file can significantly improve locality,
reducing the number of network hops needed to satisfy client
requests by over 40% compared to a centralized manager.

The xFS prototype uses a policy we call First Writer.
When a client creates a file, xFS chooses an index number
that assigns the file’s management to the manager co-located
with that client. For comparison, we also simulated a
Centralized policy that uses a single, centralized manager that
is not co-located with any of the clients.

We examined management policies by simulating xFS’s
behavior under a seven day trace of 236 clients’ NFS
accesses to an Auspex file server in the Berkeley Computer
Science Division [Dahl94a]. We warmed the simulated
caches through the first day of the trace and gathered statistics
through the rest. Since we would expect other workloads to
yield different results, evaluating a wider range of workloads
remains important work.

The simulator counts the network messages necessary to
satisfy client requests, assuming that each client has 16 MB
of local cache and that there is a manager co-located with
each client, but that storage servers are always remote.

Two artifacts of the trace affect the simulation. First,
because the trace was gathered by snooping the network, it
does not include reads that resulted in local cache hits. By
omitting requests that resulted in local hits, the trace inflates
the average number of network hops needed to satisfy a read
request. Because we simulate larger caches than those of the
traced system, this factor does not alter the total number of
network requests for each policy [Smit77], which is the
relative metric we use for comparing policies.

The second limitation of the trace is that its finite length
does not allow us to determine a file’s “First Writer” with
certainty for references to files created before the beginning
of the trace. For files that are read or deleted in the trace
before being written, we assign management to random
managers at the start of the trace; when and if such a file is
written for the first time in the trace, we move its
management to the first writer. Because write sharing is
rare — 96% of all block overwrites or deletes are by the
block’s previous writer — we believe this heuristic will yield
results close to a true “First Writer” policy for writes,
although it will give pessimistic locality results for “cold-
start” read misses that it assigns to random managers.

Figure 4 shows the impact of the policies on locality. The
First Writer policy reduces the total number of network hops
needed to satisfy client requests by 43%. Most of the
difference comes from improving write locality; the
algorithm does little to improve locality for reads, and deletes
account for only a small fraction of the system’s network
traffic.

Figure 5 illustrates the average number of network
messages to satisfy a read block request, write block request,

or delete file request. The communication for a read block
request includes all of the network hops indicated in Figure 3.
Despite the large number of network hops that can be
incurred by some requests, the average per request is quite
low. 75% of read requests in the trace were satisfied by the
local cache; as noted earlier, the local hit rate would be even
higher if the trace included local hits in the traced system. An
average local read miss costs 2.9 hops under the First Writer
policy; a local miss normally requires three hops (the client
asks the manager, the manager forwards the request, and the
storage server or client supplies the data), but 12% of the time
it can avoid one hop because the manager is co-located with
the client making the request or the client supplying the data.
Under both the Centralized and First Writer policies, a read
miss will occasionally incur a few additional hops to read an
index node or indirect block from a storage server.

Writes benefit more dramatically from locality. Of the
55% of write requests that required the client to contact the

Figure 4. Comparison of locality as measured by
network traffic for the Centralized and First Writer
management policies.
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manager to establish write ownership, the manager was co-
located with the client 90% of the time. When a manager had
to invalidate stale cached data, the cache being invalidated
was local one-third of the time. Finally, when clients flushed
data to disk, they informed the manager of the data’s new
storage location, a local operation 90% of the time.

Deletes, though rare, also benefit from locality: 68% of
file delete requests went to a local manager, and 89% of the
clients notified to stop caching deleted files were local to the
manager.

In the future, we plan to examine other policies for
assigning managers. For instance, we plan to investigate
modifying directories to permit xFS to dynamically change a
file’s index number and thus its manager after it has been
created. This capability would allow fine-grained load
balancing on a per-file rather than a per-manager map entry
basis, and it would permit xFS to improve locality by
switching managers when a different machine repeatedly
accesses a file.

Another optimization that we plan to investigate is
assigning multiple managers to different portions of the same
file to balance load and provide locality for parallel
workloads.

4. Cleaning
When a log-structured file system such as xFS writes data

by appending complete segments to its log, it often
invalidates blocks in old segments, leaving “holes” that
contain no data. LFS uses a log cleaner to coalesce live data
from old segments into a smaller number of new segments,
creating completely empty segments that can be used for
future full segment writes. Since the cleaner must create
empty segments at least as quickly as the system writes new
segments, a single, sequential cleaner would be a bottleneck
in a distributed system such as xFS. Our design therefore
provides a distributed cleaner.

An LFS cleaner, whether centralized or distributed, has
three main tasks. First, the system must keep utilization status
about old segments — how many “holes” they contain and
how recently these holes appeared — to make wise decisions
about which segments to clean [Rose92]. Second, the system
must examine this bookkeeping information to select
segments to clean. Third, the cleaner reads the live blocks
from old log segments and writes those blocks to new
segments.

The rest of this section describes how xFS distributes
cleaning. We first describe how xFS tracks segment
utilizations, then how we identify subsets of segments to
examine and clean, and finally how we coordinate the parallel
cleaners to keep the file system consistent. Because the
prototype does not yet implement the distributed cleaner, this
section includes the key simulation results motivating our
design.

4.1. Distributing Utilization Status
xFS assigns the burden of maintaining each segment’s

utilization status to the client that wrote the segment. This
approach provides parallelism by distributing the
bookkeeping, and it provides good locality; because clients
seldom write-share data [Bake91, Kist92, Blaz93] a client’s
writes usually affect only local segments’ utilization status.

We simulated this policy to examine how well it reduced
the overhead of maintaining utilization information. As input
to the simulator, we used the Auspex trace described in
Section 3.2.4, but since caching is not an issue, we gather
statistics for the full seven day trace (rather than using some
of that time to warm caches.)

Figure 6 shows the results of the simulation. The bars
summarize the network communication necessary to monitor
segment state under three policies: Centralized Pessimistic,
Centralized Optimistic, and Distributed. Under the
Centralized Pessimistic policy, clients notify a centralized,
remote cleaner every time they modify an existing block. The
Centralized Optimistic policy also uses a cleaner that is
remote from the clients, but clients do not have to send
messages when they modify blocks that are still in their local
write buffers. The results for this policy are optimistic
because the simulator assumes that blocks survive in clients’
write buffers for 30 seconds or until overwritten, whichever
is sooner; this assumption allows the simulated system to
avoid communication more often than a real system since it
does not account for segments that are written to disk early
due to syncs [Bake92]. (Unfortunately, syncs are not visible

Figure 6. Simulated network communication between
clients and cleaner. Each bar shows the fraction of all
blocks modified or deleted in the trace, based on the time
and client that modified the block. Blocks can be
modified by a different client than originally wrote the
data, by the same client within 30 seconds of the
previous write, or by the same client after more than 30
seconds have passed. The Centralized Pessimistic policy
assumes every modification requires network traffic. The
Centralized Optimistic scheme avoids network
communication when the same client modifies a block it
wrote within the previous 30 seconds, while the
Distributed scheme avoids communication whenever a
block is modified by its previous writer.
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in our Auspex traces.) Finally, under the Distributed policy,
each client tracks the status of blocks that it writes so that it
needs no network messages when modifying a block for
which it was the last writer.

During the seven days of the trace, of the one million
blocks written by clients and then later overwritten or deleted,
33% were modified within 30 seconds by the same client and
therefore required no network communication under the
Centralized Optimistic policy. However, the Distributed
scheme does much better, reducing communication by a
factor of eighteen for this workload compared to even the
Centralized Optimistic policy.

4.2.  Distributing Cleaning
Clients store their segment utilization information in s-

files. We implement s-files as normal xFS files to facilitate
recovery and sharing of s-files by different machines in the
system.

Each s-file contains segment utilization information for
segments written by one client to one stripe group: clients
write their s-files into per-client directories, and they write
separate s-files in their directories for segments stored to
different stripe groups.

A leader in each stripe group initiates cleaning when the
number of free segments in that group falls below a low water
mark or when the group is idle. The group leader decides
which cleaners should clean the stripe group’s segments. It
sends each of those cleaners part of the list of s-files that
contain utilization information for the group. By giving each
cleaner a different subset of the s-files, xFS specifies subsets
of segments that can be cleaned in parallel.

A simple policy would be to assign each client to clean its
own segments. An attractive alternative is to assign cleaning
responsibilities to idle machines. xFS would do this by
assigning s-files from active machines to the cleaners running
on idle ones.

4.3.  Coordinating Cleaners
Like BSD LFS and Zebra, xFS uses optimistic

concurrency control to resolve conflicts between cleaner
updates and normal file system writes. Cleaners do not lock
files that are being cleaned, nor do they invoke cache
consistency actions. Instead, cleaners just copy the blocks
from the blocks’ old segments to their new segments,
optimistically assuming that the blocks are not in the process
of being updated somewhere else. If there is a conflict
because a client is writing a block as it is cleaned, the
manager will ensure that the client update takes precedence
over the cleaner’s update. Although our algorithm for
distributing cleaning responsibilities never simultaneously
asks multiple cleaners to clean the same segment, the same
mechanism could be used to allow less strict (e.g.
probabilistic) divisions of labor by resolving conflicts
between cleaners.

5. Recovery and Reconfiguration
Availability is a key challenge for a distributed system

such as xFS. Because xFS distributes the file system across
many machines, it must be able to continue operation when
some of the machines fail. To meet this challenge, xFS builds
on Zebra’s recovery mechanisms, the keystone of which is
redundant, log-structured storage. The redundancy provided
by a software RAID makes the system’s logs highly
available, and the log-structured storage allows the system to
quickly recover a consistent view of its data and metadata
through LFS checkpoint recovery and roll-forward.

LFS provides fast recovery by scanning the end of its log
to first read a checkpoint and then roll forward, and Zebra
demonstrates how to extend LFS recovery to a distributed
system in which multiple clients are logging data
concurrently. xFS addresses two additional problems. First,
xFS regenerates the manager map and stripe group map using
a distributed consensus algorithm. Second, xFS recovers
manager metadata from multiple managers’ logs, a process
that xFS makes scalable by distributing checkpoint writes and
recovery to the managers and by distributing roll-forward to
the clients.

The prototype implements only a limited subset of xFS’s
recovery functionality — storage servers recover their local
state after a crash, they automatically reconstruct data from
parity when one storage server in a group fails, and clients
write deltas into their logs to support manager recovery.
However, we have not implemented manager checkpoint
writes, checkpoint recovery reads, or delta reads for roll
forward. The current prototype also fails to recover cleaner
state and cache consistency state, and it does not yet
implement the consensus algorithm needed to dynamically
reconfigure manager maps and stripe group maps. This
section outlines our recovery design and explains why we
expect it to provide scalable recovery for the system.
However, given the complexity of the recovery problem and
the early state of our implementation, continued research will
be needed to fully understand scalable recovery.

5.1.  Data Structure Recovery
Table 2 lists the data structures that storage servers,

managers, and cleaners recover after a crash. For a system-
wide reboot or widespread crash, recovery proceeds from
storage servers, to managers, and then to cleaners because
later levels depend on earlier ones. Because recovery depends
on the logs stored on the storage servers, xFS will be unable
to continue if multiple storage servers from a single stripe
group are unreachable due to machine or network failures.
We plan to investigate using multiple parity fragments to
allow recovery when there are multiple failures within a
stripe group [Blau94]. Less widespread changes to xFS
membership — such as when an authorized machine asks to
join the system, when a machine notifies the system that it is
withdrawing, or when a machine cannot be contacted because



12

of a crash or network failure — trigger similar
reconfiguration steps. For instance, if a single manager
crashes, the system skips the steps to recover the storage
servers, going directly to generate a new manager map that
assigns the failed manager’s duties to a new manager; the
new manager then recovers the failed manager’s disk
metadata from the storage server logs using checkpoint and
roll forward, and it recovers its cache consistency state by
polling clients.

5.1.1. Storage Server Recovery
The segments stored on storage server disks contain the

logs needed to recover the rest of xFS’s data structures, so the
storage servers initiate recovery by restoring their internal
data structures. When a storage server recovers, it regenerates
its mapping of xFS fragment IDs to the fragments’ physical
disk addresses, rebuilds its map of its local free disk space,
and verifies checksums for fragments that it stored near the
time of the crash. Each storage server recovers this
information independently from a private checkpoint, so this
stage can proceed in parallel across all storage servers.

Storage servers next regenerate their stripe group map.
First, the storage servers use a distributed consensus
algorithm [Cris91, Ricc91, Schr91] to determine group
membership and to elect a group leader. Each storage server
then sends the leader a list of stripe groups for which it stores
segments, and the leader combines these lists to form a list of
groups where fragments are already stored (the obsolete
stripe groups). The leader then assigns each active storage
server to a current stripe group, and distributes the resulting
stripe group map to the storage servers.

5.1.2. Manager Recovery
Once the storage servers have recovered, the managers

can recover their manager map, disk location metadata, and
cache consistency metadata. Manager map recovery uses a
consensus algorithm as described above for stripe group
recovery. Cache consistency recovery relies on server-driven
polling [Bake94, Nels88]: a recovering manager contacts the
clients, and each client returns a list of the blocks that it is

Data Structure
Recovered

From

Storage
Server

Log Segments Local Data
Structures

Stripe Group Map Consensus

Manager Manager Map Consensus

Disk Location Metadata Checkpoint and
Roll Forward

Cache Consistency Metadata Poll Clients

Cleaner Segment Utilization S-Files

Table 2. Data structures restored during recovery. Recovery
occurs in the order listed from top to bottom because lower data
structures depend on higher ones.

caching or for which it has write ownership from that
manager’s portion of the index number space.

The remainder of this subsection describes how managers
and clients work together to recover the managers’ disk
location metadata — the distributed imap and index nodes
that provide pointers to the data blocks on disk. Like LFS and
Zebra, xFS recovers this data using a checkpoint and roll
forward mechanism. xFS distributes this disk metadata
recovery to managers and clients so that each manager and
client log written before the crash is assigned to one manager
or client to read during recovery. Each manager reads the log
containing the checkpoint for its portion of the index number
space, and, where possible, clients read the same logs that
they wrote before the crash. This delegation occurs as part of
the consensus process that generates the manager map.

The goal of manager checkpoints is to help managers
recover their imaps from the logs. As Section 3.2.2 described,
managers store copies of their imaps in files called ifiles. To
help recover the imaps from the ifiles, managers periodically
write checkpoints that contain lists of pointers to the disk
storage locations of the ifiles’ blocks. Because each
checkpoint corresponds to the state of the ifile when the
checkpoint is written, it also includes the positions of the
clients’ logs reflected by the checkpoint. Thus, once a
manager reads a checkpoint during recovery, it knows the
storage locations of the blocks of the ifile as they existed at
the time of the checkpoint and it knows where in the client
logs to start reading to learn about more recent modifications.
The main difference between xFS and Zebra or BSD LFS is
that xFS has multiple managers, so each xFS manager writes
its own checkpoint for its part of the index number space.

During recovery, managers read their checkpoints
independently and in parallel. Each manager locates its
checkpoint by first querying storage servers to locate the
newest segment written to its log before the crash and then
reading backwards in the log until it finds the segment with
the most recent checkpoint. Next, managers use this
checkpoint to recover their portions of the imap. Although the
managers’ checkpoints were written at different times and
therefore do not reflect a globally consistent view of the file
system, the next phase of recovery, roll-forward, brings all of
the managers’ disk-location metadata to a consistent state
corresponding to the end of the clients’ logs.

To account for changes that had not reached the
managers’ checkpoints, the system uses roll-forward, where
clients use the deltas stored in their logs to replay actions that
occurred later than the checkpoints. To initiate roll-forward,
the managers use the log position information from their
checkpoints to advise the clients of the earliest segments to
scan. Each client locates the tail of its log by querying storage
servers, and then it reads the log backwards to locate the
earliest segment needed by any manager. Each client then
reads forward in its log, using the manager map to send the
deltas to the appropriate managers. Managers use the deltas to
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update their imaps and index nodes as they do during normal
operation; version numbers in the deltas allow managers to
chronologically order different clients’ modifications to the
same files [Hart95].

5.1.3. Cleaner Recovery
Clients checkpoint the segment utilization information

needed by cleaners in standard xFS files, called s-files.
Because these checkpoints are stored in standard files, they
are automatically recovered by the storage server and
manager phases of recovery. However, the s-files may not
reflect the most recent changes to segment utilizations at the
time of the crash, so s-file recovery also includes a roll
forward phase. Each client rolls forward the utilization state
of the segments tracked in its s-file by asking the other clients
for summaries of their modifications to those segments that
are more recent than the s-file checkpoint. To avoid scanning
their logs twice, clients gather this segment utilization
summary information during the roll-forward phase for
manager-metadata.

5.2.  Scalability of Recovery
Even with the parallelism provided by xFS’s approach to

manager recovery, future work will be needed to evaluate its
scalability. Our design is based on the observation that, while
the procedures described above can require O(N2)
communications steps (where N refers to the number of
clients, managers, or storage servers), each phase can proceed
in parallel across N machines.

For instance, to locate the tails of the systems logs, each
manager and client queries each storage server group to
locate the end of its log. While this can require a total of
O(N2) messages, each manager or client only needs to contact
N storage server groups, and all of the managers and clients
can proceed in parallel, provided that they take steps to avoid
having many machines simultaneously contact the same
storage server [Bake94]; we plan use randomization to
accomplish this goal. Similar considerations apply to the
phases where managers read their checkpoints, clients roll
forward, and managers query clients for their cache
consistency state.

6. Security
xFS, as described, is appropriate for a restricted

environment — among machines that communicate over a
fast network and that trust one another’s kernels to enforce
security. xFS managers, storage servers, clients, and cleaners
must run on secure machines using the protocols we have
described so far. However, xFS can support less trusted
clients using different protocols that require no more trust
than traditional client protocols, albeit at some cost to
performance. Our current implementation allows unmodified
UNIX clients to mount a remote xFS partition using the
standard NFS protocol.

Like other file systems, xFS trusts the kernel to enforce a
firewall between untrusted user processes and kernel
subsystems such as xFS. The xFS storage servers, managers,
and clients can then enforce standard file system security
semantics. For instance, xFS storage servers only store
fragments supplied by authorized clients; xFS managers only
grant read and write tokens to authorized clients; xFS clients
only allow user processes with appropriate credentials and
permissions to access file system data.

We expect this level of trust to exist within many settings.
For instance, xFS could be used within a group or
department’s administrative domain, where all machines are
administered the same way and therefore trust one another.
Similarly, xFS would be appropriate within a NOW where
users already trust remote nodes to run migrated processes on
their behalf. Even in environments that do not trust all
desktop machines, xFS could still be used within a trusted
core of desktop machines and servers, among physically
secure compute servers and file servers in a machine room, or
within one of the parallel server architectures now being
researched [Kubi93, Kusk94]. In these cases, the xFS core
could still provide scalable, reliable, and cost-effective file
service to less trusted fringe clients running more restrictive
protocols. The downside is that the core system can not
exploit the untrusted CPUs, memories, and disks located in
the fringe.

Client trust is a concern for xFS because xFS ties its
clients more intimately to the rest of the system than do
traditional protocols. This close association improves
performance, but it may increase the opportunity for
mischievous clients to interfere with the system. In either xFS
or a traditional system, a compromised client can endanger
data accessed by a user on that machine. However, a damaged
xFS client can do wider harm by writing bad logs or by
supplying incorrect data via cooperative caching. In the
future we plan to examine techniques to guard against
unauthorized log entries and to use encryption-based
techniques to safeguard cooperative caching.

Our current prototype allows unmodified UNIX fringe
clients to access xFS core machines using the NFS protocol
as Figure 7 illustrates. To do this, any xFS client in the core
exports the xFS file system via NFS, and an NFS client

xFS Core

NFS Clients

Figure 7. An xFS core acting as a scalable file server for
unmodified NFS clients.
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employs the same procedures it would use to mount a
standard NFS partition from the xFS client. The xFS core
client then acts as an NFS server for the NFS client, providing
high performance by employing the remaining xFS core
machines to satisfy any requests not satisfied by its local
cache. Multiple NFS clients can utilize the xFS core as a
scalable file server by having different NFS clients mount the
xFS file system using different xFS clients to avoid
bottlenecks. Because xFS provides single machine sharing
semantics, it appears to the NFS clients that they are
mounting the same file system from the same server. The
NFS clients also benefit from xFS’s high availability since
they can mount the file system using any available xFS client.
Of course, a key to good NFS server performance is to
efficiently implement synchronous writes; our prototype does
not yet exploit the non-volatile RAM optimization found in
most commercial NFS servers [Bake92], so for best
performance, NFS clients should mount these partitions using
the “unsafe” option to allow xFS to buffer writes in memory.

7. xFS Prototype
This section describes the state of the xFS prototype as of

August 1995 and presents preliminary performance results
measured on a 32 node cluster of SPARCStation 10’s and
20’s. Although these results are preliminary and although we
expect future tuning to significantly improve absolute
performance, they suggest that xFS has achieved its goal of
scalability. For instance, in one of our microbenchmarks
32 clients achieved an aggregate large file write bandwidth of
13.9 MB/s, close to a linear speedup compared to a single
client’s 0.6 MB/s bandwidth. Our other tests indicated similar
speedups for reads and small file writes.

The prototype implementation consists of four main
pieces. First, we implemented a small amount of code as a
loadable module for the Solaris kernel. This code provides
xFS’s interface to the Solaris v-node layer and also accesses
the kernel buffer cache. We implemented the remaining three
pieces of xFS as daemons outside of the kernel address space
to facilitate debugging [Howa88]. If the xFS kernel module
cannot satisfy a request using the buffer cache, then it sends
the request to the client daemon. The client daemons provide
the rest of xFS’s functionality by accessing the manager
daemons and the storage server daemons over the network.

The rest of this section summarizes the state of the
prototype, describes our test environment, and presents our
results.

7.1.  Prototype Status
The prototype implements most of xFS’s key features,

including distributed management, cooperative caching, and
network disk striping with single parity and multiple groups.
We have not yet completed implementation of a number of
other features. The most glaring deficiencies are in crash
recovery and cleaning. Although we have implemented
storage server recovery, including automatic reconstruction

of data from parity, we have not completed implementation
of manager state checkpoint and roll forward; also, we have
not implemented the consensus algorithms necessary to
calculate and distribute new manager maps and stripe group
maps; the system currently reads these mappings from a non-
xFS file and cannot change them. Additionally, we have yet
to implement the distributed cleaner. As a result, xFS is still
best characterized as a research prototype, and the results in
this paper should thus be viewed as evidence that the
serverless approach is promising, not as “proof” that it will
succeed.

7.2.  Test Environment
For our testbed, we use a total of 32 machines: eight dual-

processor SPARCStation 20’s, and 24 single-processor
SPARCStation 10’s. Each of our machines has 64 MB of
physical memory. Uniprocessor 50 MHz SS-20’s and SS-
10’s have SPECInt92 ratings of 74 and 65, and can copy large
blocks of data from memory to memory at 27 MB/s and
20 MB/s, respectively.

We use the same hardware to compare xFS with two
central-server architectures, NFS [Sand85] and AFS (a
commercial version of the Andrew file system [Howa88]).
We use NFS as our baseline system for practical reasons —
NFS is mature, widely available, and well-tuned, allowing
easy comparison and a good frame of reference — but its
limitations with respect to scalability are well known
[Howa88]. Since many NFS installations have attacked
NFS’s limitations by buying shared-memory multiprocessor
servers, we would like to compare xFS running on
workstations to NFS running on a large multiprocessor
server, but such a machine was not available to us, so our
NFS server runs on essentially the same platform as the
clients. We also compare xFS to AFS, a more scalable
central-server architecture. However, AFS achieves most of
its scalability compared to NFS by improving cache
performance; its scalability is only modestly better compared
to NFS for reads from server disk and for writes.

For our NFS and AFS tests, we use one of the SS-20’s as
the server and the remaining 31 machines as clients. For the
xFS tests, all machines act as storage servers, managers, and
clients unless otherwise noted. For experiments using fewer
than 32 machines, we always include all of the SS-20’s before
starting to use the less powerful SS-10’s.

The xFS storage servers store data on a 256 MB partition
of a 1.1 GB Seagate-ST11200N disk. These disks have an
advertised average seek time of 5.4 ms and rotate at
5,411 RPM. We measured a 2.7 MB/s peak bandwidth to
read from the raw disk device into memory. For all xFS tests,
we use a log fragment size of 64 KB, and unless otherwise
noted we use storage server groups of eight machines —
seven for data and one for parity; all xFS tests include the
overhead of parity computation. The AFS clients use a
100 MB partition of the same disks for local disk caches.
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The NFS and AFS central servers use a larger and
somewhat faster disk than the xFS storage servers, a 2.1 GB
DEC RZ 28-VA with a peak bandwidth of 5 MB/s from the
raw partition into memory. These servers also use a
Prestoserve NVRAM card that acts as a buffer for disk writes
[Bake92]. We did not use an NVRAM buffer for the xFS
machines, but xFS’s log buffer provides similar performance
benefits.

A high-speed, switched Myrinet network [Bode95]
connects the machines. Although each link of the physical
network has a peak bandwidth of 80 MB/s, RPC and TCP/IP
protocol overheads place a much lower limit on the
throughput actually achieved [Keet95]. The throughput for
fast networks such as the Myrinet depends heavily on the
version and patch level of the Solaris operating system used.
For our xFS measurements, we used a kernel that we
compiled from the Solaris 2.4 source release. We measured
the TCP throughput to be 3.2 MB/s for 8 KB packets when
using this source release. For the NFS and AFS
measurements, we used the binary release of Solaris 2.4,
augmented with the binary patches recommended by Sun as
of June 1, 1995. This release provides better network
performance; our TCP test achieved a throughput of
8.4 MB/s for this setup. Alas, we could not get sources for the
patches, so our xFS measurements are penalized with a
slower effective network than NFS and AFS. RPC overheads
further reduce network performance for all three systems.

7.3.  Performance Results
This section presents a set of preliminary performance

results for xFS under a set of microbenchmarks designed to
stress file system scalability and under an application-level
benchmark.

These performance results are preliminary. As noted
above, several significant pieces of the xFS system —
manager checkpoints and cleaning — remain to be
implemented. We do not expect these additions to
significantly impact the results for the benchmarks presented
here. We do not expect checkpoints to ever limit
performance. However, thorough future investigation will be
needed to evaluate the impact of distributed cleaning under a
wide range workloads; other researchers have measured
sequential cleaning overheads from a few percent [Rose92,
Blac95] to as much as 40% [Selt95], depending on the
workload.

Also, the current prototype implementation suffers from
three inefficiencies, all of which we will attack in the future.

1.xFS is currently implemented as a set of user-level pro-
cesses by redirecting vnode layer calls. This hurts perfor-
mance because each user/kernel space crossing requires
the kernel to schedule the user level process and copy
data to or from the user process’s address space. To fix
this limitation, we are working to move xFS into the ker-
nel. (Note that AFS shares this handicap.)

2.RPC and TCP/IP overheads severely limit xFS’s network
performance. We are porting xFS’s communications
layer to Active Messages [vE92] to address this issue.

3.We have done little profiling and tuning. As we do so, we
expect to find and fix inefficiencies.

As a result, the absolute performance is much less than we
expect for the well-tuned xFS. As the implementation
matures, we expect a single xFS client to significantly
outperform an NFS or AFS client by benefitting from the
bandwidth of multiple disks and from cooperative caching.
Our eventual performance goal is for a single xFS client to
achieve read and write bandwidths near that of its maximum
network throughput, and for multiple clients to realize an
aggregate bandwidth approaching the system’s aggregate
local disk bandwidth.

The microbenchmark results presented here stress the
scalability of xFS’s storage servers and managers. We
examine read and write throughput for large files and write
performance for small files, but we do not examine small file
read performance explicitly because the network is too slow
to provide an interesting evaluation of cooperative caching;
we leave this evaluation as future work. We also use
Satyanarayanan’s Andrew benchmark [Howa88] as a simple
evaluation of application-level performance. In the future, we
plan to compare the systems’ performance under more
demanding applications.

7.3.1. Scalability
Figures 8 through 10 illustrate the scalability of xFS’s

performance for large writes, large reads, and small writes.
For each of these tests, as the number of clients increases, so
does xFS’s aggregate performance. In contrast, just a few
clients saturate NFS’s or AFS’s single server, limiting peak
throughput.

Figure 8 illustrates the performance of our disk write
throughput test, in which each client writes a large (10 MB),
private file and then invokes sync() to force the data to disk
(some of the data stay in NVRAM in the case of NFS and
AFS.) A single xFS client is limited to 0.6 MB/s, about one-
third of the 1.7 MB/s throughput of a single NFS client; this
difference is largely due to the extra kernel crossings and
associated data copies in the user-level xFS implementation
as well as high network protocol overheads. A single AFS
client achieves a bandwidth of 0.7 MB/s, limited by AFS’s
kernel crossings and overhead of writing data to both the
local disk cache and the server disk. As we increase the
number of clients, NFS’s and AFS’s throughputs increase
only modestly until the single, central server disk bottlenecks
both systems. The xFS configuration, in contrast, scales up to
a peak bandwidth of 13.9 MB/s for 32 clients, and it appears
that if we had more clients available for our experiments, they
could achieve even more bandwidth from the 32 xFS storage
servers and managers.
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Figure 9 illustrates the performance of xFS and NFS for
large reads from disk. For this test, each machine flushes its
cache and then sequentially reads a per-client 10 MB file.
Again, a single NFS or AFS client outperforms a single xFS
client. One NFS client can read at 2.8 MB/s, and an AFS
client can read at 1.0 MB/s, while the current xFS
implementation limits one xFS client to 0.9 MB/s. As is the
case for writes, xFS exhibits good scalability; 32 clients
achieve a read throughput of 13.8 MB/s. In contrast, two
clients saturate NFS at a peak throughput of 3.1 MB/s and 12
clients saturate AFS’s central server disk at 1.9 MB/s.

While Figure 9 shows disk read performance when data
are not cached, all three file systems achieve much better
scalability when clients can read data from their caches to
avoid interacting with the server. All three systems allow

Figure 8. Aggregate disk write bandwidth. The x axis
indicates the number of clients simultaneously writing private
10 MB files, and the y axis indicates the total throughput
across all of the active clients. xFS uses four groups of eight
storage servers and 32 managers. NFS’s peak throughput is
1.9 MB/s with 2 clients, AFS’s is 1.3 MB/s with 32 clients,
and xFS’s is 13.9 MB/s with 32 clients.
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Figure 9. Aggregate disk read bandwidth. The x axis
indicates the number of clients simultaneously reading private
10 MB files and the y axis indicates the total throughput
across all active clients. xFS uses four groups of eight storage
servers and 32 managers. NFS’s peak throughput is 3.1 MB/s
with two clients, AFS’s is 1.9 MB/s with 12 clients, and xFS’s
is 13.8 MB/s with 32 clients.
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clients to cache data in local memory, providing scalable
bandwidths of 20 MB/s to 30 MB/s per client when clients
access working sets of a few tens of megabytes. Furthermore,
AFS provides a larger, though slower, local disk cache at
each client that provides scalable disk-read bandwidth for
workloads whose working sets do not fit in memory; our 32-
node AFS cluster can achieve an aggregate disk bandwidth of
nearly 40 MB/s for such workloads. This aggregate disk
bandwidth is significantly larger than xFS’s maximum disk
bandwidth for two reasons. First, as noted above, xFS is
largely untuned, and we expect the gap to shrink in the future.
Second, xFS transfers most of the data over the network,
while AFS’s cache accesses are local. Thus, there will be
some workloads for which AFS’s disk caches achieves a
higher aggregate disk-read bandwidth than xFS’s network
storage. xFS’s network striping, however, provides better
write performance and will, in the future, provide better read
performance for individual clients via striping. Additionally,
once we have ported cooperative caching to a faster network
protocol, accessing remote memory will be much faster than
going to local disk, and thus the clients’ large, aggregate
memory cache will further reduce the potential benefit from
local disk caching.

Figure 10 illustrates the performance when each client
creates 2,048 files containing 1 KB of data per file. For this
benchmark, xFS’s log-based architecture overcomes the
current implementation limitations to achieve approximate
parity with NFS and AFS for a single client: one NFS, AFS,
or xFS client can create 51, 32, or 41 files per second,
respectively. xFS also demonstrates good scalability for this
benchmark. 32 xFS clients generate a total of 1,122 files per
second, while NFS’s peak rate is 91 files per second with four
clients and AFS’s peak is 87 files per second with four
clients.

Figure 10. Aggregate small write performance. The x axis
indicates the number of clients, each simultaneously creating
2,048 1 KB files. The y axis is the average aggregate number of
file creates per second during the benchmark run. xFS uses four
groups of eight storage servers and 32 managers. NFS achieves
its peak throughput of 91 files per second with four clients, AFS
peaks at 87 files per second with four clients, and xFS scales up
to 1,122 files per second with 32 clients.
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Figure 11. Average time to complete the Andrew benchmark for NFS, AFS, and xFS as the number of clients simultaneously
executing the benchmark varies. The total height of the shaded areas represents the total time to complete the benchmark; each shaded
area represents the time for one of the five phases of the benchmark: makeDir, copy, scanDir, readAll, and make. For all of the systems,
the caches were flushed before running the benchmark.
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Figure 11shows the average time for a client to complete
the Andrew benchmark as the number of clients varies for
each file system. This benchmark was designed as a simple
yardstick for comparing application-level performance for
common tasks such as copying, reading, and compiling files.
When one client is running the benchmark, NFS takes
64 seconds to run and AFS takes 61 seconds, while xFS
requires somewhat more time — 78 seconds. xFS’s
scalability, however, allows xFS to outperform the other
systems for larger numbers of clients. For instance, with
32 clients xFS takes 117 seconds to complete the benchmark,
while increased I/O time, particularly in the copy phase of the
benchmark, increases NFS’s time to 172 seconds and AFS’s
time to 210 seconds. A surprising result is that NFS
outperforms AFS when there are a large number of clients;
this is because in-memory file caches have grown
dramatically since this comparison was first made [Howa88],
and the working set of the benchmark now fits in the NFS
clients’ in-memory caches, reducing the benefit of AFS’s on-
disk caches.

7.3.2. Storage Server Scalability
In the above measurements, we used a 32-node xFS

system where all machines acted as clients, managers, and
storage servers and found that both bandwidth and small
write performance scaled well. This section examines the
impact of different storage server organizations on that
scalability. Figure 12 shows the large write performance as
we vary the number of storage servers and also as we change
the stripe group size.

Increasing the number of storage servers improves
performance by spreading the system’s requests across more
CPUs and disks. The increase in bandwidth falls short of
linear with the number of storage servers, however, because
client overheads are also a significant limitation on system
bandwidth.

Reducing the stripe group size from eight storage servers
to four reduces the system’s aggregate bandwidth by 8% to
22% for the different measurements. We attribute most of this
difference to the increased overhead of parity. Reducing the

stripe group size from eight to four reduces the fraction of
fragments that store data as opposed to parity. The additional
overhead reduces the available disk bandwidth by 16% for
the system using groups of four servers.

7.3.3. Manager Scalability
Figure 13 shows the importance of distributing

management among multiple managers to achieve both
parallelism and locality. It varies the number of managers
handling metadata for 31 clients running the small write
benchmark.3 This graph indicates that a single manager is a
significant bottleneck for this benchmark. Increasing the
system from one manager to two increases throughput by
over 80%, and a system with four managers more than
doubles throughput compared to a single manager system.

Continuing to increase the number of managers in the
system continues to improve performance under xFS’s First
Writer policy. This policy assigns files to managers running

3. Due to a hardware failure, we ran this experiment with three groups
of eight storage servers and 31 clients.

Figure 12. Large write throughput as a function of the
number of storage servers in the system. The x axis indicates
the total number of storage servers in the system and the y axis
indicates the aggregate bandwidth when 32 clients each write a
10 MB file to disk. The 8 SS’s line indicates performance for
stripe groups of eight storage servers (the default), and the 4
SS’s shows performance for groups of four storage servers.
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on the same machine as the clients that create the files;
Section 3.2.4 described this policy in more detail. The system
with 31 managers can create 45% more files per second than
the system with four managers under this policy. This
improvement comes not from load distribution but from
locality; when a larger fraction of the clients also host
managers, the algorithm is able to successfully co-locate
managers with the clients accessing a file more often.

The Nonlocal Manager line illustrates what would happen
without locality. For this line, we altered the system’s
management assignment policy to avoid assigning files
created by a client to the local manager. When the system has
four managers, throughput peaks for this algorithm because
the managers are no longer a significant bottleneck for this
benchmark; larger numbers of managers do not further
improve performance.

8. Related Work
Section 2 discussed a number of projects that provide an

important basis for xFS. This section describes several other
efforts to build decentralized file systems and then discusses
the dynamic management hierarchies used in some MPPs.

Several file systems, such as CFS [Pier89], Bridge
[Dibb89], and Vesta [Corb93], distribute data over multiple
storage servers to support parallel workloads; however, they
lack mechanisms to provide availability across component
failures.

Other parallel systems have implemented redundant data
storage intended for restricted workloads consisting entirely
of large files, where per-file striping is appropriate and where
large file accesses reduce stress on their centralized manager
architectures. For instance, Swift [Cabr91] and SFS

Figure 13. Small write performance as a function of the
number of managers in the system and manager locality
policy. The x axis indicates the number of managers. The y axis
is the average aggregate number of file creates per second by 31
clients, each simultaneously creating 2,048 small (1 KB) files.
The two lines show the performance using the First Writer policy
that co-locates a file’s manager with the client that creates the
file, and a Nonlocal policy that assigns management to some
other machine. Because of a hardware failure, we ran this
experiment with three groups of eight storage servers and 31
clients. The maximum point on the x-axis is 31 managers.
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[LoVe93] provide redundant distributed data storage for
parallel environments, and Tiger [Rash94] services
multimedia workloads.

TickerTAIP [Cao93], SNS [Lee95], and AutoRAID
[Wilk95] implement RAID-derived storage systems. These
systems could provide services similar to xFS’s storage
servers, but they would require serverless management to
provide a scalable and highly available file system interface
to augment their simpler disk block interfaces. In contrast
with the log-based striping approach taken by Zebra and xFS,
TickerTAIP’s RAID level 5 [Patt88] architecture makes
calculating parity for small writes expensive when disks are
distributed over the network. SNS combats this problem by
using a RAID level 1 (mirrored) architecture, but this
approach approximately doubles the space overhead for
storing redundant data. AutoRAID addresses this dilemma by
storing data that is actively being written to a RAID level 1
and migrating inactive data to a RAID level 5.

Several MPP designs have used dynamic hierarchies to
avoid the fixed-home approach used in traditional directory-
based MPPs. The KSR1 [Rost93] machine, based on the
DDM proposal [Hage92], avoids associating data with fixed
home nodes. Instead, data may be stored in any cache, and a
hierarchy of directories allows any node to locate any data by
searching successively higher and more globally-complete
directories. While an early xFS study simulated the effect of
a hierarchical approach to metadata for file systems
[Dahl94a], we now instead support location-independence
using a manager-map-based approach for three reasons. First,
our approach eliminates the “root” manager that must track
all data; such a root would bottleneck performance and
reduce availability. Second, the manager map allows a client
to locate a file’s manager with at most one network hop.
Finally, the manager map approach can be integrated more
readily with the imap data structure that tracks disk location
metadata.

9. Conclusions
Serverless file systems distribute file system server

responsibilities across large numbers of cooperating
machines. This approach eliminates the central server
bottleneck inherent in today’s file system designs to provide
improved performance, scalability, and availability. Further,
serverless systems are cost effective because their scalable
architecture eliminates the specialized server hardware and
convoluted system administration necessary to achieve
scalability under current file systems. The xFS prototype
demonstrates the viability of building such scalable systems,
and its initial performance results illustrate the potential of
this approach.
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