BlueSky: A Cloud-Backed File System for the Enterprise

Michael Vrable; Stefan Savage, and Geoffrey M. Voelker

Department of Computer Science and Engineering
University of California, San Diego

Abstract

We present BlueSky, a network file system backed by
cloud storage. BlueSky stores data persistently in a cloud
storage provider such as Amazon S3 or Windows Azure,
allowing users to take advantage of the reliability and
large storage capacity of cloud providers and avoid the
need for dedicated server hardware. Clients access the
storage through a proxy running on-site, which caches
data to provide lower-latency responses and additional
opportunities for optimization. We describe some of the
optimizations which are necessary to achieve good per-
formance and low cost, including a log-structured design
and a secure in-cloud log cleaner. BlueSky supports mul-
tiple protocols—both NFS and CIFS—and is portable to
different providers.

1 Introduction

The promise of third-party “cloud computing” services is
a trifecta of reduced cost, dynamic scalability, and high
availability. While there remains debate about the precise
nature and limit of these properties, it is difficult to deny
that cloud services offer real utility—evident in the large
numbers of production systems now being cloud-hosted
via services such as Amazon’s AWS and Microsoft’s
Azure. However, thus far, services hosted in the cloud
have largely fallen into two categories: consumer-facing
Web applications (e.g., Netflix customer Web site and
streaming control) and large-scale data crunching (e.g.,
Netflix media encoding pipeline).

Little of this activity, however, has driven widespread
outsourcing of enterprise computing and storage applica-
tions. The reasons for this are many and varied, but they
largely reflect the substantial inertia of existing client-
server deployments. Enterprises have large capital and
operational investments in client software and depend on
the familiar performance, availability and security char-
acteristics of traditional server platforms. In essence,
cloud computing is not currently a transparent “drop in”
replacement for existing services.

*Current affiliation: Google. The work in this paper was performed
while a student at UC San Diego.

There are also substantive technical challenges to
overcome, as the design points for traditional client-
server applications (e.g., file systems, databases, etc.)
frequently do not mesh well with the services offered
by cloud providers. In particular, many such applica-
tions are designed to be bandwidth-hungry and latency-
sensitive (a reasonable design in a LAN environment),
while the remote nature of cloud service naturally in-
creases latency and the cost of bandwidth. Moreover,
while cloud services typically export simple interfaces
to abstract resources (e.g., “put file” for Amazon’s S3),
traditional server protocols can encapsulate significantly
more functionality. Thus, until such applications are re-
designed, much of the latent potential for outsourcing
computing and storage services remains untapped. In-
deed, at $115B/year, small and medium business (SMB)
expenditures for servers and storage represent an enor-
mous market should these issues be resolved [9]. Even
if the eventual evolution is towards hosting all applica-
tions in the cloud, it will be many years before such a
migration is complete. In the meantime, organizations
will need to support a mix of local applications and use
of the cloud.

In this paper, we explore an approach for bridging
these domains for one particular application: network file
service. In particular, we are concerned with the extent
to which traditional network file service can be replaced
with commodity cloud services. However, our design
is purposely constrained by the tremendous investment
(both in capital and training) in established file system
client software; we take as a given that end-system soft-
ware will be unchanged. Consequently, we focus on a
proxy-based solution, one in which a dedicated proxy
server provides the illusion of a single traditional file
server in an enterprise setting, translating requests into
appropriate cloud storage API calls over the Internet.

We explore this approach through a prototype sys-
tem, called BlueSky, that supports both NFS and CIFS
network file system protocols and includes drivers for
both the Amazon EC2/S3 environment and Microsoft’s
Azure. The engineering of such a system faces a number
of design challenges, the most obvious of which revolve
around performance (i.e., caching, hiding latency, and

maximizing the use of Internet bandwidth), but less intu-
itively also interact strongly with cost. In particular, the
interaction between the storage interfaces and fee sched-
ule provided by current cloud service providers conspire
to favor large segment-based layout designs (as well
as cloud-based file system cleaners). We demonstrate
that ignoring these issues can dramatically inflate costs
(as much as 30x in our benchmarks) without signifi-
cantly improving performance. Finally, across a series
of benchmarks we demonstrate that, when using such a
design, commodity cloud-based storage services can pro-
vide performance competitive with local file servers for
the capacity and working sets demanded by enterprise
workloads, while still accruing the scalability and cost
benefits offered by third-party cloud services.

2 Related Work

Network storage systems have engendered a vast litera-
ture, much of it focused on the design and performance
of traditional client server systems such as NFS, AFS,
CIFS, and WAFL [6, 7, 8, 25]. Recently, a range of
efforts has considered other structures, including those
based on peer-to-peer storage [16] among distributed sets
of untrusted servers [12, 13] which have indirectly in-
formed subsequent cloud-based designs.

Cloud storage is a newer topic, driven by the availabil-
ity of commodity services from Amazon’s S3 and other
providers. The elastic nature of cloud storage is reminis-
cent of the motivation for the Plan 9 write-once file sys-
tems [19, 20], although cloud communication overheads
and monetary costs argue against a block interface and
no storage reclamation. Perhaps the closest academic
work to our own is SafeStore [11], which stripes erasure-
coded data objects across multiple storage providers, ul-
timately exploring access via an NFS interface. How-
ever, SafeStore is focused clearly on availability, rather
than performance or cost, and thus its design decisions
are quite different. A similar, albeit more complex sys-
tem, is DepSky [2], which also focuses strongly on avail-
ability, proposing a “cloud of clouds” model to replicate
across providers.

At a more abstract level, Chen and Sion create an
economic framework for evaluating cloud storage costs
and conclude that the computational costs of the cryp-
tographic operations needed to ensure privacy can over-
whelm other economic benefits [3]. However, this work
predates Intel’s AES-NI architecture extension which
significantly accelerates data encryption operations.

There have also been a range of non-academic at-
tempts to provide traditional file system interfaces for the
key-value storage systems offered by services like Ama-
zon’s S3. Most of these install new per-client file system
drivers. Exemplars include s3fs [22], which tries to map

the file system directly on to S3’s storage model (which
both changes file system semantics, but also can dramat-
ically increase costs) and ElasticDrive [5], which exports
a block-level interface (potentially discarding optimiza-
tions that use file-level knowledge such as prefetching).

However, the systems closest to our own are “cloud
storage gateways”, a new class of storage server that has
emerged in the last few years (contemporaneous with our
effort). These systems, exemplified by companies such
as Nasuni, Cirtas, TwinStrata, StorSimple and Panzura,
provide caching network file system proxies (or “gate-
ways”) that are, at least on the surface, very similar to
our design. Pricing schedules for these systems gener-
ally reflect a 2x premium over raw cloud storage costs.
While few details of these systems are public, in general
they validate the design point we have chosen.

Of commercial cloud storage gateways, Nasuni [17]
is perhaps most similar to BlueSky. Nasuni provides a
“virtual NAS appliance” (or “filer”), software packaged
as a virtual machine which the customer runs on their
own hardware—this is very much like the BlueSky proxy
software that we build. The Nasuni filer acts as a cache
and writes data durably to the cloud. Because Nasuni
does not publish implementation details it is not possi-
ble to know precisely how similar Nasuni is to BlueSky,
though there are some external differences. In terms of
cost, Nasuni charges a price based simply on the quantity
of disk space consumed (around $0.30/GB/month, de-
pending on the cloud provider)—and not at all a function
of data transferred or operations performed. Presumably,
Nasuni optimizes their system to reduce the network and
per-operation overheads—otherwise those would eat into
their profits—but the details of how they do so are un-
clear, other than by employing caching.

Cirtas [4] builds a cloud gateway as well but sells it
in appliance form: Cirtas’s Bluejet is a rack-mounted
computer which integrates software to cache file system
data with storage hardware in a single package. Cirtas
thus has a higher up-front cost than Nasuni’s product,
but is easier to deploy. Panzura [18] provides yet another
CIFS/NFES gateway to cloud storage. Unlike BlueSky
and the others, Panzura allows multiple customer sites
to each run a cloud gateway. Each of these gateways ac-
cesses the same underlying file system, so Panzura is par-
ticularly appropriate for teams sharing data over a wide
area. But again, implementation details are not provided.

TwinStrata [29] and StorSimple [28] implement gate-
ways that present a block-level storage interface, like
ElasticDrive, and thus lose many potential file system-
level optimizations as well.

In some respects BlueSky acts like a local storage
server that backs up data to the cloud—a local NFS
server combined with Mozy [15], Cumulus [30], or sim-
ilar software could provide similar functionality. How-

ever, such backup tools may not support a high backup
frequency (ensuring data reaches the cloud quickly) and
efficient random access to files in the cloud. Further, they
treat the local data (rather than the cloud copy) as au-
thoritative, preventing the local server from caching just
a subset of the files.

3 Architecture

BlueSky provides service to clients in an enterprise us-
ing a transparent proxy-based architecture that stores
data persistently on cloud storage providers (Figure 1).
The enterprise setting we specifically consider consists
of a single proxy cache colocated with enterprise clients,
with a relatively high-latency yet high-bandwidth link to
cloud storage, with typical office and engineering request
workloads to files totaling tens of terabytes. This sec-
tion discusses the role of the proxy and cloud provider
components, as well as the security model supported by
BlueSky. Sections 4 and 5 then describe the layout and
operation of the BlueSky file system and the BlueSky
proxy, respectively.

Cloud storage acts much like another layer in the stor-
age hierarchy. However, it presents new design consid-
erations that, combined, make it distinct from other lay-
ers and strongly influence its use as a file service. The
high latency to the cloud necessitates aggressive caching
close to the enterprise. On the other hand, cloud storage
has elastic capacity and provides operation service times
independent of spatial locality, thus greatly easing free
space management and data layout. Cloud storage inter-
faces often only support writing complete objects in an
operation, preventing the efficient update of just a portion
of a stored object. This constraint motivates an append
rather than an overwrite model for storing data.

Monetary cost also becomes an explicit metric of
optimization: cloud storage capacity might be elastic,
but still needs to be parsimoniously managed to min-
imize storage costs over time [30]. With an append
model of storage, garbage collection becomes a neces-
sity. Providers also charge a small cost for each opera-
tion. Although slight, costs are sufficiently high to moti-
vate aggregating small objects (metadata and small files)
into larger units when writing data. Finally, outsourcing
data storage makes security a primary consideration.

3.1 Local Proxy

The central component of BlueSky is a proxy situated
between clients and cloud providers. The proxy commu-
nicates with clients in an enterprise using a standard net-
work file system protocol, and communicates with cloud
providers using a cloud storage protocol. Our prototype
supports both the NFS (version 3) and CIFS protocols for
clients, and the RESTful protocols for the Amazon S3
and Windows Azure cloud services. Ideally, the proxy

Front Resource Back
Ends Managers Ends
Client Segment
Requests <—> Writes

Network

-—
Responses

DiskJournall T Disk Cache

Encryption

E‘I

Writes Reads

Figure 1: BlueSky architecture.

runs in the same enterprise network as the clients to min-
imize latency to them. The proxy caches data locally and
manages sharing of data among clients without requiring
an expensive round-trip to the cloud.

Clients do not require modification since they continue
to use standard file-sharing protocols. They mount Blue-
Sky file systems exported by the proxy just as if they
were exported from an NFS or CIFS server. Further, the
same BlueSky file system can be mounted by any type of
client with shared semantics equivalent to Samba.

As described in more detail later, BlueSky lowers cost
and improves performance by adopting a log-structured
data layout for the file system stored on the cloud
provider. A cleaner reclaims storage space by garbage-
collecting old log segments which do not contain any live
objects, and processing almost-empty segments by copy-
ing live data out of old segments into new segments.

As a write-back cache, the BlueSky proxy can fully
satisfy client write requests with local network file sys-
tem performance by writing to its local disk—as long as
its cache capacity can absorb periods of write bursts as
constrained by the bandwidth the proxy has to the cloud
provider (Section 6.5). For read requests, the proxy can
provide local performance to the extent that the proxy
can cache the working set of the client read workload
(Section 6.4).

3.2 Cloud Provider

So that BlueSky can potentially use any cloud provider
for persistent storage service, it makes minimal assump-
tions of the provider; in our experiments, we use both
Amazon S3 and the Windows Azure blob service. Blue-
Sky requires only a basic interface supporting get, put,
list, and delete operations. If the provider also sup-
ports a hosting service, BlueSky can co-locate the file
system cleaner at the provider to reduce cost and improve
cleaning performance.

3.3 Security

Security becomes a key concern with outsourcing critical
functionality such as data storage. In designing BlueSky,
our goal is to provide high assurances of data confiden-

tiality and integrity. The proxy encrypts all client data
before sending it over the network, so the provider can-
not read private data. Encryption is at the level of objects
(inodes, file blocks, etc.) and not entire log segments.
Data stored at the provider also includes integrity checks
to detect any tampering by the storage provider.

However, some trust in the cloud provider is unavoid-
able, particularly for data availability. The provider can
always delete or corrupt stored data, rendering it unavail-
able. These actions could be intentional—e.g., if the
provider is malicious—or accidental, for instance due
to insufficient redundancy in the face of correlated hard-
ware failures from disasters. Ultimately, the best guard
against such problems is through auditing and the use of
multiple independent providers [2, 11]. BlueSky could
readily incorporate such functionality, but doing so re-
mains outside the scope of our current work.

A buggy or malicious storage provider could also
serve stale data. Instead of returning the most recent data,
it could return an old copy of a data object that nonethe-
less has a valid signature (because it was written by the
client at an earlier time). By authenticating pointers be-
tween objects starting at the root, however, BlueSky pre-
vents a provider from selectively rolling back file data.
A provider can only roll back the entire file system to an
earlier state, which customers will likely detect.

BlueSky can also take advantage of computation in
the cloud for running the file system cleaner. As with
storage, we do not want to completely trust the compu-
tational service, yet doing so provides a tension in the
design. To maintain confidentiality, data encryption keys
should not be available on cloud compute nodes. Yet,
if cloud compute nodes are used for file system mainte-
nance tasks, the compute nodes must be able to read and
manipulate file system data structures. For BlueSky, we
make the tradeoff of encrypting file data while leaving
the metadata necessary for cleaning the file system un-
encrypted. As a result, storage providers can understand
the layout of the file system, but the data remains confi-
dential and the proxy can still validate its integrity.

In summary, BlueSky provides strong confidentiality
and slightly weaker integrity guarantees (some data roll-
back attacks might be possible but are largely prevented),
but must rely on the provider for availability.

4 BlueSky File System

This section describes the BlueSky file system layout.
We present the object data structures maintained in the
file system and their organization in a log-structured for-
mat. We also describe how BlueSky cleans the logs com-
prising the file system, and how the design conveniently
lends itself to providing versioned backups of the data
stored in the file system.

4.1 Object Types

BlueSky uses four types of objects for representing data
and metadata in its log-structured file system [23] for-
mat: data blocks, inodes, inode maps, and checkpoints.
These objects are aggregated into log segments for stor-
age. Figure 2 illustrates their relationship in the layout of
the file system. On top of this physical layout BlueSky
provides standard POSIX file system semantics, includ-
ing atomic renames and hard links.

Data blocks store file data. Files are broken apart into
fixed-size blocks (except the last block may be short).
BlueSky uses 32 KB blocks instead of typical disk file
system sizes like 4 KB to reduce overhead: block point-
ers as well as extra header information impose a higher
per-block overhead in BlueSky than in an on-disk file
system. In the evaluations in Section 6, we show the
cost and performance tradeoffs of this decision. Noth-
ing fundamental, however, prevents BlueSky from using
variable-size blocks optimized for the access patterns of
each file, but we have not implemented this approach.

Inodes for all file types include basic metadata: own-
ership and access control, timestamps, etc. For regu-
lar files, inodes include a list of pointers to data blocks
with the file contents. Directory entries are stored inline
within the directory inode to reduce the overhead of path
traversals. BlueSky does not use indirect blocks for lo-
cating file data—inodes directly contain pointers to all
data blocks (easy to do since inodes are not fixed-size).

Inode maps list the locations in the log of the most
recent version of each inode. Since inodes are not stored
at fixed locations, inode maps provide the necessary level
of indirection for locating inodes.

A checkpoint object determines the root of a file sys-
tem snapshot. A checkpoint contains pointers to the loca-
tions of the current inode map objects. On initialization
the proxy locates the most recent checkpoint by scan-
ning backwards in the log, since the checkpoint is always
one of the last objects written. Checkpoints are useful
for maintaining file system integrity in the face of proxy
failures, for decoupling cleaning and file service, and for
providing versioned backup.

4.2 Cloud Log

For each file system, BlueSky maintains a separate log
for each writer to the file system. Typically there are
two: the proxy managing the file system on behalf of
clients and a cleaner that garbage collects overwritten
data. Each writer stores its log segments to a separate
directory (different key prefix), so writers can make up-
dates to the file system independently.

Each log consists of a number of log segments, and
each log segment aggregates multiple objects together
into an approximately fixed-size container for storage
and transfer. In the current implementation segments are

Unencrypted Objects

Encrypted Objects

Checkpoint Inode map [0, 4095]
Last segments seen: 2

cleaner: 3 / 3
proxy: 12 5
Inode maps/ 6

~

Inode 6 Data Block
/' Type: regular file / Inode number: 6
Owner: root Length: 32 KB
Size: 48 KB
Data blocks:
0 Data Block
1 — Inode number: 6
Length: 16 KB

[0, 4095] 1
[4096, 8191].\ 20%

Cloud Log Directories: '

~ 01

O @

Segment #11 <-
Po: || IR
Segment #2 #3 #4

Cleaner: | |

Figure 2: BlueSky filesystem layout. The top portion shows the logical organization. Object pointers are shown with
solid arrows. Shaded objects are encrypted (but pointers are always unencrypted). The bottom of the figure illustrates
how these log items are packed into segments stored in the cloud.

up to about 4 MB, large enough to avoid the overhead
of dealing with many small objects. Though the storage
interface requires that each log segment be written in a
single operation, typically cloud providers allow partial
reads of objects. As aresult, BlueSky can read individual
objects regardless of segment size. Section 6.6 quantifies
the performance benefits of grouping data into segments
and of selective reads, and Section 6.7 quantifies their
cost benefits.

A monotonically-increasing sequence number identi-
fies each log segment within a directory, and a byte offset
identifies a specific object in the segment. Together, the
triple (directory, sequence number, offset) describes the
physical location of each object. Object pointers also in-
clude the size of the object; while not required this hint
allows BlueSky to quickly issue a read request for the
exact bytes needed to fetch the object.

In support of BlueSky’s security goals (Section 3.3),
file system objects are individually encrypted (with AES)
and protected with a keyed message authentication code
(HMAC-SHA-256) by the proxy before uploading to the
cloud service. Each object contains data with a mix of
protections: some data is encrypted and authenticated,
some data is authenticated plain-text, and some data is
unauthenticated. The keys for encryption and authenti-
cation are not shared with the cloud, though we assume
that customers keep a safe backup of these keys for dis-
aster recovery. Figure 3 summarizes the fields included
in objects.

BlueSky generates a unique identifier (UID) for each
object when the object is written into the log. The UID
remains constant if an item is simply relocated to a new
log position. An object can contain pointers to other
objects—for example, an inode pointing to data blocks—
and the pointer lists both the UID and the physical lo-

Object type
Unique identifier (UID)

Authenticated: Inode number

Encrypted: {Object payload
Object pointers: UIDs

Unauthenticated: Object pointers: Physical locations

Figure 3: Data fields included in most objects.

cation. A cleaner in the cloud can relocate objects and
update pointers with the new locations; as long as the
UID in the pointer and the object match, the proxy can
validate that the data has not been tampered with.

4.3 Cleaner

As with any log-structured file system, BlueSky requires
a file system cleaner to garbage collect data that has been
overwritten. Unlike traditional disk-based systems, the
elastic nature of cloud storage means that the file sys-
tem can grow effectively unbounded. Thus, the cleaner
is not necessary to make progress when writing out new
data, only to reduce storage costs and defragment data
for more efficient access.

We designed the BlueSky cleaner so that it can run
either at the proxy or on a compute instance within the
cloud provider where it has faster, cheaper access to the
storage. For example, when running the cleaner in Ama-
zon EC2 and accessing storage in S3, Amazon does not
charge for data transfers (though it still charges for op-
erations). A cleaner running in the cloud does not need
to be fully trusted—it will need permission to read and
write cloud storage, but does not require the file system
encryption and authentication keys.

The cleaner runs online with no synchronous interac-
tions with the proxy: clients can continue to access and
modify the file system even while the cleaner is running.
Conflicting updates to the same objects are later merged
by the proxy, as described in Section 5.3.

4.4 Backups

The log-structured design allows BlueSky to integrate
file system snapshots for backup purposes easily. In fact,
so long as a cleaner is never run, any checkpoint record
ever written to the cloud can be used to reconstruct the
state of the file system at that point in time. Though not
implemented in our prototype, the cleaner or a snapshot
tool could record a list of checkpoints to retain and pro-
tect all required log segments from deletion. Those seg-
ments could also be archived elsewhere for safekeeping.

4.5 Multi-Proxy Access

In the current BlueSky implementation only a single
proxy can write to the file system, along with the cleaner
which can run in parallel. It would be desirable to have
multiple proxies reading from and writing to the same
BlueSky file system at the same time—either from a sin-
gle site, to increase capacity and throughput, or from
multiple sites, to optimize latency for geographically-
distributed clients.

The support for multiple file system logs in BlueSky
should make it easier to add support for multiple concur-
rent proxies. Two approaches are possible. Similar to
Ivy [16], the proxies could be unsynchronized, offering
loose consistency guarantees and assuming only a single
site updates a file most of the time. When conflicting
updates occur in the uncommon case, the system would
present the user with multiple file versions to reconcile.

A second approach is to provide stronger consistency
by serializing concurrent access to files from multiple
proxies. This approach adds the complexity of some
type of distributed lock manager to the system. Since
cloud storage itself does not provide the necessary lock-
ing semantics, a lock manager would either need to run
on a cloud compute node or on the proxies (ideally, dis-
tributed across the proxies for fault tolerance).

Exploring either option remains future work.

S BlueSky Proxy

This section describes the design and implementation of
the BlueSky proxy, including how it caches data in mem-
ory and on disk, manages its network connections to the
cloud, and indirectly cooperates with the cleaner.

5.1 Cache Management

The proxy uses its local disk storage to implement a
write-back cache. The proxy logs file system write re-
quests from clients (both data and metadata) to a journal

on local disk, and ensures that data is safely on disk be-
fore telling clients that data is committed. Writes are
sent to the cloud asynchronously. Physically, the journal
is broken apart into sequentially-numbered files on disk
(journal segments) of a few megabytes each.

This write-back caching does mean that in the event of
a catastrophic failure of the proxy—if the proxy’s storage
is lost—that some data may not have been written to the
cloud and will be lost. If the local storage is intact no data
will be lost; the proxy will replay the changes recorded
in the journal. Periodically, the proxy snapshots the file
system state, collects new file system objects and any in-
ode map updates into one or more log segments, and up-
loads those log segments to cloud storage. Our prototype
proxy implementation does not currently perform dedu-
plication, and we leave exploring the tradeoffs of such an
optimization for future work.

There are tradeoffs in choosing how quickly to flush
data to the cloud. Writing data to the cloud quickly mini-
mizes the window for data loss. However, a longer time-
out has advantages as well: it enables larger log segment
sizes, and it allows overlapping writes to be combined. In
the extreme case of short-lived temporary files, no data
need be uploaded to the cloud. Currently the BlueSky
proxy commits data as frequently as once every five sec-
onds. BlueSky does not start writing a new checkpoint
until the previous one completes, so under a heavy write
load checkpoints may commit less frequently.

The proxy keeps a cache on disk to satisfy many read
requests without going to the cloud; this cache consists
of old journal segments and log segments downloaded
from cloud storage. Journal and log segments are dis-
carded from the cache using an LRU policy, except that
journal segments not yet committed to the cloud are kept
pinned in the cache. At most half of the disk cache can be
pinned in this way. The proxy sends HTTP byte-range
requests to decrease latency and cost when only part of
a log segment is needed. It stores partially-downloaded
segments as sparse files in the cache.

5.2 Connection Management

The BlueSky storage backends reuse HTTP connections
when sending and receiving data from the cloud; the
CURL library handles the details of this connection pool-
ing. Separate threads perform each upload or download.
BlueSky limits uploads to no more than 32 segments con-
currently, to limit contention among TCP sessions and to
limit memory usage in the proxy (it buffers each segment
entirely in memory before sending).

5.3 Merging System State

As discussed in Section 4.3, the proxy and the cleaner
operate independently of each other. When the cleaner
runs, it starts from the most recent checkpoint written by

merge_inode(ino,, ino.):
if inop.id = ino..id:
return ino. // No conflicting changes
// Start with proxy version and merge cleaner changes
N0, <— iN0p; N0y, .id <— fresh,uuid(); updated < false
for i in [0...num_blocks(inop) — 1]:
bp < inop.blocks|i]; be + inoc.blocks|i]
if be.id = bp.id and b..loc # by loc:
// Relocated data by cleaner is current
inom.blocks.append(b.); updated < true
else: // Take proxy’s version of data block
inoy, .blocks.append(by)
return (ino., if updated else inop)

Figure 4: Pseudocode for the proxy algorithm that
merges state for possibly divergent inodes. Subscripts
p and . indicate state written by the proxy and cleaner,
respectively; ,,, is used for a candidate merged version.

the proxy. The cleaner only ever accesses data relative
to this file system snapshot, even if the proxy writes ad-
ditional updates to the cloud. As a result, the proxy and
cleaner each may make updates to the same objects (e.g.,
inodes) in the file system. Since reconciling the updates
requires unencrypted access to the objects, the proxy as-
sumes responsibility for merging file system state.

When the cleaner finishes execution, it writes an up-
dated checkpoint record to its log; this checkpoint record
identifies the snapshot on which the cleaning was based.
When the proxy sees a new checkpoint record from the
cleaner, it begins merging updates made by the cleaner
with its own updates.

BlueSky does not currently support the general case
of merging file system state from many writers, and only
supports the special case of merging updates from a sin-
gle proxy and cleaner. This case is straightforward since
only the proxy makes logical changes to the file system
and the cleaner merely relocates data. In the worst case,
if the proxy has difficulty merging changes by the cleaner
it can simply discard the cleaner’s changes.

The persistent UIDs for objects can optimize the check
for whether merging is needed. If both the proxy and
cleaner logs use the same UID for an object, the cleaner’s
version may be used. The UIDs will differ if the proxy
has made any changes to the object, in which case the
objects must be merged or the proxy’s version used. For
data blocks, the proxy’s version is always used. For in-
odes, the proxy merges file data block-by-block accord-
ing to the algorithm shown in Figure 4. The proxy can
similarly use inode map objects directly if possible, or
write merged maps if needed.

Figure 5 shows an example of concurrent updates by
the cleaner and proxy. State (a) includes a file with four
blocks, stored in two segments written by the proxy.
At (b) the cleaner runs and relocates the data blocks.

gj[f’roxyi IMN \]

b)(Proxy: [IT21 []
Cleaner:
R
)
E’rOXYZIIIZ [] 14T 1 1]

o))

Figure 5: Example of concurrent updates by cleaner and
proxy, and the resulting merged state.

1T 1]

d)(Proxy: [[2] [] [[BTal |

Cleaner:

Concurrently, in (c) the proxy writes an update to the
file, changing the contents of block 4. When the proxy
merges state in (d), it accepts the relocated blocks 1-3
written by the cleaner but keeps the updated block 4. At
this point, when the cleaner runs again it can garbage
collect the two unused proxy segments.

5.4 Implementation

Our BlueSky prototype is implemented primarily in C,
with small amounts of C++ and Python. The core Blue-
Sky library, which implements the file system but not any
of the front-ends, consists of 8500 lines of code (includ-
ing comments and whitespace). BlueSky uses GLib for
data structures and utility functions, libgcrypt for cryp-
tographic primitives, and libs3 and libcurl for interaction
with Amazon S3 and Windows Azure.

Our NFS server consists of another 3000 lines of code,
not counting code entirely generated by the rpcgen RPC
protocol compiler. The CIFS server builds on top of
Samba 4, adding approximately 1800 lines of code in a
new backend. These interfaces do not fully implement
all file system features such as security and permissions
handling, but are sufficient to evaluate the performance
of the system. The prototype in-cloud file system cleaner
is implemented in just 650 lines of portable Python code
and does not depend on the BlueSky core library.

6 Evaluation

In this section we evaluate the BlueSky proxy proto-
type implementation. We explore performance from the
proxy to the cloud, the effect of various design choices
on both performance and cost, and how BlueSky perfor-
mance varies as a function of its ability to cache client
working sets for reads and absorb bursts of client writes.

6.1 Experimental Setup

We ran experiments on Dell PowerEdge R200 servers
with 2.13 GHz Intel Xeon X3210 (quad-core) proces-
sors, a 7200 RPM 80 GB SATA hard drive, and gigabit
network connectivity (internal and to the Internet). One
machine, with 4 GB of RAM, is used as a load generator.
The second machine, with 8 GB of RAM and an addi-
tional 1.5 TB 7200 RPM disk drive, acts as a standard
file server or a BlueSky proxy. Both servers run Debian
testing; the load generator machine is a 32-bit install (re-
quired for SPECsfs) while the proxy machine uses a 64-
bit operating system. For comparison purposes we also
ran a few tests against a commercial NAS filer in pro-
duction use by our group. We focused our efforts on two
providers: Amazon’s Simple Storage Service (S3) [1]
and Windows Azure storage [14]. For Amazon S3, we
looked at both the standard US region (East Coast) as
well as S3’s West Coast (Northern California) region.
We use the SPECsfs2008 [27] benchmark in many of
our performance evaluations. SPECsfs can generate both
NFSv3 and CIFS workloads patterned after real-world
traces. In these experiments, SPECsfs subjects the server
to increasing loads (measured in operations per second)
while simultaneously increasing the size of the working
set of files accessed. Our use of SPECsfs for research
purposes does not follow all rules for fully-compliant
benchmark results, but should allow for relative compar-
isons. System load on the load generator machine re-
mains low, and the load generator is not the bottleneck.
In several of the benchmarks, the load generator ma-
chine mounts the BlueSky file system with the standard
Linux NFS client. In Section 6.4, we use a synthetic load
generator which directly generates NFS read requests
(bypassing the kernel NFS client) for better control.

6.2 Cloud Provider Bandwidth

To understand the performance bounds on any imple-
mentation and to guide our specific design, we measured
the performance our proxy is able to achieve writing data
to Amazon S3. Figure 6 shows that the BlueSky proxy
has the potential to fully utilize its gigabit link to S3
if it uses large request sizes and parallel TCP connec-
tions. The graph shows the total rate at which the proxy
could upload data to S3 for a variety of request sizes and
number of parallel connections. Network round-trip time
from the proxy to the standard S3 region, shown in the
graph, is around 30 ms. We do not pipeline requests—we
wait for confirmation for each object on a connection be-
fore sending another one—so each connection is mostly
idle when uploading small objects. Larger objects better
utilize the network, but objects of one to a few megabytes
are sufficient to capture most gains. A single connec-
tion utilizes only a fraction of the total bandwidth, so to
fully make use of the network we need multiple parallel

1000 e
.- N

Effective Upload Bandwidth (Mbps)

SO

32 -
Threads: 64 -~ e -

1 100 10000

Object Size (bytes)

1e+06 1e+08

Figure 6: Measured aggregate upload performance to
Amazon S3, as a function of the size of the objects up-
loaded (z-axis) and number of parallel connections made
(various curves). A gigabit network link is available. Full
use of the link requires parallel uploads of large objects.

TCP connections. These measurements helped inform
the choice of 4 MB log segments (Section 4.1) and a pool
size of 32 connections (Section 5.2).

The S3 US-West data center is closer to our proxy lo-
cation and has a correspondingly lower measured round-
trip time of 12 ms. The round-trip time to Azure from our
location was substantially higher, around 85 ms. Yet net-
work bandwidth was not a bottleneck in either case, with
the achievable bandwidth again approaching 1 Gbps. In
most benchmarks, we use the Amazon US-West region
as the default cloud storage service.

6.3 Impact of Cloud Latency

To underscore the impact latency can have on file sys-
tem performance, we first run a simple, time-honored
benchmark of unpacking and compiling a kernel source
tree. We measure the time for three steps: (1) extract
the sources for Linux 2.6.37, which consist of roughly
400 MB in 35,000 files (a write-only workload); (2)
checksum the contents of all files in the extracted sources
(a read-only workload); (3) build an i386 kernel using
the default configuration and the -4 flag for up to four
parallel compiles (a mixed read/write workload). For a
range of comparisons, we repeat this experiment on a
number of system configurations. In all cases with a
remote file server, we flushed the client’s cache by un-
mounting the file system in between steps.

Table 1 shows the timing results of the benchmark
steps for the various system configurations. Recall that
the network links client<+proxy and proxy<+S3 are both
1 Gbps—the only difference is latency (12 ms from the
proxy to BlueSky/S3-West and 30 ms to BlueSky/S3-
East). Using a network file system, even locally, adds
considerably to the execution time of the benchmark

Unpack Check Compile

Local file system

warm client cache 0:30 0:02 3:05

cold client cache 0:27
Local NFS server

warm server cache 10:50 0:26 4:23

cold server cache 0:49
Commercial NAS filer

warm cache 2:18 3:16 4:32
NFS server in EC2

warm server cache 65:39 26:26 74:11
BlueSky/S3-West

warm proxy cache 5:10 0:33 5:50

cold proxy cache 26:12 7:10

full segment 1:49 6:45
BlueSky/S3-East

warm proxy 5:08 0:35 5:53

cold proxy cache 57:26 8:35

full segment 3:50 8:07

Table 1: Kernel compilation benchmark times for various
file server configurations. Steps are (1) unpack sources,
(2) checksum sources, (3) build kernel. Times are given
in minutes:seconds. Cache flushing and prefetching are
only relevant in steps (2) and (3).

compared to a local disk. However, running an NFS
server in EC2 compared to running it locally increases
execution times by a factor of 6-30x due to the high la-
tency between the client and server and a workload with
operations on many small files. In our experiments we
use a local Linux NFS server as a baseline. Our commer-
cial NAS filer does give better write performance than a
Linux NFS server, likely due in part to better hardware
and an NVRAM write cache. Enterprises replacing such
filers with BlueSky on generic rack servers would there-
fore experience a drop in write performance.

The substantial impact latency can have on workload
performance motivates the need for a proxy architec-
ture. Since clients interact with the BlueSky proxy with
low latency, BlueSky with a warm disk cache is able
to achieve performance similar to a local NFS server.
(In this case, BlueSky performs slightly better than NFS
because its log-structured design is better-optimized for
some write-heavy workloads; however, we consider this
difference incidental.) With a cold cache, it has to read
small files from S3, incurring the latency penalty of read-
ing from the cloud. Ancillary prefetching from fetching
full 4 MB log segments when a client requests data in
any part of the segment greatly improves performance,
in part because this particular benchmark has substantial
locality; later on we will see that, in workloads with little
locality, full segment fetches hurt performance. How-
ever, execution times are still multiples of BlueSky with
a warm cache. The differences in latencies between S3-

Single-Client Request Stream

400 T
32KB ——
350 128 KB --->---
1024 KB ----%---
'g 300 N
>~ 250 *: :
L 200
« -
4 Ko
o 150 R
o 100 % -
50 IR e M st o
I T
H\‘\\&
0
0 20 40 60 80 100

Proxy Cache Size (% Working Set)

Figure 7: Read latency as a function of working set cap-
tured by the proxy. Results are from a single run.

West and S3-East for the cold cache and full segment
cases again underscore the sensitivity to cloud latency.

In summary, greatly masking the high latency to cloud
storage—even with high-bandwidth connectivity to the
storage service—requires a local proxy to minimize la-
tency to clients, while fully masking high cloud latency
further requires an effective proxy cache.

6.4 Caching the Working Set

The BlueSky proxy can mask the high latency overhead
of accessing data on a cloud service by caching data close
to clients. For what kinds of file systems can such a
proxy be an effective cache? Ideally, the proxy needs to
cache the working set across all clients using the file sys-
tem to maximize the number of requests that the proxy
can satisfy locally. Although a number of factors can
make generalizing difficult, previous studies have esti-
mated that clients of a shared network file system typi-
cally have a combined working set that is roughly 10%
of the entire file system in a day, and less at smaller time
scales [24, 31]. For BlueSky to provide acceptable per-
formance, it must have the capacity to hold this working
set. As a rough back-of-the-envelope using this conser-
vative daily estimate, a proxy with one commodity 3 TB
disk of local storage could capture the daily working set
for a 30 TB file system, and five such disks raises the file
system size to 150 TB. Many enterprise storage needs
fall well within this envelope, so a BlueSky proxy can
comfortably capture working sets for such scenarios.

In practice, of course, workloads are dynamic. Even
if proxy cache capacity is not an issue, clients shift
their workloads over time and some fraction of the client
workload to the proxy cannot be satisfied by the cache.
To evaluate these cases, we use synthetic read and write
workloads, and do so separately because they interact
with the cache in different ways.

We start with read workloads. Reads that hit in the
cache achieve local performance, while reads that miss

in the cache incur the full latency of accessing data in the
cloud, stalling the clients accessing the data. The ratio of
read hits and misses in the workload determines overall
read performance, and fundamentally depends on how
well the cache capacity is able to capture the file system
working set across all clients in steady state.

We populate a BlueSky file system on S3 with 32 GB
of data using 16 MB files.! We then generate a steady
stream of fixed-size NFS read requests to random files
through the BlueSky proxy. We vary the size of the proxy
disk cache to represent different working set scenarios.
In the best case, the capacity of the proxy cache is large
enough to hold the entire working set: all read requests
hit in the cache in steady state, minimizing latency. In
the worst case, the cache capacity is zero, no part of the
working set fits in the cache, and all requests go to the
cloud service. In practice, a real workload falls in be-
tween these extremes. Since we make uniform random
requests to any of the files, the working set is equivalent
to the size of the entire file system.

Figure 7 shows that BlueSky with S3 provides good
latency even when it is able to cache only 50% of the
working set: with a local NFS latency of 21 ms for 32 KB
requests, BlueSky is able to keep latency within 2x that
value. Given that cache capacity is not an issue, this sit-
uation corresponds to clients dramatically changing the
data they are accessing such that 50% of their requests
are to new data objects not cached at the proxy. Larger
requests take better advantage of bandwidth: 1024 KB
requests are 32 x larger than the 32 KB requests, but have
latencies only 4 x longer.

6.5 Absorbing Writes

The BlueSky proxy represents a classic write-back cache
scenario in the context of a cache for a wide-area stor-
age backend. In contrast to reads, the BlueSky proxy can
absorb bursts of write traffic entirely with local perfor-
mance since it implements a write-back cache. Two fac-
tors determine the proxy’s ability to absorb write bursts:
the capacity of the cache, which determines the instan-
taneous size of a burst the proxy can absorb; and the
network bandwidth between the proxy and the cloud ser-
vice, which determines the rate at which the proxy can
drain the cache by writing back data. As long as the write
workload from clients falls within these constraints, the
BlueSky proxy can entirely mask the high latency to the
cloud service for writes. However, if clients instanta-
neously burst more data than can fit in the cache, or if
the steady-state write workload is higher than the band-
width to the cloud, client writes start to experience delays
that depend on the performance of the cloud service.

!For this and other experiments, we use relatively small file system
sizes to keep the time for performing experiments manageable.

Latency vs. Write Rate with Constrained Upload

@ 140
S AL A
m 120 % 2
=
% 100
: |
=
[0}
T 60 % %
© « e
T 40
2 ¥
(0] 20 .
g - 128 MB Write Buffer +———
] 1 GB Write Buffer ---x--
< 0 Il Il Il Il
0 5 10 15 20 25 30 35

Client Write Rate (MB/s): 2-Minute Burst

Figure 8: Write latencies when the proxy is uploading
over a constrained (= 100 Mbps) uplink to S3 as a func-
tion of the write rate of the client and the size of the write
cache to temporarily absorb writes.

We populate a BlueSky file system on S3 with 1 MB
files and generate a steady stream of fixed-size 1 MB
NFS write requests to random files in the file system. The
client bursts writes at different rates for two minutes and
then stops. So that we can overload the network between
the BlueSky proxy and S3, we rate limit traffic to S3 at
100 Mbps while keeping the client«>proxy link unlim-
ited at 1 Gbps. We start with a rate of write requests well
below the traffic limit to S3, and then steadily increase
the rate until the offered load is well above the limit.

Figure 8 shows the average latency of the 1 MB write
requests as a function of offered load, with error bars
showing standard deviation across three runs. At low
write rates the latency is determined by the time to com-
mit writes to the proxy’s disk. The proxy can upload at
up to about 12 MB/s to the cloud (due to the rate limit-
ing), so beyond this point latency increases as the proxy
must throttle writes by the client when the write buffer
fills. With a 1 GB write-back cache the proxy can tem-
porarily sustain write rates beyond the upload capacity.
Over a 10 Mbps network (not shown), the write cache
fills at correspondingly smaller client rates and latencies
similarly quickly increase.

6.6 More Elaborate Workloads

Using the SPECsfs2008 benchmark we next examine the
performance of BlueSky under more elaborate workload
scenarios, both to subject BlueSky to more interesting
workload mixes as well as to highlight the impact of
different design decisions in BlueSky. We evaluate a
number of different system configurations, including a
native Linux nfsd in the local network (Local NFES) as
well as BlueSky communicating with both Amazon S3’s
US-West region and Windows Azure’s blob store. Un-
less otherwise noted, BlueSky evaluation results are for
communication with Amazon S3. In addition to the base

Working Set Size (GB)
0 5 10 15 20 25 30 35 40
T

800 T T T T T T T
g 700 H
§ = P
D 600 K ‘e
3 500 ’?/E \‘><. |
[%2] e < B
c X G
2 400 ﬂ B B
2 300 - e
() N S S
e - o ¥ \‘\’\H\M\Q—‘_
8 200 o B
.0 n (e Coob
- ' O
g 100 = o SN -
< 0 l;’LIJI{»l]fll»l—lf—.i

0 200 400 600 800 1000 1200
Requested Operations per Second

Working Set Size (GB)
0 5 10 15 20 25 30 35 40

100 T T T T T T T T
L Local NFS —+—
./ BlueSky -—---
% 80 i BlueSky (4K) ----x--- |
< W BlueSky (noseg) —&
= /i BlueSky (norange) —-m=-
<) 60 I BlueSky (Azure) --o--
o [e
K] i : oo ‘o
c
'% 40 / : e
g S
S 20 SR Ep
e P o 3
e = 2R St
0 B

0 200 400 600 800 1000 1200
Requested Operations per Second

Figure 9: Comparison of various file server configurations subjected to the SPECsfs benchmark, with a low degree of
parallelism (4 client processes). All BlueSky runs use cryptography, and most use Amazon US-West.

BlueSky configuration, we test a number of variants: dis-
abling the log-structured design to store each object in-
dividually to the cloud (noseg), disabling range requests
on reads so that full segments must be downloaded (no-
range), and using 4 KB file system blocks instead of the
default 32 KB (4K). The “noseg” case is meant to allow
a rough comparison with BlueSky had it been designed
to store file system objects directly to the cloud (without
entirely reimplementing it).

We run the SPECsfs benchmark in two different sce-
narios, modeling both low and high degrees of client par-
allelism. In the low-parallelism case, 4 client processes
make requests to the server, each with at most 2 outstand-
ing reads or writes. In the high-parallelism case, there are
16 client processes each making up to 8 reads or writes.

Figure 9 shows several SPECsfs runs under the low-
parallelism case. In these experiments, the BlueSky
proxy uses an 8 GB disk cache. The left graph shows the
delivered throughput against the load offered by the load
generator, and the right graph shows the corresponding
average latency for the operations. At a low requested
load, the file servers can easily keep up with the requests
and so the achieved operations per second are equal to
the requested load. As the server becomes saturated the
achieved performance levels off and then decreases.

The solid curve corresponds to a local NFS server
using one of the disks of the proxy machine for stor-
age. This machine can sustain a rate of up to 420 op-
erations/sec, at which point the disk is the performance
bottleneck. The BlueSky server achieves a low latency—
comparable to the local server case—at low loads since
many operations hit in the proxy’s cache and avoid wide-
area network communication. At higher loads, perfor-
mance degrades as the working set size increases. In
write-heavy workloads, BlueSky incidentally performs
better than the native Linux NFS server with local disk,
since BlueSky commits operations to disk in a single

journal and can make better use of disk bandwidth. Fun-
damentally, though, we consider using cloud storage suc-
cessful as long as it provides performance commensurate
with standard local network file systems.

BlueSky’s aggregation of written data into log seg-
ments, and partial retrieval of data with byte-range re-
quests, are important to achieving good performance and
low cost with cloud storage providers. As discussed in
Section 6.2, transferring data as larger objects is impor-
tant for fully utilizing available bandwidth. As we show
below, from a cost perspective larger objects are also bet-
ter since small objects require more costly operations to
store and retrieve an equal quantity of data.

In this experiment we also used Windows Azure as
the cloud provider. Although Azure did not perform as
well as S3, we attribute the difference primarily to the
higher latency (85 ms RTT) to Azure from our proxy
location (recall that we achieved equivalent maximum
bandwidths to both services).

Figure 10 shows similar experiments but with a high
degree of client parallelism. In these experiments, the
proxy is configured with a 32 GB cache. To simulate
the case in which cryptographic operations are better-
accelerated, cryptography is disabled in most experi-
ments but re-enabled in the “+crypto” experimental run.
The “100 Mbps” test is identical to the base BlueSky
experiment except that bandwidth to the cloud is con-
strained to 100 Mbps instead of 1 Gbps. Performance is
comparable at first, but degrades somewhat and is more
erratic under more intense workloads. Results in these
experimental runs are similar to the low-parallelism case.
The servers achieve a higher total throughput when there
are more concurrent requests from clients. In the high-
parallelism case, both BlueSky and the local NFS server
provide comparable performance. Comparing cryptogra-
phy enabled versus disabled, again there is very little dif-
ference: cryptographic operations are not a bottleneck.

Working Set Size (GB)

0 10 20 30 40 50
1000 T T T T T
2
S 900 RN
o P ¢
& 800 e
o X
3 700 R
(2]
_5 600 "
© \
5 500
Q L
o 400
8 \\
.E 300 v
= n
5] 200 < i
< R Ty S
100 =

0 200 400 600 800 1000 1200 1400 1600
Requested Operations per Second

Working Set Size (GB)

0 10 20 30 40 50
100 T T T T T
Local NFS —+— | A
BlueSky ---x--- .
% 80 BlueSky (crypto) -------
£ BlueSky (noseg) - / ; I
= BlueSky (norange) --m—- : [:
& 4o |BlueSky (100 Mbps) - -o- -] ; Ll i
2 i : L ¢
S // ; /}(\%/qf'(
p P #
S 40 ; s
© &
e p
o 20 G
PP - T -

0
0 200 400 600 800 1000 1200 1400 1600
Requested Operations per Second

Figure 10: Comparison of various file server configurations subjected to the SPECsfs benchmark, with a high degree
of parallelism (16 client processes). Most tests have cryptography disabled, but the “+crypto” test re-enables it.

Down Op Total (Up)
Baseline $0.18 $0.09 $0.27 $0.56
4 KB blocks 0.09 0.07 0.16 047
Full segments ~ 25.11 0.09 25.20 1.00

No segments 0.17 291 3.08 0.56

Table 2: Cost breakdown and comparison of various
BlueSky configurations for using cloud storage. Costs
are normalized to the cost per one million NFS opera-
tions in SPECsfs. Breakdowns include traffic costs for
uploading data to S3 (Up), downloading data (Down),
operation costs (Op), and their sum (Total). Amazon
eliminated “Up” costs in mid-2011, but values using the
old price are still shown for comparison.

6.7 Monetary Cost

Offloading file service to the cloud introduces monetary
cost as another dimension for optimization. Figure 9
showed the relative performance of different variants of
BlueSky using data from the low-parallelism SPECsfs
benchmark runs. Table 2 shows the cost breakdown
of each of the variants, normalized per SPECsfs opera-
tion (since the benchmark self-scales, different experi-
ments have different numbers of operations). We use the
September 2011 prices (in US Dollars) from Amazon S3
as the basis for the cost analysis: $0.14/GB stored per
month, $0.12/GB transferred out, and $0.01 per 10,000
get or 1,000 put operations. S3 also offers cheaper price
tiers for higher use, but we use the base prices as a worst
case. Overall prices are similar for other providers.
Unlike performance, Table 2 shows that comparing by
cost changes the relative ordering of the different system
variants. Using 4 KB blocks had very poor performance,
but using them has the lowest cost since they effectively
transfer only data that clients request. The BlueSky base-
line uses 32 KB blocks, requiring more data transfers
and higher costs overall. If a client makes a 4 KB re-

quest, the proxy will download the full 32 KB block;
many times downloading the full block will satisfy fu-
ture client requests with spatial locality, but not always.
Finally, the range request optimization is essential in re-
ducing cost. When the proxy downloads an entire 4 MB
segment when a client requests any data in it, the cost for
downloading data increases by 150x. If providers did
not support range requests, BlueSky would have to use
smaller segments in its file system layout.

Although 4 KB blocks have the lowest cost, we argue
that using 32 KB blocks has the best cost-performance
tradeoff. The costs with 32 KB clocks are higher, but the
performance of 4 KB blocks is far too low for a system
that relies upon wide-area transfers

6.8 Cleaning

As with other file systems that do not overwrite in place,
BlueSky must clean the file system to garbage collect
overwritten data—although less to recover critical stor-
age space, and more to save on the cost of storing unnec-
essary data at the cloud service. Recall that we designed
the BlueSky cleaner to operate in one of two locations:
running on the BlueSky proxy or on a compute instance
in the cloud service. Cleaning in the cloud has com-
pelling advantages: it is faster, does not consume proxy
network bandwidth, and is cheaper since cloud services
like S3 and Azure do not charge for local network traffic.

The overhead of cleaning fundamentally depends on
the workload. The amount of data that needs to be read
and written back depends on the rate at which existing
data is overwritten and the fraction of live data in cleaned
segments, and the time it takes to clean depends on both.
Rather than hypothesize a range of workloads, we de-
scribe the results of a simple experiment to detail how
the cleaner operates.

We populate a small BlueSky file system with 64 MB
of data, split across 8 files. A client randomly writes, ev-
ery few seconds, to a small portion (0.5 MB) of one of

Storage Used: Writes Running Concurrently with Cleaner
200 T

T T T T
Reclaimed —
Wasted ——31
Rewritten mmmm

150 Used/Unaltered o |

Cloud Storage Consumed (MB)

1 2 3 45 6 7 8 9 10 11 12 13 14
Cleaner Pass Number

Figure 11: Storage space consumed during a write ex-
periment running concurrently with the cleaner.

these files. Over the course of the experiment the client
overwrites 64 MB of data. In parallel a cleaner runs to
recover storage space and defragment file contents; the
cleaner runs every 30 seconds, after the proxy incorpo-
rates changes made by the previous cleaner run. In ad-
dition to providing data about cleaner performance, this
experiment validates the design that allows for safe con-
current execution of both the proxy and cleaner.

Figure 11 shows the storage consumed during this
cleaner experiment; each set of stacked bars shows stor-
age after a pass by the cleaner. At any point in time,
only 64 MB of data is live in the file system, some of
which (bottom dark bar) consists of data left alone by
the cleaner and some of which (lighter gray bar) was
rewritten by the cleaner. Some wasted space (lightest
gray) cannot be immediately reclaimed; this space is ei-
ther mixed useful data/garbage segments, or data whose
relocation the proxy has yet to acknowledge. However,
the cleaner deletes segments which it can establish the
proxy no longer needs (white) to reclaim storage.

This workload causes the cleaner to write large
amounts of data, because a small write to a file can cause
the entire file to be rewritten to defragment the contents.
Over the course of the experiment, even though the client
only writes 64 MB of data the cleaner writes out an ad-
ditional 224 MB of data. However, all these additional
writes happen within the cloud where data transfers are
free. The extra activity at the proxy, to merge updates
written by the cleaner, adds only 750 KB in writes and
270 KB in reads.

Despite all the data being written out, the cleaner is
able to reclaim space during experiment execution to
keep the total space consumption bounded, and when the
client write activity finishes at the end of the experiment
the cleaner can repack the segment data to eliminate all
remaining wasted space.

6.9 Client Protocols: NFS and CIFS

Finally, we use the SPECsfs benchmark to confirm that
the performance of the BlueSky proxy is independent of

Working Set Size (GB)
0 5 10 15 20 25

35 T T T —
Native NFS —+— <
30 | BlueSky NFS -
Samba (CIFS) ---x--- /
o5 BlueSky CIFS & X

20 A A

Operation Latency (ms)
o
mX
@

10 s)ﬂ(/){ B

5 7 e S
i m€

0
0 100 200 300 400 500 600 700
Requested Operations per Second

Figure 12: Latencies for read operations in SPECsfs as a
function of aggregate operations per second (for all op-
erations) and working set size.

the client protocol (NFS or CFS) that clients use. The
experiments performed above use NFS for convenience,
but the results hold for clients using CIFS as well.

Figure 12 shows the latency of the read operations in
the benchmark as a function of aggregate operations per
second (for all operations) and working set size. Because
SPECsfs uses different operation mixes for its NFS and
CIFS workloads, we focus on the latency of just the read
operations for a common point of comparison. We show
results for NFS and CIFS on the BlueSky proxy (Sec-
tion 5.4) as well as standard implementations of both pro-
tocols (Linux NFS and Samba for CIFS, on which our
implementation is based). For the BlueSky proxy and
standard implementations, the performance of NFS and
CIFS are broadly similar as the benchmark scales, and
BlueSky mirrors any differences in the underlying stan-
dard implementations. Since SPECsfs uses a working
set much larger than the BlueSky proxy cache capacity
in this experiment, BlueSky has noticeably higher laten-
cies than the standard implementations due to having to
read data from cloud storage rather than local disk.

7 Conclusion

The promise of “the cloud” is that computation and stor-
age will one day be seamlessly outsourced on an on-
demand basis to massive data centers distributed around
the globe, while individual clients will effectively be-
come transient access portals. This model of the fu-
ture (ironically similar to the old “big iron” mainframe
model) may come to pass at some point, but today there
are many hundreds of billions of dollars invested in the
last disruptive computing model: client/server. Thus, in
the interstitial years between now and a potential future
built around cloud infrastructure, there will be a need to
bridge the gap from one regime to the other.

In this paper, we have explored a solution to one such
challenge: network file systems. Using a caching proxy

architecture we demonstrate that LAN-oriented worksta-
tion file system clients can be transparently served by
cloud-based storage services with good performance for
enterprise workloads. However, we show that exploit-
ing the benefits of this arrangement requires that design
choices (even low-level choices such as storage layout)
are directly and carefully informed by the pricing mod-
els exported by cloud providers (this coupling ultimately
favoring a log-structured layout with in-cloud cleaning).

8 Acknowledgments

We would like to thank our shepherd Ted Wong and the
anonymous reviewers for their insightful feedback, and
Brian Kantor and Cindy Moore for research computing
support. This work was supported in part by the UCSD
Center for Networked Systems. Vrable was further sup-
ported in part by a National Science Foundation Gradu-
ate Research Fellowship.

References

[1] Amazon Web Services. Amazon Simple Storage Service.
http://aws.amazon.com/s3/.

[2] A. Bessani, M. Correia, B. Quaresma, F. André, and
P. Sousa. DepSky: Dependable and Secure Storage in
a Cloud-of-Clouds. In EuroSys 2011, Apr. 2011.

[3] Y. Chen and R. Sion. To Cloud Or Not To
Cloud? Musings On Costs and Viability. http:
//www.cs.sunysb.edu/~sion/research/
cloudc2010-draft.pdf.

[4] Cirtas. Cirtas Bluejet Cloud Storage Controllers. http:
//www.cirtas.com/.

[5] Enomaly. ElasticDrive Distributed Remote Storage Sys-
tem. http://www.elasticdrive.com/.

[6] I. Heizer, P. Leach, and D. Perry. Common Internet File
System Protocol (CIFS/1.0). http://tools.ietf.
org/html/draft-heizer-cifs-vl-spec-00.

[7] D. Hitz, J. Lau, and M. Malcolm. File System Design
for an NFS File Server Appliance. In Proceedings of the
Winter USENIX Technical Conference, 1994.

[8] J. Howard, M. Kazar, S. Nichols, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Per-
formance in a Distributed File System. ACM Transactions
on Computer Systems (TOCS), 6(1):51-81, Feb. 1988.

[9] IDC. Global market pulse. http://i.dell.com/

sites/content/business/smb/sb360/en/

Documents/0910-us—-catalyst-2.pdf.

Jungle Disk. http://www. jungledisk.com/.

R. Kotla, L. Alvisi, and M. Dahlin. SafeStore: A Durable

and Practical Storage System. In Proceedings of the 2007

USENIX Annual Technical Conference, June 2007.

J. Li, M. Krohn, D. Mazieres, and D. Shasha. Secure

Untrusted Data Repository (SUNDR). In Proceedings of

the 6th Conference on Symposium on Operating Systems

Design and Implementation (OSDI), Dec. 2004.

P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,

M. Dahlin, and M. Walfish. Depot: Cloud Storage with

(10]
(1]

[12]

(13]

[14]

[15]
[16]

[17]

(18]
[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

Minimal Trust. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementa-
tion (OSDI), Oct. 2010.

Microsoft. Windows Azure. http://www.
microsoft.com/windowsazure/.

Mozy. http://mozy.com/.

A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen.
Ivy: A Read/Write Peer-to-Peer File System. In Proceed-
ings of the 5th Conference on Symposium on Operating
Systems Design and Implementation (OSDI), Dec. 2002.
Nasuni. Nasuni: The Gateway to Cloud Storage. http:
//www.nasuni.com/.

Panzura. Panzura. http://www.panzura.com/.

R. Pike, D. Presotto, S. Dorward, B. Flandrena,
K. Thompson, H. Trickey, and P. Winterbottom. Plan 9
From Bell Labs. USENIX Computing Systems, 8(3):221—
254, Summer 1995.

S. Quinlan and S. Dorward. Venti: a new approach to
archival storage. In Proceedings of the 1st USENIX Con-
ference on File and Storage Technologies (FAST), 2002.
Rackspace. Rackspace Cloud. http://www.
rackspacecloud.com/.

R. Rizun. s3fs: FUSE-based file system backed by Ama-
zon S3. http://code.google.com/p/s3fs/
wiki/FuseOverAmazon.

M. Rosenblum and J. K. Ousterhout. The Design and
Implementation of a Log-Structured File System. ACM
Transactions on Computer Systems (TOCS), 10(1):26-52,
1992.

C. Ruemmler and J. Wilkes. A trace-driven analysis of
disk working set sizes. Technical Report HPL-OSR-93-
23, HP Labs, Apr. 1993.

R. Sandberg, D. Goldberg, S. Kleirnan, D. Walsh, and
B. Lyon. Design and Implementation of the Sun Network
Filesystem. In Proceedings of the Summer USENIX Tech-
nical Conference, pages 119-130, 1985.

J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka,
and E. Zeidner. Internet Small Computer Systems Inter-
face (iISCSI), Apr. 2004. RFC 3720, http://tools.
ietf.org/html/rfc3720.

Standard ~ Performance Evaluation Corporation.
SPECsfs2008. http://www.spec.org/
s£s2008/.

StorSimple. StorSimple. http://www.
storsimple.com/.

TwinStrata. TwinStrata. http://www.

twinstrata.com/.

M. Vrable, S. Savage, and G. M. Voelker. Cumulus:
Filesystem Backup to the Cloud. In Proceedings of the
7th USENIX Conference on File and Storage Technolo-
gies (FAST), Feb. 2009.

T. M. Wong and J. Wilkes. My cache or yours? Mak-
ing storage more exclusive. In Proceedings of the 2002
USENIX Annual Technical Conference, June 2002.

N. Zhu, J. Chen, and T.-C. Chiueh. TBBT: Scalable and
Accurate Trace Replay for File Server Evaluation. In Pro-
ceedings of the 4th USENIX Conference on File and Stor-
age Technologies (FAST), Dec. 2005.

http://aws.amazon.com/s3/
http://www.cs.sunysb.edu/~sion/research/cloudc2010-draft.pdf
http://www.cs.sunysb.edu/~sion/research/cloudc2010-draft.pdf
http://www.cs.sunysb.edu/~sion/research/cloudc2010-draft.pdf
http://www.cirtas.com/
http://www.cirtas.com/
http://www.elasticdrive.com/
http://tools.ietf.org/html/draft-heizer-cifs-v1-spec-00
http://tools.ietf.org/html/draft-heizer-cifs-v1-spec-00
http://i.dell.com/sites/content/business/smb/sb360/en/Documents/0910-us-catalyst-2.pdf
http://i.dell.com/sites/content/business/smb/sb360/en/Documents/0910-us-catalyst-2.pdf
http://i.dell.com/sites/content/business/smb/sb360/en/Documents/0910-us-catalyst-2.pdf
http://www.jungledisk.com/
http://www.microsoft.com/windowsazure/
http://www.microsoft.com/windowsazure/
http://mozy.com/
http://www.nasuni.com/
http://www.nasuni.com/
http://www.panzura.com/
http://www.rackspacecloud.com/
http://www.rackspacecloud.com/
http://code.google.com/p/s3fs/wiki/FuseOverAmazon
http://code.google.com/p/s3fs/wiki/FuseOverAmazon
http://tools.ietf.org/html/rfc3720
http://tools.ietf.org/html/rfc3720
http://www.spec.org/sfs2008/
http://www.spec.org/sfs2008/
http://www.storsimple.com/
http://www.storsimple.com/
http://www.twinstrata.com/
http://www.twinstrata.com/

	Introduction
	Related Work
	Architecture
	Local Proxy
	Cloud Provider
	Security

	BlueSky File System
	Object Types
	Cloud Log
	Cleaner
	Backups
	Multi-Proxy Access

	BlueSky Proxy
	Cache Management
	Connection Management
	Merging System State
	Implementation

	Evaluation
	Experimental Setup
	Cloud Provider Bandwidth
	Impact of Cloud Latency
	Caching the Working Set
	Absorbing Writes
	More Elaborate Workloads
	Monetary Cost
	Cleaning
	Client Protocols: NFS and CIFS

	Conclusion
	Acknowledgments

