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Abstract

zFS is a research project aimed at building a decentral-
ized file system that distributes all aspects of file and stor-
age management over a set of cooperating machines inter-
connected by a high-speed network. zFS is designed to be
a file system that scales from a few networked computers to
several thousand machines and to be built from commodity
off-the-shelf components.
The two most prominent features of zFS are its coop-

erative cache and distributed transactions. zFS integrates
the memory of all participating machines into one coher-
ent cache. Thus, instead of going to the disk for a block
of data already in one of the machine memories, zFS re-
trieves the data block from the remote machine. zFS also
uses distributed transactions and leases, instead of group-
communication and clustering software.
This article describes the zFS high-level architecture

and how its goals are achieved.

1. Introduction

zFS is a research project aimed at building a decentral-
ized file system that distributes all aspects of file and stor-
age management over a set of cooperating machines inter-
connected by a high-speed network. zFS is designed to
be a file system that will (1) Scale from a few networked
computers to several thousand machines, supporting tens of
thousands of clients and (2) Be built from commodity, off-
the-shelf components such as PCs, Object Store Devices
(OSDs) and a high-speed network, and run on existing op-
erating systems such as Linux.
zFS extends the research done in the DSF project [10]

by using object disks as storage media and by using leases
and distributed transactions.
The two most prominent features of zFS are its coop-

erative cache [8, 14] and distributed transactions. zFS in-
tegrates the memory of all participating machines into one
coherent cache. Thus, instead of going to the disk for a
block of data already in one of the machine memories, zFS

retrieves the data block from the remote machine. zFS also
uses distributed transactions and leases, instead of group-
communication and clustering software. We intend to test
and show the effectiveness of these two features in our pro-
totype.
zFS has six components: a Front End (FE), a Cooper-

ative Cache (Cache), a File Manager (FMGR), a Lease
Manager (LMGR), a Transaction Server (TSVR), and an
Object Store (OSD). These components work together to
provide applications/users with a distributed file system.
The design of zFS addresses, and is influenced by, issues

of fault tolerance, security and backup/mirroring. How-
ever, in this article, we focus on the zFS high-level archi-
tecture and briefly describe zFS’s fault tolerance character-
istics. The first prototype of zFS is under development and
will be described in another document.
The rest of the article is organized as follows: In Sec-

tion 2, we describe the goals of zFS. Section 3 details
the functionality of zFS’s various components followed by
Section 4 which details zFS’s architecture and protocols.
Issues of fault tolerance are briefly discussed in Section 5
and Section 6 compares zFS to other file systems. We con-
clude with Section 7 summarizing how combining all these
components supports higher performance and scalability.

2. zFS Goals

The design and implementation of zFS is aimed at
achieving a scalable file system beyond those that exist to-
day. More specifically, the objectives of zFS are:

• Creating a file system that operates equally well on
few or thousands of machines

• Using off-the-shelf components with OSDs

• Making use of the memory of all participating ma-
chines as a global cache to increase performance

• Achieving almost linear scalability: the addition of
machines will lead to an almost linear increase in per-
formance



zFS will achieve scalability by separating storage manage-
ment from file management and by dynamically distribut-
ing file management.
Storage management in zFS is encapsulated in the Ob-

ject Store Devices (OSDs)1 [1], while file management is
done by other zFS components, as described in the follow-
ing sections.
Having OSDs handle storage management implies that

functions usually handled by file systems are done in the
OSD itself, and are transparent to other components of
zFS. These include: data striping, mirroring, and contin-
uous copy/PPRC.
The Object Store does not distinguish between files and

directories. It is the responsibility of the file system man-
agement (the other components of zFS) to handle them cor-
rectly.
zFS is designed to work with a relatively loosely-

coupled set of components. This allows us to eliminate
clustering software, and take a different path than those
used by other clustered file systems [12, 6, 2]. zFS is de-
signed to support a low-to-medium degree of file and direc-
tory sharing. We do not claim to reach GPFS-like scalabil-
ity for very high sharing situations [12].

3. zFS Components

This section describes the functionality of each zFS
component, and how it interacts with other components. It
also contains a description of the file system layout on the
object store.

3.1. Object Store

The object store (OSD) is the storage device on which
files and directories are created, and from where they are
retrieved. The OSD API enables creation and deletion of
objects, and writing and reading byte-ranges to/from the
object. Object disks provide file abstractions, security, safe
writes and other capabilities as described in [9].
Using object disks allows zFS to focus on management

and scalability issues, while letting the OSD handle the
physical disk chores of block allocation and mapping.

3.2. File System Layout

zFS uses the object-stores to lay out both files and direc-
tories. We assume each directory maps to a single object,
and that a file also maps to a single object2. A file-object
contains the set of bytes that the file is comprised of. It may
be sparse, containing many non-contiguous chunks. A di-
rectory contains a set of entries, where each entry contains:

1We also use the term Object Disk.
2This can change in the future, to multiple objects per file.

(a) a file name, (b) some flags, (c) a file system pointer fsptr
that points to the location in the file-system where the file
or directory resides. An fsptr is a pair Object Store Identi-
fier and an object id inside that OSD: hobs id,oidi.
An example is depicted in Figure 1.

Figure 1. An example of a zFS layout on disk.
There are three object stores: two, three,
and seven. ObS2 contains two file-objects
with object id’s 5 and 19, it also contains a
directory-object, number 11, that has two di-
rectory entries. These point to two files “bar”
and “foo” that are located onOSDs three and
seven.

Some file systems use different storage systems for
meta-data (directories), and file data. Using Object-Stores
for storing all data allows using higher level management
and copy-services provided by the OSD. For example, an
OSD will support snapshots, hence, creating a file-system
snapshot requires taking snapshots at the same time from
all the OSDs.
The downside is that directories become dispersed

throughout the OSDs, and directory operations become
distributed transactions.

3.3. Front End

The zFS front-end (FE) runs on every workstation on
which a client wants to use zFS. It presents to the client
the standard file system API and provides access to zFS
files and directories. Using Linux as our implementation
platform this implies integration with the VFS layer which
also means the the FE is an in-kernel component. On many
Unix systems (including Linux), a file-system has to define
and implement three sets of operations.



Super Block Operations Operations that determine the
behavior of the file system.

Inode Operations Operations on whole file and direc-
tory objects; e.g., create, delete etc.

File Operations Specific operations on files or directo-
ries; e.g., open, read, readdir etc.

By implementing these sets of operations and integrat-
ing them within the operating system kernel a new file-
system can be created. In Linux this can be done either
by changing the kernel sources or by building a loadable
module implementing these operations. When the module
is loaded it registers the new file system with the kernel and
then the new file system can be mounted.

3.4. Lease Manager

The need for a Lease Manager (LMGR) stems from the
following facts: (1) File systems use one form or another
of locking mechanism to control access to the disks in or-
der to maintain data integrity when several users work on
the same files. (2) To work in SAN file systems where
clients can write directly to object disks, the OSDs them-
selves have to support some form of locking. Otherwise,
two clients could damage each other’s data.
In distributed environments, where network connections

and even machines themselves can fail, it is preferable to
use leases rather than locks. Leases are locks with an ex-
piration period that is set up in advance. Thus, when a ma-
chine holding a lease of a resource fails, we are able to
acquire a new lease after the lease of the failed machine ex-
pires. Obviously, the use of leases incurs the overhead of
lease renewal on the client that acquired the lease and still
needs the resource.
To reduce the overhead of the OSD, the following

mechanism is used: each OSD maintains one major lease
for the whole disk. Each OSD also has one lease man-
ager (LMGR) which acquires and renews the major lease.
Leases for specific objects (files or directories) on theOSD
are managed by the OSD’s LMGR. Thus, the majority of
lease management overhead is offloaded from the OSD,
while still maintaining the ability to protect data.
The OSD stores in memory the network address of the

current holder of the major-lease. To find out which ma-
chine is currently managing a particular OSD O, a client
simply asksO for the network address of its current LMGR.
The lease-manager, after acquiring the major-lease,

grants exclusive leases for objects residing on the OSD.
It also maintains in memory the current network address
of each object-lease owner. This allows looking up file-
managers.
Any machine that needs to access an object ob j onOSD

O, first figures out who is it’s LMGR. If one exists, the

object-lease for ob j is requested from the LMGR. If one
does not exist, the requesting machine creates a local in-
stance of an LMGR to manage O for it.

3.5. File Manager

Each opened file in zFS is managed by a single file
manager assigned to the file when the file is opened.
The set of all currently active file managers manage all
opened zFS files. Initially, no file has an associated
file-manager(FMGR). The first machine to perform an
open() on file F will create an instance of a file manager
for F . Henceforth, and until that file manager is shut-down,
each lease request for any part of the file will be mediated
by that FMGR. For better performance, the first machine
which performs an open() on a file, will create a local
instance of the file manager for that file.
The FMGR keeps track of each accomplished open()

and read() request, and maintains the information re-
garding where each file’s blocks reside in internal data
structures. When an open() request arrives at the file
manager, it checks whether the file has already been opened
by another client (on another machine). If not, the FMGR
acquires the proper exclusive lease from the lease-manager
and directs the request to the object disk. In case the
data requested resides in the cache of another machine, the
FMGR directs the Cache on that machine to forward the
data to the requesting Cache. This can be either the local
Cache in case the FMGR is located on the client machine
initiating the request, or a remote Cache otherwise.
The file manager interacts with the lease manager of the

OSD where the file resides to obtain an exclusive lease on
the file. It also creates and keeps track of all range-leases it
distributes. These leases are kept in internal FMGR tables,
and are used to control and provide proper access to files
by various clients. For more details on the lease manager,
see Section 3.4.

3.6. Cooperative Cache

The cooperative cache (Cache) of zFS is a key com-
ponent in achieving high scalability. Due to the fast in-
crease in network speed nowadays, it takes less time to
retrieve data from another machine’s memory than from
a local disk. This is where a cooperative cache is useful.
When a client on machine A requests a block of data via
FEa and the file manager (FMGRB on machine B) realizes
that the requested block resides in the Cache of machine
M, Cachem, it sends a message to Cachem to send the block
to Cachea and updates the information on the location of
that block in FMGRB. The Cache on A then receives the
block, updates its internal tables (for future accesses to the



block) and passes the data to the FEa, which passes it to the
client.
Needless to say, leases are checked/revoked/created by

the FMGR to ensure proper use of the data.

3.7. Transaction Server

In zFS, directory operations are implemented as dis-
tributed transactions. For example, a create-file operation
includes, at the very least, (a) creating a new entry in the
parent directory, and (b) creating a new file object. Each
of these operations can fail independently, and the initi-
ating host can fail as well. Such occurrences can corrupt
the file-system. Hence, each directory operation should be
protected inside a transaction, such that in the event of fail-
ure, the consistency of the file-system can be restored. This
means either rolling the transaction forward or backward.
The most complicated directory operation is re-

name(). This requires, at the very least, (a) locking the
source directory, target directory, and file (to be moved),
(b) creating a new directory entry at the target, (c) erasing
the old entry, and (d) releasing the locks.
Since such transactions are complex, zFS uses a special

component to manage them: a transaction server (TSVR).
The TSVR works on a per operation basis. It acquires all
required leases and performs the transaction. The TSVR
attempts to hold onto acquired leases for as long as possible
and releases them only for the benefit of other hosts.
The FE sends all directory operations, asynchronous

RPC style, to the TSVR and updates its internal dir-entries
caches according to the results.

4. zFS Architecture

In this section we describe in detail how zFS compo-
nents interact to present to the applications a file system.
First we show how zFS components interconnect, follow-
ing it with several protocols describing how file system op-
erations are carried out in the zFS architecture.

4.1. zFS Component Interconnections

Figure 2 illustrates all the components of zFS. At the
bottom we see several object disks and at the top we see
two hosts running zFS components. The FE and Cache
are situated inside the kernel while the LMGR, FMGR, and
TSVR are located in a single process in user-space. It is
important to emphasize that not all these components are
active on all machines at all times. In the extreme case
only the TSVR may be active and all other components
for the files used on this particular machine run on other
nodes. A socket connects the in-kernel and out-of-kernel
components, and OSDs are accessed directly by the hosts.

To see the interactions between zFS components let
us walk through several protocols: We start with the
read(), write() operations following them with the
create() and rename() file operations which require
transactions.

4.2. Protocols

4.2.1. File Read Protocol Figure 3 shows the control
and information paths for the read(file, ...) oper-
ation detailed below.

(a) FE looks up through the fsptr for f ile.

(b) If the read can be satisfied by locally cached file blocks
(i.e., the data and read lease are locally cached) then the
requested data is returned to the user and we return.

(c) A read request is sent to the FMGR of the file and the
FE,Cache waits for the request to be satisfied.

(d) The FMGR checks and if necessary creates a read-
lease for the requested blocks.

(e) The FMGR checks if other Caches hold the requested
blocks of the file and does the following:

(1) If TRUE
(a) Forwards the above byte-range lease, the read

request and the address of the requesting FE,
the requester, to the Cache,FE on the host
holding the requested blocks, host.

(2) Else
(a) Forwards the above byte-range lease, the read

request and the address of the requesting FE,
the requester, to the OSD holding the re-
quested blocks.

(f) The FE/Cache on host or theOSD send the requested
data blocks and the read lease to the requester.

We define the above scenarios as third party communi-
cation; i.e., the party who passed the actual data is not the
same party from whom the data was requested. In Figure 3,
in both cases the request is sent to the FMGRwhile the data
arrives either from another Cache or from the OSD.

4.2.2. File Write Protocol Figure 4 shows the control
and information paths for the write(file, ...) op-
eration.
We assume that read operations were conducted by sev-

eral users on the file and that some of its data blocks reside
in several Caches. After some period of time a user wants
to write to the file.



Figure 2. zFS Components

Figure 3. zFS Operations - walk through read(file). (a) a cache-to-cache read (b) an OSD read

(a) FE sends the write request to fmgri

(b) fmgri checks if other Caches hold blocks of the file
and does the following:

(1) Revoke all read leases on the object (file) whose
range overlaps with the write area. Messages are
sent to the various Caches to that effect. Note that

we have to wait for Acks from the Caches, other-
wise some clients will read incorrect data.

(2) Revoke all overlapping Write leases. This may
require flushing buffers to the object disk

(3) Create a write lease for the specified range.

(c) If data blocks are not (fully) in the local Cache and



the data is not aligned on page boundaries then read in
proper pages into the cache

(d) Write the data to the proper blocks in the Cache.

(e) Return the proper result (number of bytes written or
error code as the semantics of write requires) to the FE
which passes it to the user.

4.2.3. Create File Protocol Upon receiving a cre-
ate(parent dir, fname) from the FE, the TSVR
executes the following protocol shown also in Figure 5:

1. FE receives a request to create fname in directory
parent dir. It does a lookup, which starts at a pre-
configured location, this is the root directory3. The
TSVR is consulted for missing parts of the path. Fi-
nally, FEwill hold an fsptr for the directory where the
file is to be created, paren dir.

2. FE sends a request to TSVR to create a file named
fname in directory parent dir.

3. TSVR chooses an object-store obs id on which to cre-
ate the new file

4. TSVR creates a new (unused before) object-id, oid,
for the new file and acquires an exclusive lease for the
new file (obs id,oid)

5. TSVR acquires a lease for parent dir

6. TSVR writes a new entry in the parent directory:
{ name = fname ; flag = InCreate;
fsptr = (obs id,oid) }

7. TSVR creates the file at (obs id,oid)

8. TSVR writes initial meta-data to the file: gid, uid,
etc.4

9. TSVR overwrites the dir-entry flag with Normal
flag.

10. TSVR returns the fsptr of the new file to the FE.

Note that no Cache is involved during file creation,
since the Cache only gets involved when data is actually
read by the client. Also, simultaneous requests from two
clients to open the same file are serialized by the file man-
ager which manages the file.
To acquire the leases in stages 4 and 5 a two level hier-

archy is used, see Figure 6.
3This is the only part of the file system that is located in a location that

does not change.
4In our design the file’s meta-data is attached to the file’s data in a

special block.

Each OSD has an associated LMGR that takes the
major-lease, and manages exclusive object-leases on it.
Each FMGR takes an exclusive lease for an object, and
allows taking single-writer-multiple-reader leases on byte-
ranges in the file. Each TSVR takes the leases it needs for
directory transactions, and attempts to hold on to leases for
as long as possible, assuming other hosts do not request
them. Only safe caching is done at the FE and Cache. No
data that is being modified on other hosts is locally cached,
this provides strong cache consistency to file-system appli-
cations.
As part of its normal operation the TSVR has to lo-

cate LMGRs and FMGRs for OSDes, files, and directo-
ries. The input for this function is theOSD identifier, or the
fsptr. To locate an LMGR for a particular OSD, the OSD
itself is queried for the network address of the LMGR cur-
rently managing it. If one exists, it’s address is returned. If
one does not exists, the TSVR takes the OSD major-lease
and creates a local LMGR for it. To locate an FMGR for a
particular (obs id,oid) (1) the LMGR for obs id is located
(2) it is queried for the FMGR of oid. If none exists, the
TSVR creates a local FMGR to manager the object.
If all works out, then at the end of this transaction the file

has been created. Failures can occur at each of these stages.
The solution is to always roll-back. This is achieved by the
following Erase sub-protocol:

1. Take the parent directory lease and the exclusive ob-
ject lease for (obs id,oid)

2. Overwrite the flag in the directory entry with an In-
Delete flag

3. Erase the object (obs id,oid)

4. Erase the parent dir-entry

5. Release the leases taken

Choosing an object-store on which to create the file is an
important issue. In order to achieve good load-balancing
the creator needs to take into account the set of possible
OSDs and choose the best candidate. We intend for each
host to keep track of a set of OSDs it works with, and
monitor their usage through periodic statistics gathering.
It should fill up the same OSDs to provide locality, and
should also refrain from filling up any particularOSD since
this degrades its performance. This, admittedly simple, al-
gorithm requires no global knowledge. This property is
important in a large scalable system.
Choosing a fresh object-id needs to be carefully done.

We use a special objectC on each object-store O that holds
an object-id counter. The counter is initiated when zFS for-
mats the object-disk; it is set to an initial value of I. Ob-
jects with names oids smaller than I are special zFS auxil-
iary objects. Objects with larger oids are regular files and



Figure 4. zFS Operations - walk through write(file). Host B requests to write to a byte-range. The
FMGR revokes existing read/write leases for the same range on other machines. Machine A has dirty
data on the range, and needs to flush. Machine B can immediately return a Revoke Ok. B then reads
the relevant block(s) directly from the cache of A. No need to go to OSD.

Table 1. Example run of an interrupted create.

Host operation
A create dir-entry (fname, InCreate, (obs id,oid))
A Create object((obs id,oid))
B dir-entry flag := InDelete
B Delete object((obs id,oid))
B erase dir-entry(fname,(obs id,oid))

directories. The LMGR for O provides an interface for tak-
ing ranges of fresh object names. It takes the exclusive
lease forC, reads the current value, increments it by R, and
writes it to disk. This provides a range of R fresh names.
Any application that needs fresh names can use this LMGR
for that purpose.
This protocol may seem overly complex for a simple,

basic operation, such as create. To see how this works, we
shall walk through an example of failure scenario.
Assume host A starts a create((parent dir, f name)

and fails after step 7. Host B comes along, attempts to read
the dir-entry in parent dir and sees the InCreate flag. It
then initiates the Erase sub-protocol. The list of actions
can be seen in Table 1.
We are careful to include in stage 6 of the create protocol

the fsptr of the new file-object, although it has not been
created yet. It is possible to first create the object, and then

link it into the directory structure. However, if the host
fails, a dangling object will remain on theOSD. Since there
are no links to this object, it will never be erased. It is also
possible to fail after the first phase of the protocol. Thus
storing fsptr is important for the erase operations since it is
required to finish the operation in case of failure.
Using fresh (never used before) object names is cru-

cial. For example, assume that a create object operation
uses object id i, and fails after stage 6. Later, a create op-
eration reuses i and creates a file with id i in another di-
rectory. Even later, Erase is activated to erase the initial
failed create-object, and erases i. This sequence of events
will corrupt the file-system, with the second create dir-entry
pointing to a non-existent object.

4.2.4. Rename Protocol rename(src dir,
src name, trg dir, trg name) operation works
as follows:

1. Take leases for the source and target directories

2. Check that the target entry has correct type: a file can
only be copied onto a file, and a directory can only be
copied onto a directory.

3. Overwrite the flag in the source dir-entry to
RenameFrom(trg dir, trg name)



Figure 5. zFS Operations - walk through create(parent dir/fname,...). (2) The host sends a
request to create a file. (4) The TSVR creates a fresh object-id for the file, and takes an exclusive
lease for it from the LMGR (5) The TSVR takes a lease for the parent directory from the FMGR (6) The
TSVR write a new temporary directory entry on the object disk holding the parent directory (7,8) The
TSVR creates the file and writes the initial meta-data (9) The TSVR finalizes the transaction.

4. Create the target entry if it does not exist. Overwrite
the flag to RenameTo(src dir,src name)

5. Overwrite the source dir-entry flag to
RenameFromSucc(trg dir, trg name)

6. Overwrite the target dir-entry flag to Normal

7. Erase the old entry (including the log)

8. Release the leases taken

The no-return stage is step 5. If the initiating host fails
prior to that phase, the rename operation needs to be rolled
back. If that step is passed, any other host must help roll it
forward.
To roll the rename back we do:

1. Take leases for the source and target directories

2. Overwrite the source dir-entry flag with Normal

3. Erase the target dir-entry

4. Release the leases taken

To support complete roll-back, we must log into the dir-
entries participating in the operation complete information

on the rename source and target. The largest log component
is the file name which can be any sequence of 1 to 255
bytes.
An example of an interrupted rename operation where

the initiating host fails before reaching the no-return stage
is depicted in Table 2. Host A performs stages one and two
and fails. Host B stumbles onto the source dir-entry, reads
that there is an in-flight rename operation, and determines
that it should be rolled back. It then converts the source dir-
entry to Normal and erases the half-baked target entry.

5. Handling Failures

In this section, we describe several failure scenarios
which can occur during file system operation. The zFS
error-recovery algorithms sketched here enable the system
to recover and return to normal operating state.
If an FE fails when it is connected to some FMGR open-

ing file X then the FE leases will expire after a timeout and
the FMGR will be able to recover control of portions of the
file held by the failed FE. The same goes for any directories
the FE held open.
Failure of an FMGR managing file X is detected by all

the FEs that held X open, as well as the LMGR that man-
aged the OSD on which X was located. To ensure that in



Figure 6. The hierarchy of leases

Table 2. Example run of an interrupted rename.
Host operation on source operation on target
A flag := RenameFrom(trg dir, trg name)
A flag := RenameTo(src dir,src name)
B flag := Normal
B erase dir entry

such case all dirty pages are saved on the OSD, zFS uses
the following mechanism. zFS limits the number of dirty
pages in each host’s Cache to N, where N is the num-
ber of pages which can safely be written to OSD in time
T . Assuming lease renewal time is set to Renew Time (
Renew Time >> T ), if a lease renewal does not arrive in
Renew Time�T after the last renewal, then all dirty pages
are written to the OSD.
Once FE’s range-leases expire and cannot be refreshed,

all file blocks are discarded. Suppose X is mapped to some
object Xob j on OSD obsi. Since the FMGR does not re-
new its object lease on Xob j, it is then automatically recov-
ered after a timeout by LMGRi. Clients instantiate a new
FMGR, and once the lease for Xob j expires, the new file-
manager takes over.
Failure of an LMGRi is detected by FMGRs that hold

leases for objects on OSDi. Upon failure to renew a lease,
FMGR informs all FEs that received leases on the file, to
flush all their data to disk and release the file. Subsequently,
the client instantiates a new LMGR which attempts to take
the OSDi lease. Once the old lease expires, this is possible,
and operations on OSDi can continue.
An OSD failure is catastrophic, unless it is replicated,

or, unless the file-system is intelligent enough to reconnect
to it when it comes back up.

6. Comparison to other File Systems

There are many file-system to compare to and we can-
not include here a complete list. Therefore, we focus here
only on few examples. We observed that none of these file
systems use cooperative caching.

6.1. Coda

Coda [4] is a file-system designed for disconnected op-
eration. It separates the file-system into servers that main-
tain FS volumes, and remote clients that connect to the sys-
tem. The clients may work disconnected from the system,
and wish to reconnect and synchronize their local work
with FS state. To allow efficient disconnected operation,
Coda relaxes consistency requirements. It optimistically
assumes that clients work on their own separate home-
directories, and that there is very little sharing. Hence, a
client may take its files, disconnect, make changes, and af-
ter a few hours reconnect and send its new file versions



back to the servers. This works well up to a point. If there
is file or directory sharing, relaxed consistency will result
in inconsistency. Each client will take a directory or file
home, and make incompatible changes. To work around
this, the file system has a mechanism to detect inconsis-
tency upon client reconnection, and either merges changes
together, or asks the client to manually merge incompatible
files.
In contrast, zFS does support disconnected operation,

and enforces strong cache consistency. The challenge is to
make such a system scale and work efficiently.

6.2. Intermezzo

Intermezzo [5] is a recent rewrite of Coda so that its
local operations will be on par with local file-systems such
as ext2 [7].
In zFS, we would like to achieve good performance for

local operations, when we are working against a locally
cached file or directory; i.e., to be as fast as local file-
systems as well.

6.3. Lustre

Lustre [2] is a SAN file-system5 that is built out of three
components: clients, Cluster control-system, and Storage
Targets where a SAN connects them together.
The clients see a cluster file-system with standard

POSIX semantics.
Cluster Control Systems manage name-space and file

system meta-data coherence, security, cluster recovery, and
coordinate storage management functions. Cluster control
systems do not handle file data and direct clients to perform
file I/O directly and securely with storage targets.
Storage Targets store persistent data and participate in

management functions. Targets are OSDs and are fur-
thermore, programmable, allowing the execution of down-
loaded modules.
Lustre is being constructed, and is an open-source

project.
zFS does not assume that OSDs are programmable.

However, it does assume a non-standard locking interface
provided by the OSDs. Lustre uses consensus-style meth-
ods to achieve file-system coherency in caching and lock-
ing, whereas zFS uses OSD based leases.

6.4. xFS and XFS

xFS [3] is a network file system which attempts to dis-
tribute all aspects of file operations over multiple machines
connected by a network. The goal of xFS is similar to

5we use the term “SAN file-system” to denote a file system which uses
SAN as its block device server.

zFS, achieving high availability, performance and scalabil-
ity. However, xFS management distribution policy is static
while zFS uses dynamic distribution which is sensitive to
network load.
XFS [13] is a local file-system built by SGI, that scales

to large file-systems, and is reputed to provide good scala-
bility and performance for local and SMP systems.
zFS is designed to achieve these goals, but in a more de-

manding distributed settings. We do not expect to achieve
XFS’s excellent local performance in the near future.

6.5. StorageTank

StorageTank [6], much like Lustre, is a SAN file-system
built in IBM, where there are clients, meta-data servers,
and OSDs. StorageTank currently works with standard
SCSI disks over a SAN. New design is underway to enable
it to use object-stores. For a fair comparison we assume a
future system that works with OSDs.
StorageTank clients and OSDs are connected directly

by a SAN, allowing the efficient movement of bulk data.
Meta-data servers are connected to the rest of the system
through a different, IP network. Meta-data servers main-
tain all file-system meta-data state, and are further respon-
sible for all coherency, and management issues. Meta-data
servers may be clustered for better scalability.
zFS does not use clustering technologies and does not

rely on different SAN/IP networks. The disadvantage is the
added overhead of directory operations being distributed
transactions instead of local operations on a meta-data
server.

6.6. GPFS

GPFS [12] is a file-system built by IBM for high-end
super-computers. The largest installation we know of is
comprised of 512 compute nodes, and 1024 disks. The sys-
tem can handle traditional work loads, with little sharing,
however, it is designed to handle well large scientific appli-
cations which use large files with heavy write-sharing.
In contrast with zFS, GPFS is a fully developed file-

system, with years of experience and with some of the
largest installations in existence. However, whereas GPFS
uses standard consensus style solutions to address failures,
zFS attempts a different OSD based scheme. Furthermore,
GPFS uses standard disks, whereas zFS uses OSDs. We
expect comparative performance for low to medium shar-
ing situations.

6.7. StorageNet

StorageNet is a file-system under development in IBM
research. It shares some features with zFS: use of object-
based storage, and high scalability requirements. It uses no



file-servers, the file-system is comprised solely of clients
and object-stores. While the file-systems are similar in
some respects, their goals are very different.
StorageNet is focused on high-scalability, WAN op-

eration, and security; while zFS targets strong cache-
consistency, and safe distributed transactions.

7. Summary

Building a file system from the components described
above is expected to provide high performance and scala-
bility due to the following features:

Separation of storage from file management Caching
and metadata management (path resolution) are done
on a machine that is different from the one storing the
data – the object disk (OSD). Dynamic distribution
of file and directory management across multiple ma-
chines is done when files and directories are opened.
This offers superior performance and scalability,
compared to traditional server-based file systems.
For low-sharing scenarios, each file-manager will
be located on the machine using that file. This
provides good locality. Because multiple machines
can read and write to disks directly, the traditional
centralized file-server bottleneck is removed. File
system recovery can occur automatically; whenever
a directory transaction fails, the next client to access
the directory will fix it.

Cooperative caching The memories of the machines run-
ning the cooperative cache process are treated as one
global cooperative cache. Clients are able to ac-
cess blocks cached by other clients, thereby reduc-
ing OSD’s load and reducing the cost of local cache
misses.

Lack of dedicated machines Any machine in the system,
including ones that run user applications, can run a
file-manager and a lease-manager. Hence, machines
can automatically get exclusive access to files and di-
rectories when they are the sole users. Furthermore,
any machine in the system can assume the respon-
sibilities of a failed component. This allows online
recovery from directory system corruption (by failed
transactions). The lease mechanism employed in zFS
ensures that, in the event of failure, zFS will operate
correctly. Thus, in zFS, there is no centralized man-
ager and no centralized server which are a single point
of failure.

Use of Object Disks The use of object disks greatly en-
hances the separation between management and stor-
age activities. It relieves the file system from handling

meta-data chores of allocating/removing and keeping
track of disk blocks on the physical disk. Assuming
discovery support will be added to OSDs, similar to
what SCSI provides today, zFS clients will be able
to discover online the addition of OSDs. Using load
statistics, available from theOSD interface, will allow
intelligent determination of file-placement.
All hard-state is stored on disk; hence, the rest of the
file system can fail all at once without corrupting the
file system layout on disk.
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