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We demonstrate that a collaborative relationship between the operating system and applications
can be used to meet user-specified goals for battery duration. We first describe a novel profiling-
based approach for accurately measuring application and system energy consumption. We then
show how applications can dynamically modify their behavior to conserve energy. We extend the
Linux operating system to yield battery lifetimes of user-specified duration. By monitoring energy
supply and demand and by maintaining a history of application energy use, the approach can
dynamically balance energy conservation and application quality. Our evaluation shows that this
approach can meet goals that extend battery life by as much as 30%.
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1. INTRODUCTION

Energy is a vital resource for mobile computing. The amount of work one can
perform while mobile is fundamentally constrained by the limited energy sup-
plied by one’s battery. Unfortunately, despite considerable effort to prolong the
battery lifetimes of mobile computers, no silver bullet for energy management
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has yet been found. Instead, there is growing consensus that a comprehensive
approach is needed—one that addresses all levels of the system: circuit design,
hardware devices, the operating system, and applications.

In this article, we show that energy-aware adaptation, the dynamic balanc-
ing of energy conservation and application quality, is an essential part of a
comprehensive energy management solution. Occasionally, energy usage can
be reduced without affecting the perceived quality of the system. More often,
however, significant energy reduction perceptibly impacts system behavior. The
effective design of mobile software thus requires striking the appropriate bal-
ance between application quality and energy conservation.

It is incorrect to make static decisions that arbitrate between these two com-
peting goals. Dynamic variation in time operating on battery power, hardware
power requirements, application mix, and user specifications all affect the bal-
ance between quality and energy conservation. Energy-aware adaptation sur-
mounts these difficulties by making decisions dynamically. Applications stati-
cally specify possible tradeoffs between energy and quality, but defer decisions
about which tradeoffs to make until execution. At that time, the system uses
additional information, including energy supply and demand, to advise appli-
cations which tradeoffs to make.

We begin in the next section by developing a tool, called PowerScope, that
measures energy usage and attributes it to application components. This tool
forms the basis for our measurement methodology—it also is a useful artifact
that enables the development of energy-efficient code. In Section 3, we use
PowerScope to study how applications can reduce the energy usage of the com-
puters on which they execute by varying their quality levels. Then, in Section 4,
we use the results of this study to design and implement operating system sup-
port for such energy-aware applications. Our implementation monitors energy
supply and demand and uses feedback to advise applications how to balance
quality and energy conservation. We conclude with a discussion of related work
and a summary of results.

This article builds upon our previously reported work in energy manage-
ment [Flinn and Satyanarayanan 1999a] by providing a detailed description
and evaluation of the PowerScope energy profiler, as well as a more complete
study of energy-aware applications. Further, we show how operating system
support can be improved by observing applications as they execute, learning
functions that predict their future energy usage, and using this information to
directly adjust application fidelity.

2. PROFILING APPLICATION ENERGY USAGE

There are currently few tools that allow software developers to accurately
measure how their systems and applications impact battery lifetime. Low-
level approaches such as instruction-level profiling [Tiwari et al. 1994, 1996]
and hardware simulation [Brooks et al. 2000; Vijaykrishnan et al. 2000]
do not scale to multithreaded applications with tens of thousands of lines
of source code. High-level approaches such as direct measurement of bat-
tery drain through APM [Intel Corporation and Microsoft Corporation 1996]
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Fig. 1. PowerScope architecture.

or ACPI [Intel, Microsoft, and Toshiba 1998] interfaces provide insufficient
detail.

We have built an energy profiling tool, called PowerScope [Flinn and
Satyanarayanan 1999b], that fills this gap. Using PowerScope, one can deter-
mine what fraction of the total energy consumed during a certain time period
is due to specific processes in the system. Further, one can drill down and de-
termine the energy consumption of different procedures within a process.

The design of PowerScope follows from its primary purpose: enabling appli-
cation developers to build energy-efficient software. PowerScope’s design scales
to complex applications, which may consist of several concurrently executing
threads of control, and which may run on a variety of mobile platforms. For both
simple and complex applications, PowerScope provides developers detailed and
accurate information about energy usage.

2.1 Implementation

2.1.1 Overview. As shown in Figure 1, PowerScope uses statistical sam-
pling to profile the energy usage of a computer system. To reduce overhead,
profiles are generated by a two-stage process. During the data collection stage,
the tool samples both the power consumption and the system activity of the
profiling computer. PowerScope then generates an energy profile from this data
during a later analysis stage. Because the analysis is performed off-line, it cre-
ates no profiling overhead.

During data collection, PowerScope uses two computers: a profiling computer,
on which applications execute, and a data collection computer that reduces
overhead. A digital multimeter samples the power consumption of the profiling
computer. We require that this multimeter have an external trigger input and
output, as well as the ability to sample DC current or voltage at high frequency.
The present implementation uses a Hewlett Packard 3458a digital multimeter,
which satisfies both requirements. The data collection computer controls the
multimeter and stores current samples.

An alternative implementation would be to perform measurement and data
collection entirely on the profiling computer, perhaps using an on-board digital
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multimeter. However, this implementation makes it very difficult to differen-
tiate the energy consumed by the profiled applications from the energy used
by data collection. Further, our present implementation makes switching the
measurement equipment to profile different hardware platforms much easier.

The functionality of PowerScope is divided among three software compo-
nents. Two components, the System Monitor and Energy Monitor, share re-
sponsibility for data collection. The System Monitor samples system activity
on the profiling computer by periodically recording information that includes
the program counter and process identifier of the currently executing process.
The Energy Monitor runs on the data collection computer, and is responsible for
collecting and storing current samples. Because data collection is distributed
across two monitor processes, PowerScope synchronizes the collection by hav-
ing the multimeter generate an external trigger signal after taking a measure-
ment. The signal causes an interrupt on the profiling computer, during which
the System Monitor samples system activity.

The final software component, the Energy Analyzer, uses the raw sample
data collected by the monitors to generate the energy profile. The analyzer
runs on the profiling computer since it uses the symbol tables of executables and
shared libraries to map samples to specific procedures. There is an implicit as-
sumption in this method that the executables being profiled are not modified be-
tween the start of profile collection and the running of the off-line analysis tool.

2.1.2 The System Monitor. The System Monitor consists of a device driver
which collects sample data and a user-level daemon process that reads the
samples from the driver and writes them to a file. Since the device driver is a
Linux loadable kernel module, PowerScope runs without modification to kernel
source code.

The design of the System Monitor is similar to the sampling components of
Morph [Zhang et al. 1997] and DCPI [Anderson et al. 1997]. It samples system
activity when triggered by the digital multimeter. Each 12-byte sample records
the value of the program counter (PC) and the process identifier (PID) of the
currently executing process, as well as additional information such as whether
the system is currently handling an interrupt. This assumes that the profiling
computer is a uniprocessor—a reasonable assumption for a mobile computer.

Samples are written to an in-kernel circular buffer. This buffer is emptied by
the user-level daemon, which writes samples to a file. The daemon is triggered
when the buffer grows more than seven-eighths full, or by the end of data
collection.

The System Monitor records a small amount of additional information that
is used to generate profiles. First, it associates each currently executing pro-
cess with the pathname of an executable. Then, for each executable it records
the memory location of each loaded shared library and associates the library
with a pathname. The information is written to the sample buffer during data
collection, and is used during off-line analysis to associate each sample with a
specific executable image.

The API in Figure 2 allows applications to control profiling. The user-level
daemon calls pscope init to set the size of the kernel sample buffer. Since there
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Fig. 2. PowerScope API.

is a tension between excessive memory usage and frequent reading of the buffer
by the daemon, the buffer size has been left flexible to allow efficient profiling
of different workloads. The daemon calls pscope read to read samples out of
the buffer. The pscope start and pscope stop system calls allow application
programs to precisely indicate the period of sample collection. Multiple sets of
samples may be collected one after the other; each sample set is delineated by
start and end markers written into the sample buffer.

2.1.3 The Energy Monitor. The Energy Monitor runs on the data collec-
tion computer. It configures the multimeter to periodically sample the power
usage of the profiling computer. The specific method of power measurement
depends upon the system being profiled. For many laptop computers, the sim-
plest method is to sample the current drawn through the laptop’s external
power source. Usually, the voltage variation is extremely small; for example,
it is less than 0.25% for the IBM 701C and 560X laptops. Therefore, current
samples alone are sufficient to determine the energy usage of the system. The
battery is removed from the laptop while measurements are taken to avoid
extraneous power drain caused by charging. Current samples are transmitted
asynchronously to the Energy Monitor, which stores them in a file for later
analysis.

We use an alternative method for systems such as the Compaq Itsy v1.5
pocket computer that provide internal precision resistors for power measure-
ment [Viredaz 1998]. The Energy Monitor configures the multimeter to measure
the instantaneous differential voltage, Vdiff, across a 20 mÄ resistor located in
the main power circuit. The instantaneous current, I, can therefore be calcu-
lated as I = Vdiff/0.02 Ä. Since the voltage supplied by the external power
supply, Vsupp, does not vary significantly, these measurements are sufficient to
calculate instantaneous power usage, P , as P = Vsupp ∗ I . Further, because
the Itsy contains additional resistors, the same method can profile the isolated
power usage of Itsy subsystems. If the profiling computer is battery-powered,
concurrent sampling of voltage [Farkas et al. 2000] is needed.

Sample collection is driven by the multimeter clock. Synchronization with
the System Monitor is provided by connecting the multimeter’s external trigger
input and output to I/O pins on the profiling computer. Immediately after the
multimeter takes a power sample, it toggles the value of an input pin. This
causes a system interrupt on the profiling computer, during which the System
Monitor samples system activity. Upon completion, the System Monitor triggers
the next sample by toggling an output pin (unless profiling has been halted by
pscope stop). The multimeter buffers this trigger until the time to take the next
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sample arrives. This method ensures that the power samples reflect application
activity, rather than the activity of the System Monitor.

Originally, PowerScope used the clock of the profiling computer to drive sam-
ple collection. Although simpler to implement, that design had the disadvantage
of biasing the profile values of activities correlated with the system clock. We
have since modified PowerScope to drive sample collection from the multime-
ter. The lack of synchronization between the multimeter and profiling computer
clocks introduces a natural jitter that makes clock-related bias very unlikely.
Using the multimeter clock also allows PowerScope to generate interrupts at a
finer granularity than that allowed by using kernel clock interrupts. The user
may specify the sample frequency as a parameter when the Energy Monitor is
started. The maximum sample frequency for our current multimeter is approx-
imately 700 samples/s.

2.1.4 The Energy Analyzer. The Energy Analyzer generates an energy pro-
file of system activity. Total energy usage can be calculated by integrating the
product of the instantaneous current and voltage over time. One can approxi-
mate this value by simultaneously sampling both current and voltage at reg-
ular intervals of time 1t. Further, because we measure externally powered
systems, voltage is constant within the limits of accuracy for which we are
striving. PowerScope therefore calculates total energy over n samples using a
single measured voltage value, Vmeas, as follows:

E ≈ Vmeas

n∑
t=0

It1t. (1)

The Energy Analyzer associates each current sample collected by the Energy
Monitor with the corresponding sample collected by the System Monitor. It as-
signs each sample to a process bucket using the recorded PID value. Samples
that occurred during the handling of an asynchronous interrupt, such as the re-
ceipt of a network packet, are not attributed to the currently executing process
but are instead attributed to a bucket specific to the interrupt handler. If no
process was executing when the sample was taken, the sample is attributed to a
kernel bucket. The energy usage of each process is calculated as in Equation (1)
by summing the current samples in each bucket and multiplying by the mea-
sured voltage (Vmeas) and the sample interval (1t).

The Energy Analyzer then generates a summary of energy usage by process,
such as the one shown in Figure 3(a). Each entry displays the total time spent
executing the process, the total energy usage, and the average power usage.
It then repeats the above steps for each process to determine energy usage by
procedure. The process and shared library information stored by the System
Monitor is used to reconstruct the memory address of each procedure from the
symbol tables of executables and shared libraries. Then, the PC value of each
sample is used to place the sample in a procedure bucket. When the profile is
generated, kernel procedures and procedures that reside in shared libraries are
displayed separately. Figure 3(b) shows a partial profile.

A drawback of this approach is that a process using the CPU can be incor-
rectly assigned the energy cost of asynchronous I/O activity such as disk reads
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Fig. 3. Sample energy profile.

initiated by another process. One solution we have considered, but not imple-
mented, is to simultaneously sample the power usage of the disk, record the
disk requests issued by each process, and separately assign disk energy costs to
each process. A similar approach could also allocate the energy cost of network
activity.

2.2 Validation

For PowerScope to be effective, it must accurately determine the energy cost
of processes and procedures. Further, it must operate with a minimum of over-
head on the system being measured to avoid significantly perturbing the profile
results.

We created benchmarks to assess how successful PowerScope is in meeting
both of these goals. We ran each benchmark on two hardware platforms, the
Compaq Itsy v1.5 pocket computer [Bartlett et al. 2000] and the IBM ThinkPad
560X laptop.

2.2.1 Accuracy. There are several factors that potentially limit Power-
Scope’s accuracy. First, the digital multimeter’s power measurements are not
truly instantaneous; the multimeter’s analog/digital converter must measure
the input signal over a period of time. However, this period, or integration time,
is normally quite small. In the case of the HP 3458a multimeter used for these
experiments, the minimum integration time is only 1.4 ¹s. Second, there will
be some capacitance in the computer system being measured. High-frequency
changes in power usage may not be measurable at the point in the circuit where
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the multimeter probes are attached. Finally, there is a delay between the time
when the multimeter takes a measurement and the time when the correspond-
ing kernel sample is taken; this delay includes time to propagate an electrical
signal to the profiling computer and time to handle the corresponding hardware
interrupt. If a process or procedure is of sufficiently short duration, a sample
taken during its execution may be incorrectly attributed to a process or proce-
dure that executes later. Combined, these factors limit PowerScope’s accuracy;
that is, there will be some minimum event duration below which PowerScope
is unable to accurately determine an event’s power usage.

We measured the minimum event duration by running a benchmark which
alternates execution between two different procedures. Each procedure has a
known power usage and runs for a configurable length of time. When these
procedures are of sufficiently long duration, for example, 1 s, PowerScope can
accurately determine the power usage of each procedure. However, as the dura-
tion of the two procedures is shortened, PowerScope will eventually be unable to
successfully determine their individual power usages. To ensure maximum ac-
curacy, we used the highest sampling rate supported by the multimeter for these
measurements—approximately 700 samples/s. Since this benchmark is CPU-
bound, all activity is synchronous. If the benchmark included asynchronous I/O,
PowerScope’s accuracy would decrease since it does not attribute such activity
to the initiating process.

Figure 4(a) shows the results of running the benchmark on the 560X laptop.
The first procedure performs additions in an unrolled loop and has a power
usage of 8.04 W (measured with a duration of 1 s). The second procedure per-
forms multiplications in an unrolled loop and has a power usage of 6.97 W.
While it may seem unintuitive that multiplication requires less power than ad-
dition, the multiplication procedure executes less instructions per unit of time
than the addition procedure. Because a multiplication instruction takes more
than one cycle to execute, the total energy needed to perform a multiplication
is higher—effectively, that energy is spread out across multiple cycles.

PowerScope correctly reports the individual power usage of each procedure
within experimental error for durations of 10 ms. When the procedure length
is set to 1 ms, PowerScope reports slightly inaccurate results (within 1% of the
correct value). As the procedure duration is further decreased, PowerScope’s
accuracy also decreases. At a duration of 100 ¹s, PowerScope is unable to dis-
tinguish the power usage of individual procedures. In this case, the limiting
factor is probably the capacitance of the laptop.

Figure 4(b) shows the results of running the benchmark on the Itsy v1.5.
Because the power used to perform multiplications on the Itsy is very similar
to the power used to perform additions, we replace the multiplication procedure
with one that copies data from one memory location to another. The copies are
performed in an unrolled loop and all memory references hit in the first-level
data cache.

On the Itsy, PowerScope correctly reports individual power usage within
experimental error for durations of 1 ms. The reported values are slightly in-
accurate with a procedure length of 100 ¹s (within 3% of the correct value). In-
terestingly, at 10 ¹s, PowerScope reports a higher power usage for the addition
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Fig. 4. PowerScope accuracy. PowerScope’s accuracy is shown as a function of the length of the
event being measured. Each graph shows the power usage reported for two different procedures
which execute alternately. As the procedure length is reduced, PowerScope is eventually unable
to distinguish the individual power usage of the two procedures. Each point represents the mean
of 10 trials—the (barely noticeable) error bars in each graph show 90% confidence intervals. Note
that procedure length, on the x-axis, is displayed using a log scale.

procedure than for the copy procedure. Because these results are significant
within experimental error, they strongly indicate that the power measurements
are being perturbed by the latency between the time when measurements are
taken and the time when the System Monitor samples system activity on the
profiling computer. Power samples that should be attributed to one procedure
are instead being incorrectly attributed to the other. Note that this phenomenon
did not occur with the laptop for any duration that we tried.

2.2.2 Overhead. Running PowerScope imposes a small overhead on the
system being profiled due to the activity of the System Monitor. The impact can
be expressed in terms of both CPU usage and additional energy consumption.

To determine PowerScope’s CPU overhead, we measured the execution time
of the benchmark described in Section 2.2.1 for a variety of sampling rates, and
compared the results to the execution time of the benchmark when PowerScope
was not running. For the 560X laptop, we measured latency using the Pentium
cycle counter; for the Itsy, we used the Linux gettimeofday system call. This
benchmark does not include the cost of periodically writing data to a file for
long-running profiles. However, because the file write is amortized across a
large number of samples, the additional CPU cost is quite low. The energy cost
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Fig. 5. PowerScope CPU overhead. PowerScope’s relative CPU overhead is shown as a function of
the sampling frequency. Each point represents the mean of 10 trials—the error bars in each graph
show 90% confidence intervals.

is greater when samples are written to a hard disk; adding asynchronous I/O
support to PowerScope could potentially enable the tool to separate out the
energy overhead of such disk writes.

Figure 5 shows the results of these experiments for the two platforms. In
both cases, PowerScope’s CPU overhead is less than 0.6% at the maximum
sampling rate of the multimeter. Note that although two measurements in
Figure 5(b) show a negative overhead, the upper bound of each measurement’s
90% confidence interval is greater than zero.

To determine PowerScope’s energy overhead, we used PowerScope to mea-
sure the energy usage of the benchmark described in Section 2.2.1 for a variety
of sampling rates. For comparison, we directly measured the energy consump-
tion of the benchmark when PowerScope was not running. As Figure 6 shows,
PowerScope’s energy overhead is low—about 1.0% for the ThinkPad 560X and
1.3% for the Itsy at the maximum sampling rate. Like the CPU benchmark,
this value does not include the cost of periodically writing data to a file for
long-running profiles.

While the laptop results show that energy overhead increases fairly regu-
larly with the sample rate, the Itsy results are decidedly more irregular. While
it is unclear precisely what leads to this effect, it is possible that different
sampling frequencies induce slightly different cache effects when PowerScope
writes samples to the in-memory kernel buffer. Such cache effects would be
much more noticeable on the Itsy since its cache is smaller and memory usage
is a much larger percentage of its overall power budget [Farkas et al. 2000].

3. ENERGY-AWARE ADAPTATION

PowerScope has enabled us to explore how software design choices impact sys-
tem energy consumption. In this section, we report the results of a detailed
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Fig. 6. PowerScope energy overhead. PowerScope’s relative energy overhead is shown as a function
of the sampling frequency. Each point represents the mean of 10 trials—the error bars in each graph
show 90% confidence intervals.

study of application energy usage [Flinn and Satyanarayanan 1999a] and
discuss the implications for energy-aware application and operating system
design.

Our primary goal was to measure how changes in fidelity affect application
energy use. Fidelity is an application-specific metric of quality. For example,
dimensions of fidelity for a video player are display size and the amount of
lossy compression applied to a video stream; for a map viewing application, a
dimension of fidelity is the amount of geographic features included on a map.
For energy-aware adaptation to be viable, it is crucial that reductions in fidelity
lead to energy savings that are both significant and predictable.

We were also keen to confirm that the energy savings from lowering fidelity
enhance those achievable through current hardware power management tech-
niques such as spinning down the disk and disabling wireless network receivers.
Although these distinct approaches to energy savings seem composable, we
wanted to verify this experimentally.

3.1 Methodology

We measured the energy used by four applications: a video player, a speech
recognizer, a map viewer, and a Web browser. We first observed the applications
as they operated in isolation, and then as they operated concurrently.

We first measured the baseline energy usage for each object at highest fi-
delity with hardware power management disabled. We next measured energy
usage with hardware power management enabled. Then, we successively low-
ered the fidelity of the application, measuring energy usage at each fidelity
with hardware power management enabled. This sequence of measurements is
directly reflected in the format of the graphs presenting the results: Figures 7,
9, 11, 12, and 15. Since a considerable amount of data is condensed into these
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Fig. 7. Energy impact of fidelity for video playing. This shows the total energy used to display
four QuickTime/Cinepak videos from 127 to 226 s in length, ordered from right to left above. Each
value is the mean of five trials—the error bars show 90% confidence intervals.

graphs, we explain their format here even though their individual contents will
not be meaningful until the detailed discussions in Sections 3.3 through 3.6.

For example, consider Figure 7. There are six bars in each of the four data
sets on the x-axis; each data set corresponds to a different video clip. The
height of each bar shows the total amount of energy consumed by the com-
puter while playing the video clip, and the shadings within each bar apportion
system energy usage to each software component. The component labeled “Idle”
aggregates samples that occurred while executing the kernel idle procedure—
effectively a Pentium hlt instruction. The component labeled “WaveLAN” ag-
gregates samples that occurred during wireless network interrupts.

For each data set, the first and second bars, labeled “Baseline” and
“Hardware-Only Power Mgmt.,” show energy usage at full fidelity with and
without hardware power management. The difference between the first two
bars gives the application-specific effectiveness of hardware power manage-
ment. Each of the remaining bars shows the energy usage at a different, re-
duced fidelity level with hardware power management enabled. The difference
between one of these bars and the first bar (“Baseline”) gives the combined
benefit of hardware power management and fidelity reduction. The difference
between one of these bars and the second one (“Hardware-Only Power Mgmt.”)
gives the additional benefit achieved by fidelity reduction above and beyond the
benefit achieved by hardware power management.

The measurements for all bars except “Baseline” were obtained with power
management enabled. After 10 s of inactivity, we transitioned the disk to
standby mode. Further, we placed the wireless network interface in standby
mode except during remote procedure calls or bulk transfers. Finally, we turned
off the display during the speech application. The laptop processor used in the
study did not support dynamic voltage scaling; the effectiveness of hardware
power management would increase if this capability were present.
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3.2 Experimental Setup

For this study, the primary client platform was an IBM 560X laptop with 233-
MHz Pentium processor, 64 MB of memory, and 2-Mb/s 802.11 wireless net-
work interface. All servers were 200-MHz Pentium Pro desktop computers with
64 MB of memory. The client ran the Linux 2.2 operating system, as well as the
Odyssey platform for mobile computing [Noble et al. 1997]. Odyssey provides
both an interface for modifying application fidelity and a RPC-based mecha-
nism for accessing remote data. We measured energy use with PowerScope,
taking approximately 600 samples/s.

3.3 Video Player

3.3.1 Description. We first measured the impact of fidelity on an Xanim-
based video player. Xanim fetches video data from a server through Odyssey
and displays it on the client. It supports two dimensions of fidelity: varying the
amount of lossy compression used to encode a video clip and varying the size
of the window in which it is displayed. There are multiple tracks of each video
clip on the server, each generated off-line from the full fidelity video clip using
Adobe Premiere. They are identical to the original except for size and the level
of lossy compression used in frame encoding.

3.3.2 Results. Figure 7 shows the total energy used by the laptop to dis-
play four videos at different fidelities. At the baseline fidelity, much energy
is consumed while the processor is idle because of the limited bandwidth of
the wireless network—not enough video data is transmitted to saturate the
processor.

For the four video clips, hardware-only power management reduces energy
consumption by a mere 9–10%. There is little opportunity to place the network
in standby mode since it is nearly saturated. Most of the reduction is due to disk
power management—the client’s disk remains in standby mode for the entire
duration of an experiment.

The bars labeled “Premiere-B” and “Premiere-C” in Figure 7 show the im-
pact of lossy compression. Whereas the baseline video is encoded at QuickTime/
Cinepak quality level 2, Premiere-B and Premiere-C are encoded at quality
levels 1 and 0, respectively. Premiere-C consumes 16–17% less energy than
hardware-only power management. With a higher-bandwidth wireless net-
work, we could fully utilize the processor in the baseline case—the relative
energy savings of Premiere-C would then be higher. Unfortunately, the data
rate required by the next fidelity higher than baseline, for example, QuickTime/
Cinepak quality level 3, is greater than the 2-Mb/s capacity of our wireless net-
work interface.

By examining the shadings of each bar in Figure 7, it can be seen that com-
pression significantly reduces the energy used by Xanim, Odyssey, and the
WaveLAN device driver. However, the energy used by the X server is almost
completely unaffected by compression. We conjectured that this is because video
frames are decoded before they are given to the X server, and the size of this
decoded data is independent of the level of lossy compression.
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Fig. 8. Predicting video player energy use. Each line is the best linear fit for four videos played at
the same fidelity—the (barely noticeable) error bars are 90% confidence intervals.

To validate this conjecture, we measured the effect of halving both the height
and width of the display window. As Figure 7 shows, shrinking the window size
reduces energy consumption 19–20% beyond hardware-only power manage-
ment. The shadings on the bars confirm that reducing window size significantly
decreases X server energy usage. In fact, within the bounds of experimental er-
ror, X server energy consumption is proportional to window area.

Finally, we examined the effect of combining Premiere-C encoding with a
display window of half the baseline height and width. This results in a 28–
30% reduction in energy usage relative to hardware-only power management.
Relative to baseline, using all of the above techniques together yields about a
35% reduction.

From the viewpoint of further energy reduction, the rightmost bar of each
data set in Figure 7 seems to offer a pessimistic message: there is little to be
gained by further efforts to reduce fidelity. Virtually all energy usage at this
fidelity level occurs when the processor is idle. Fortunately, this is precisely
where advances in hardware power management can be of the most help. For
example, processors such as the TransMeta Crusoe [Klaiber 2000] reduce clock
frequency to save power and energy. As the fidelity of the video is reduced,
processor speed can also be reduced since the needed computation per unit
of time is smaller. Thus, the total energy used by the lowest fidelity will be
substantially less.

Figure 8 shows video player energy use as a function of video length for
five different levels of fidelity. In each case, hardware power management is
enabled. For each fidelity level, four data points show the total energy used
to play each of the videos in the study, and the corresponding line shows the
best linear fit through these points. From the data, it is clear that the linear
model is a good fit—the coefficient of determination (R2) is greater than 99%
for every fidelity. Thus, if one can determine the length of a video, it is pos-
sible to accurately predict the energy needed to play it at different fidelities.
Of course, it is possible that different encoding schemes may prove to be less
predictable.
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Fig. 9. Energy impact of fidelity for speech recognition. This shows the energy used to recognize
four spoken utterances from 1 to 7 s in length, ordered from right to left above. Each measurement
is the mean of five trials—the error bars show 90% confidence intervals.

3.4 Speech Recognizer

3.4.1 Description. The second application is an adaptive speech recognizer
that generates a speech waveform from a spoken utterance and submits it
via Odyssey to a local or remote instance of the Janus speech recognition sys-
tem [Waibel 1996]. Local recognition avoids network transmission and is un-
avoidable if the client is disconnected. In contrast, remote recognition incurs
the delay and energy cost of network communication but can exploit the CPU,
memory, and energy resources of a remote server that is likely to be operating
from a power outlet rather than a battery. The system also supports a hybrid
mode of operation in which the first phase of recognition is performed locally, re-
sulting in a compact intermediate representation that is shipped to the remote
server for completion of the recognition. In effect, the hybrid mode uses the
first phase of recognition as a type-specific compression technique that yields
a factor of 5 reduction in data volume with minimal computational overhead.

Fidelity is lowered by using a reduced vocabulary and a less complex acous-
tic model. This substantially reduces the memory footprint and processing re-
quired, but degrades recognition quality. The system alerts the user of fidelity
transitions using a synthesized voice. The use of low fidelity is most compelling
in the case of local recognition on a resource-poor disconnected client, although
it can also be used in hybrid and remote cases. Although reducing fidelity lim-
its the number of words available, the word-error rate may not increase. In-
tuitively, this is because the recognizer makes fewer mistakes when choosing
from a smaller set of words. This helps counterbalance the effects of reducing
the sophistication of the acoustic model.

3.4.2 Results. Figure 9 shows laptop energy usage when recognizing four
pre-recorded utterances. The baseline measurements correspond to local recog-
nition at high fidelity without hardware power management. Since speech
recognition is compute-intensive, almost all the energy in this case is consumed
by Janus.
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Fig. 10. Predicting speech recognition energy. Each line is the best linear fit for 10 utterances
recognized at the same fidelity—the (barely noticeable) error bars are 90% confidence intervals.

Hardware power management reduces client energy usage by 33–34%. Such
a substantial reduction is possible because the display can be turned off and
both the network and disk can be placed in standby mode for the entire duration
of an experiment. This assumes that user interactions occur solely through
speech, and that disk accesses can be avoided because the vocabulary, language
model, and acoustic model fit entirely in physical memory.

Lowering fidelity by using a reduced speech model results in a 25–46% re-
duction in energy consumption relative to using hardware power management
alone. This corresponds to a 50–65% reduction relative to the baseline.

Remote recognition at full fidelity reduces energy usage by 33–44% relative to
using hardware power management alone. If fidelity is also reduced, the corre-
sponding savings are 42–65%. These figures are comparable to the energy sav-
ings for remote execution reported for other compute-intensive tasks [Othman
and Hailes 1998; Rudenko et al. 1998]. Most of the energy consumed by the
client in remote recognition occurs with the processor idle—much of this is time
spent waiting for a reply from the server. Lowering fidelity speeds recognition
at the server, shortening this interval and yielding client energy savings.

Hybrid recognition offers slightly greater energy savings: 47–55% at full
fidelity, and 53–70% at low fidelity. It increases the fraction of energy used by
the local Janus system; but this is more than offset by the reduction in network
transmission and idle time. Overall, the net effect of combining hardware power
management with hybrid, low-fidelity recognition is a 69–80% reduction in
energy usage relative to baseline. In practice, the optimal strategy depends on
remote resource availability and the user’s tolerance for low-fidelity recognition.

Figure 10 examines the predictability of speech recognition energy use. Each
data point shows the total energy used to locally recognize one of a set of 10
spoken utterances—this set includes the four utterances from Figure 9. The
corresponding lines show the best linear fit through these points. The lin-
ear model for the baseline fidelity produces a reasonable fit (93.7% coefficient
of determination), while the fit is considerably better for the reduced fidelity
(99.8%). While speech recognition is less predictable than video display, these
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Fig. 11. Energy impact of fidelity for speech recognition on the Itsy v1.5. This shows the energy
used to recognize four spoken utterances on an Itsy v1.5 pocket computer—the results can be
contrasted with Figure 9 in which the client machine is an IBM ThinkPad 560X laptop. Each
measurement is the mean of five trials—the (barely noticeable) error bars show 90% confidence
intervals.

results are quite encouraging—simple linear models appear to do a reasonable
job of predicting energy use.

3.4.3 Results for Itsy v1.5. We explored the impact of different hardware
platforms by porting Janus to the Itsy v1.5 pocket computer. Figure 11 shows
client energy usage for the same four prerecorded utterances. Since the Itsy
lacks a PCMCIA interface, we used a serial link to connect it with the server.

Contrasting Figures 9 and 11 shows that the Itsy consumes more energy than
the ThinkPad to perform local speech recognition but significantly less energy
to perform hybrid and remote recognition. Local speech recognition runs much
slower on the Itsy, partially because its StrongArm processor is less powerful
than the ThinkPad’s Pentium. Additionally, the Janus recognizer performs a
large number of floating-point operations that must be emulated in software
on the Itsy. Although average power usage is much lower on the Itsy, the dif-
ference in execution time makes the total energy needed for local recognition
substantially higher.

Hybrid recognition completes faster but uses more energy than remote recog-
nition when the client is an Itsy. The energy impact of performing the first stage
of recognition locally is greater than the total amount of energy spent wait-
ing for recognition to complete during fully remote execution. This illustrates
that tradeoffs between performance and energy conservation exist for common
applications—one must carefully consider both the client and its available re-
sources when deciding where to locate functionality.

These results give some evidence that energy-aware adaptation becomes
more effective as the ratio between maximum and minimum power usage in-
creases. On the ThinkPad, where this ratio is approximately 1.9, the maximum
energy savings due to fidelity reduction and remote execution is only 64–78%.
On the Itsy, where this ratio is approximately 6.6, the maximum energy savings
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Fig. 12. Energy impact of fidelity for map viewing. This shows the energy used to view U.S.
Geological Survey maps of four cities. Each measurement is the mean of 10 trials—the error bars
are 90% confidence intervals.

is 92–94%. However, the results are unfortunately biased by the Itsy’s lack of
floating-point support.

3.5 Map Viewer

3.5.1 Description. The third application that we measured was an adap-
tive map viewer named Anvil. Anvil fetches maps from a remote server and
displays them on the client. Fidelity can be lowered in two ways: filtering and
cropping. Filtering eliminates fine detail and less important features (such as
secondary roads) from a map. Cropping preserves detail, but restricts data to
a geographic subset of the original map. The client annotates the map request
with the desired amount of filtering and cropping. The server performs any
requested operations before transmitting the map.

3.5.2 Results. We measured the energy used by the client to fetch and
display maps of four different cities. Viewing a map differs from the two previous
applications in that a user typically needs a nontrivial amount of time to absorb
the contents of a map after it has been displayed. This think time should logically
be viewed as part of the application’s execution since energy is consumed to keep
the map visible. In contrast, the user needs negligible time after the display of
the last video frame or the recognition of an utterance to complete use of the
video or speech application.

Think time is likely to depend on both the user and the map being displayed.
Our approach to handling this variability was to use an initial value of 5 s and
then perform sensitivity analysis for think times of 0, 10, and 20 s. For brevity,
Figure 12 only presents detailed results for the 5-s case; for other think times,
we present only the summary information in Figure 13.

The baseline bars in Figure 12 show that most of the energy is consumed
while the kernel executes the idle procedure; most of this is background power
usage during the 5 s of think time. The shadings on the bars indicate that

ACM Transactions on Computer Systems, Vol. 22, No. 2, May 2004.



Managing Battery Lifetime with Energy-Aware Adaptation • 155

Fig. 13. Effect of user think time for map viewing. This shows how the energy used to view the
San Jose map varies with think time. Each measurement is the mean of 10 trials—the error bars
are 90% confidence intervals.

network communication is a second significant drain on energy. The compara-
tively larger confidence intervals for this application result from variation in
the time required to fetch a map over the wireless network.

Hardware power management reduces energy consumption by about 9–19%
relative to the baseline. Although there is little opportunity for network power
management while the map is being fetched, the network can remain in standby
mode during think time. Since the disk is never used, it can always remain in
standby mode.

The third and fourth bars of each data set show the effect of fidelity reduction
through two levels of filtering. One filter omits minor roads, while the more
aggressive filter omits both minor and secondary roads. The savings from the
minor road filter are 6–51% relative to hardware-only power management. The
corresponding figure for the secondary road filter is 23–55%.

The fifth bar of each data set shows the effect of lowering fidelity by cropping a
map to half its original height and width. Energy usage at this fidelity is 14–49%
less than with hardware-only power management. In other words, cropping is
less effective than filtering for these particular maps. Combining cropping with
filtering results in an energy savings of 36–66% relative to hardware-only power
management. Relative to the baseline, this is a reduction of 46–70%. There is
little savings left to be extracted through fidelity reduction since almost all
energy is now consumed in the idle state.

After examining energy usage with 5 s of think time, we repeated the above
experiments with think times of 0, 10, and 20 s. At any given fidelity, energy
usage, Et increases with think time, t. We expected a linear relationship: Et =
E0+ t · PB, where E0 is the energy usage for this fidelity at zero think time and
PB is the background power consumption on the client (5.6 W with the screen
on and disk and network in standby mode).

Figure 13 confirms that a linear model is indeed a good fit. This figure plots
the energy usage for four different values of think time for three cases: base-
line, hardware power management alone, and lowest fidelity combined with
hardware power management. The divergent lines for the first two cases show
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Fig. 14. Predicting map viewer energy use. Each line is the best linear fit for the energy used to
view six maps at the same fidelity—the error bars are 90% confidence intervals.

that the energy reduction from hardware power management scales linearly
with think time. The parallel lines for the second and third cases show that
fidelity reduction achieves a constant benefit, independent of think time. The
complementary nature of these two approaches is thus well illustrated by these
measurements.

Figure 14 shows energy use as a function of the undistilled map size for three
fidelity levels: baseline, minor road filtering, and the combination of cropping
and minor and secondary road filtering—the remaining fidelity levels are omit-
ted for clarity. For each fidelity, six data points show the total energy used to
fetch and display different city maps, including the four from Figure 12. Since
we have already shown that the energy cost of user think time is quite pre-
dictable, these results assume zero think time and thereby isolate the variance
in the energy cost of fetching and displaying maps.

Visual inspection of the linear fits reveals that energy usage corresponds
closely to image size only in the baseline case. However, when simple models do
not yield good predictions, often additional information will give more accurate
results. Here, the percentage of features omitted by a given filter varies widely
from map to map. We modified the map server to store summary information
with each map listing the occurrence of each feature type—this allows us to
anticipate the effectiveness of a filter. This improves prediction: when the minor-
road filter is used, the R2 value is 99%. However, although the linear fit for
the combined fidelity improves, it is still quite poor with an R2 value of 79%.
Although the model can anticipate the effect of filtering, it is still unable to cope
with variation in the amount of features removed by cropping.

3.6 Web Browser

3.6.1 Description. The fourth application is an adaptive Web browser
based on Netscape Navigator. In this application, Odyssey and a distillation
server located on either side of a variable-quality network mediate access to
Web servers. Requests from an unmodified Netscape browser are routed to a
proxy on the client that interacts with Odyssey. After annotating the request
with the desired level of fidelity, Odyssey forwards it to the distillation server
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Fig. 15. Energy impact of fidelity for Web browsing. This shows the energy used to display four
GIF images from 110 B to 175 KB in size, ordered from right to left above. Each measurement is
the mean of ten trials—the error bars show 90% confidence intervals.

which transcodes images to lower fidelity using lossy JPEG compression. This
is similar to the strategy described by Fox et al. [1996], except that control of
fidelity is at the client.

3.6.2 Results. As with the map application, a user needs some time after
an image is displayed to absorb its contents. We measured Web browser energy
usage with a baseline value for think time of 5 s/image. As expected, sensitivity
analysis on think time shows equivalent behavior to that depicted in Figure 13
for the map viewer.

Figure 15 presents measurements of the energy used to fetch and display four
GIF images of varying sizes. Hardware power management achieves reductions
of 22–26%. The shadings on the first and second bars of each data set indicate
that most of this savings occurs in the idle state, probably during think time.

The energy benefits of fidelity reduction are disappointing. The energy used
at the lowest fidelity is merely 4–14% lower than with hardware power manage-
ment alone; relative to baseline, this is a reduction of 29–34%. The maximum
benefit of fidelity reduction is severely limited because the amount of energy
used during think time (28 J) is much greater than the energy used to fetch
and display an image, (2–16 J). Thus, even if fidelity reduction could completely
eliminate the energy used to fetch and display an image, energy use would drop
only 9–36%.

Although Web fidelity reduction shows little benefit in this study, it may be
quite useful in other environments. For example, a more energy-efficient mobile
device would use less energy during think time, increasing the possible benefit
of fidelity reduction. Similarly, if a high-speed network were unavailable, the
energy benefit of distillation would increase.

Figure 16 shows Web browser energy use as a function of the undistilled
image size for three fidelities. For each fidelity, seven data points show the
total energy used to fetch and display different images, including the four from
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Fig. 16. Predicting Web browser energy use. Each line is the best linear fit for the energy used to
fetch and display six Web images—the error bars are 90% confidence intervals.

Figure 15. As with the map application, these results include no user think-
time, thereby isolating the variation in energy used to fetch and display images.
For this application, simple linear models yield reasonable predictions: the R2

values for baseline, JPEG-50, and JPEG-5 fidelity are 91%, 93%, and 98%,
respectively.

3.7 Effect of Concurrency

How does concurrent execution affect energy usage? One can imagine situations
in which total energy usage goes down when two applications execute concur-
rently rather than sequentially. For example, once the screen has been turned
on for one application, no additional energy is required to keep it on for the sec-
ond. One can also envision situations in which concurrent applications interfere
with each other in ways that increase energy usage. For example, if physical
memory size is inadequate to accommodate the working sets of two applica-
tions, their concurrent execution will trigger higher paging activity, possibly
leading to increased energy usage. Clearly, the impact of concurrency can vary
depending on the applications, their interleaving, and the machine on which
they run.

What is the effect of lowering fidelity? The measurements reported in
Sections 3.3 to 3.6 indicate that lowering fidelity tends to increase the frac-
tion of energy consumption attributable to the idle state. Concurrency allows
background energy consumption to be amortized across applications. It is there-
fore possible in some cases for concurrency to enhance the benefit of lowering
fidelity.

To confirm this intuition, we compared the energy usage of a composite ap-
plication when executing in isolation and when executing concurrently with the
video application described in Section 3.3. The composite application consists of
six iterations of a loop that involves the speech, Web, and map applications de-
scribed in Sections 3.4 to 3.6. The loop consists of local recognition of two speech
utterances, access of a Web page, access of a map, and 5 s of think time. The com-
posite application models a user searching for Web and map information using
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Fig. 17. Effect of concurrent applications. Each data set compares energy usage for the composite
application described in Section 3.7 in isolation (left bar) with total energy usage when a video
application runs concurrently (right bar). Each measurement is the mean of five trials—the error
bars are 90% confidence intervals.

speech commands, while the video application models a background newsfeed.
This experiment takes between 80 and 160 s.

Figure 17 presents results for three cases: baseline, hardware-only power
management, and minimal fidelity. In the first two cases, all applications ran
at full fidelity; in the third case, all ran at lowest fidelity. For each data set, the
left bar shows energy usage for the composite application in isolation, while the
right bar shows energy usage during concurrent execution.

For the baseline case, the addition of the video application consumes 53%
more energy. But with hardware power management, it consumes 64% more
energy. This difference is due to the fact that concurrency reduces opportunities
for powering down the network and disk. For the minimum fidelity case, the sec-
ond application only adds 18% more energy. The significant background power
usage of the client, which limits the effectiveness of lowering fidelity, is amor-
tized by the second application. In other words, for this workload, concurrency
does indeed enhance the energy impact of lowering fidelity.

3.8 Discussion

Our primary goal in performing this study was to determine whether lower-
ing fidelity yields significant energy savings. The results of Sections 3.3 to 3.6
confirm that such savings are indeed available over a broad range of appli-
cations relevant to mobile computing. Further, those results show that low-
ering fidelity can be effectively combined with hardware power management.
Section 3.7 extends these results by showing that concurrency can magnify
the benefits of lowering fidelity. Finally, energy savings through fidelity re-
duction are predictable—an adaptive system that constructs simple models
of energy use will often be able to accurately anticipate the effect of fidelity
changes.
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Application Think Hardware Fidelity Combined
Time (s) Power Mgmt. Reduction

Video N/A 0.90–0.91 0.84–0.84 0.65–0.65
Speech N/A 0.66–0.67 0.22–0.36 0.20–0.31

Map 0 0.80–1.01 0.06–0.13 0.07–0.18
5 0.81–0.91 0.38–0.67 0.31–0.54
10 0.74–0.84 0.53–0.77 0.42–0.58
20 0.76–0.78 0.69–0.89 0.51–0.67

Web 0 0.85–1.06 0.40–0.75 0.32–0.54
5 0.74–0.78 0.88–0.97 0.66–0.71
10 0.75–0.78 0.93–0.98 0.70–0.74
20 0.74–0.77 0.96–0.99 0.72–0.73

Fig. 18. Energy impact of fidelity. Each entry shows the minimum and maximum measured en-
ergy consumption on the IBM ThinkPad 560X for four data objects. The entries are normalized to
baseline measurements of full fidelity objects with no power management.

While this study examined only cases where application source code is avail-
able, further work [Flinn et al. 2001] has shown that proxy-based solutions can
add energy-awareness to closed-source applications. Using de Lara’s Puppeteer
as an adaptive platform, we showed that fidelity reduction can reduce the en-
ergy needed to load and edit PowerPoint documents stored on a remote server
by up to 49%.

At the next level of detail, Figure 18 summarizes the results of Sections 3.3
to 3.6. Its key messages are:

—There is significant variation in the effectiveness of fidelity reduction across
data objects. The reduction can span a range as broad as 29% (0.38–0.67 for
the map viewer at think time 5). The video player is the only application that
shows little variation across data objects. As mentioned above, this variation
is often quite predictable with simple linear models.

—There is considerable variation in the effectiveness of fidelity reduction across
applications. Holding think time constant at 5 s and averaging across data
objects, the energy usage for the four applications at lowest fidelity is 0.84,
0.28, 0.51, and 0.93 relative to their baseline values. The mean is 0.64, cor-
responding to an average savings of 36%.

—Combining hardware power management with lowered fidelity can sometimes
reduce energy usage below the sum of the individual reductions. This is seen
most easily in the case of the video application, where the last column is 0.65
rather than the expected value of 0.74. Intuitively, reducing fidelity decreases
hardware utilization, thereby increasing the opportunity for hardware power
management.

4. GOAL-DIRECTED ADAPTATION

Our study shows that energy-aware applications can substantially reduce the
energy usage of mobile computers. Yet, it provides no guidance as to how appli-
cations should balance the competing goals of energy conservation and fidelity.
In this section, we explore whether the operating system can advise applica-
tions how to strike the balance.
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A mobile user often has a reasonable estimate of how long a battery needs
to last—for example, the expected duration of a commute, meeting, or flight.
Given such an estimate, one can ask whether energy-aware adaptation can be
exploited to yield the desired battery life. We explored this question by modify-
ing the Odyssey platform for mobile computing [Noble et al. 1997] to monitor
energy supply and demand and to use this information to direct application
adaptation to meet a user-specified goal for battery duration. We call this pro-
cess goal-directed adaptation.

Today, operating systems report expected battery lifetime to the user and
provide a number of parameters that can be adjusted to extend battery life-
time, that is, display brightness, processor speed, and device timeouts. The
user must continually monitor battery state and adjust these parameters in or-
der to ensure that their battery lasts for the needed duration. Goal-directed
adaptation fundamentally inverts this process by making energy manage-
ment the responsibility of the operating system. The user specifies only de-
sired battery lifetime—the system makes the correct tradeoffs between quality
and energy conservation that ensure that the battery lasts for the specified
duration.

While implementing goal-directed adaptation, our most important design
goal was ensuring that Odyssey met the specified time goal whenever feasible.
When a user specifies an infeasible duration, one so large that the available
energy is inadequate even if all applications run at lowest fidelity, Odyssey
should detect the problem and alert the user as soon as possible.

An important secondary goal was providing the best user experience possible.
This translates into two requirements: first, applications should offer as high
a fidelity as possible; second, the user should not be jarred by frequent adap-
tations. Goal-directed adaptation balances these opposing concerns by striv-
ing to provide high average fidelity while using hysteresis to reduce fidelity
changes.

Next, we describe the user and application interfaces that support goal-
directed adaptation. We then describe how we have modified Odyssey to pe-
riodically determine the residual energy available in the battery, predict future
energy demand, and decide what fidelity each application should use.

4.1 User and Application Interfaces

Figure 19 shows the user interface for goal-directed adaptation; we have de-
signed it to be as simple as possible so as to avoid unnecessary user distraction.
The user specifies the goal for battery duration by adjusting the slider in the
middle of the dialog. When conditions change, the user readjusts the slider to
specify a new battery goal. As time passes and the battery drains, the slider
moves to the left to express the change in expected remaining battery lifetime.
While current operating systems provide similar dialogs, they are output-only;
they do not provide users with the ability to change the expected battery life-
time.

In this paper, we describe only the relevant portion of Odyssey’s API—
Narayanan et al. [2000] provided a detailed description of the compete API.
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Fig. 19. Interface for goal-directed adaptation.

The fundamental unit of dialog between Odyssey and applications is an oper-
ation: a discrete unit of work performed at one of possibly many fidelities. For
example, each application described in Section 3 performs one basic operation:
the video player displays videos, the speech recognizer recognizes utterances,
the map viewer displays maps, and the Web browser displays images.

When an application first starts, it calls register fidelity to describe
the types of operations that it may execute and the fidelities at which
they may be performed. Before executing each operation, the application
calls begin fidelity op. Odyssey returns the fidelity at which the operation
should be performed. When the operation completes, the application calls
end fidelity op. This model is cooperative: applications are free to specify what
fidelities they are willing to support, and Odyssey does not enforce its choice of
fidelities.

4.2 Determining Residual Energy

Odyssey determines residual energy by measuring the amount of charge in
the battery. Many modern mobile computers ship with a Smart Battery [SBS
Implementers Forum 1998], a gas gauge chip that reports detailed information
about battery state and power usage. On such platforms, Odyssey periodically
queries the Smart Battery through ACPI [Intel, Microsoft, and Toshiba 1998] or
a machine-dependent interface. For example, the Itsy v2.2 [Hamburgen et al.
2001] contains a Dallas Semiconductor DS2437 Smart Battery chip [Dallas
Semiconductor Corp. 1999]—on this platform, Odyssey queries battery status
once per second by performing an ioctl on a device driver.

While the above methods are best for deployed systems, they may not be ideal
in laboratory settings. Older mobile computers such as the IBM 560X lack the
necessary hardware support for measuring battery capacity. To facilitate eval-
uation, Odyssey can use a modulated energy supply. At the beginning of evalu-
ation, the initial value for the modulated supply is specified. As the evaluation
proceeds, a digital multimeter samples actual power usage and transmits the
samples to Odyssey. Odyssey decrements the modulated energy supply and re-
ports when it has expired. This approach assumes an ideal battery. In practice,
batteries are nonlinear—as power draw increases, the total energy that can be
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extracted from a battery decreases. In all of our experiments, fidelity reduction
decreases average power usage—in such cases, this simplifying assumption
slightly understates the benefits of fidelity reduction.

4.3 Predicting Future Demand

To predict energy demand, Odyssey assumes that future behavior will be simi-
lar to recently-observed behavior. It uses smoothed observations of present and
past power usage to predict future power use. This approach is in contrast to
requiring applications to explicitly declare their future energy usage—an ap-
proach that places unnecessary burden on applications and is unlikely to be
accurate.

Odyssey periodically samples power levels using the interfaces described in
the previous section. It smooths these samples using an exponential weighted
average of the form:

new = (1− ®)(this sample)+ (®)(old), (2)

where ® is the gain, a parameter that determines the relative weights of current
and past power usage. Odyssey multiplies this estimate of future power use by
the time remaining until the goal to predict future energy demand.

Odyssey varies ® as energy drains, thus changing the tradeoff between agility
and stability. When the goal is distant, Odyssey uses a large ®. This biases adap-
tation toward stability by reducing the number of fidelity changes—there is
ample time to make adjustments later, if necessary. As the goal nears, Odyssey
decreases ® so that adaptation is biased toward agility. Applications must re-
spond more rapidly since the margin for error is small.

Currently, Odyssey sets ® so that the half-life of the decay function is ap-
proximately 10% of the time remaining until the goal. For example, if 30 min
remain, the present estimate will be weighted approximately equal to more re-
cent samples after 3 min. The value of 10% is based upon a sensitivity analysis
discussed in Section 4.7.2.

4.4 Triggering Adaptation

When predicted demand exceeds residual energy, Odyssey advises applications
to reduce their energy usage. Conversely, when residual energy significantly
exceeds predicted demand, applications are advised to increase fidelity.

The amount by which supply must exceed demand to trigger fidelity improve-
ment is indicative of the level of hysteresis in Odyssey’s adaptation strategy.
This value is the sum of two empirically derived components: a variable compo-
nent, 5% of residual energy, and a constant component, 1% of the initial energy
supply. The variable component reflects the bias toward stability when energy
is plentiful and toward agility when it is scarce; the constant component bi-
ases against fidelity improvements when residual energy is low. As a guard
against excessive adaptation due to energy transients, Odyssey caps fidelity
improvements at a maximum rate of once every 15 s.

To meet the specified goal for battery duration, Odyssey tries to keep power
demand within the zone of hysteresis. Whenever power demand leaves this
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zone, adaptation is necessary. Odyssey then determines which applications
should change fidelity, as well as the magnitude of change needed for each
application. Ideally, the set of fidelity changes should modify power demand so
that it once again enters the zone of hysteresis.

Often, there will be many possible adaptations that yield the needed change
in power demand. In these cases, Odyssey refers to an adaptation policy to
choose an alternative. Although many policies are possible, Odyssey currently
supports two: an incremental policy described in the next section, and a history-
based policy described in the following section.

4.5 Incremental Adaptation Policy

When calling register fidelity, each application specifies a list of supported
fidelities. Using the incremental policy, Odyssey maintains a per-application
variable that specifies which fidelity should be used by the application. It re-
turns this value whenever the application calls begin fidelity op.

Odyssey lets the user specify the relative priority of applications. When pre-
dicted demand exceeds measured supply, Odyssey degrades the fidelity of the
lowest-priority application by changing its fidelity variable to the next lower
supported fidelity. Once the lowest-priority application reaches its lowest fi-
delity level, Odyssey degrades the next lowest-priority application. Fidelity up-
grades occur in reverse.

After an application adapts, Odyssey verifies that the change in power de-
mand is sufficient. It resets the estimate of power demand so that it is in the
middle of the zone of hysteresis—this represents an optimistic assumption that
the change in fidelity will prove sufficient. As Odyssey takes new power mea-
surements, the estimate of power demand will either stay within the zone of
hysteresis, indicating that the change in fidelity was correct, or stray outside
the bounds, indicating that additional adaptation is necessary.

Our experimental results show that the incremental policy usually does an
excellent job of meeting user-specified goals for battery lifetimes. However, it
does possess limitations that make the design of energy-aware applications
more challenging. First, an application must ensure that each lower fidelity
uses less energy per unit of work than all higher fidelities. Second, some care
must be exercised in choosing the number of supported fidelities. If too many
are specified, Odyssey may be very sluggish in adapting to changes in power
demand because it must incrementally traverse a large number of fidelities. If
too few are specified, the system may oscillate frequently between two adjacent
fidelities that have a large difference in power demand. These observations led
us to also develop a history-based policy.

4.6 History-Based Policy

Using the history-based adaptation policy, Odyssey measures and logs the en-
ergy that applications use at different fidelities. It learns functions which relate
application fidelity and energy usage. When Odyssey needs to change system
power usage to meet battery goals, it consults these functions and selects the
adaptation that it predicts will yield the needed change in power usage.
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4.6.1 Recording Application Energy History. Odyssey measures the en-
ergy supply of the mobile computer when the application calls begin fidelity
op and end fidelity op for each operation—these on-line measurements are
performed using one of the methods described in Section 4.2. The difference
between these two values gives the total system energy expended during the
execution of the operation. Odyssey records operation energy usage in an
application-specific log, along with the operation start time, end time, and fi-
delity. Odyssey also records the value of any parameters that affect the com-
plexity of the operation—for example, the length of a speech utterance or the
size of a Web image. The value of these operation-specific parameters are spec-
ified when an application calls begin fidelity op. Odyssey buffers the log in
memory and batch writes data to persistent storage, making this information
available across multiple invocations of an application.

If more than one operation executes simultaneously, Odyssey does not try
to differentiate their individual energy impact. Potentially, it could apportion
energy usage according to the percentage of CPU, disk, network, and other
resources used by each operation. However, this method requires detailed re-
source accounting, as well as per-platform calibration of the energy costs of re-
source usage. We have therefore chosen the simpler approach of excluding from
the history log any operation which overlaps with another simultaneous oper-
ation. This sacrifices some data, but ensures that only accurate data is logged.

4.6.2 Learning from Application Energy History. Odyssey models applica-
tion energy usage as a function of fidelity and input parameters. As Section 3
shows, simple linear models provide a good fit for many applications—we sup-
port this common case with default library routines. We also provide a modular
interface that enables more complex applications to supply application-specific
prediction functions. In practice, we have found the default routines to be suf-
ficient for all applications that we have studied to date.

The default prediction library treats each dimension of fidelity and each
parameter as a separate dimension in a multidimensional space. It uses mul-
tiple variable linear regression to model continuous dimensions, and binning
to model discrete dimensions. For example, the video recognizer has a continu-
ous input parameter, the length of the video clip, and two discrete dimensions,
compression level and window size. Odyssey uses linear regression to generate
a linear model for each combination of compression and window size—these six
models correspond to the lines in Figure 8.

4.6.3 Benefits of Application Energy History. With the history-based pol-
icy, applications no longer need to carefully choose fidelities so that each speci-
fied fidelity uses less energy than all higher fidelities. Figure 20 demonstrates
why this is important. Each line shows the energy usage of the Web browser
described in Section 3.6 at a specific fidelity. Energy use varies significantly
with the uncompressed size of the image being displayed. The highest fidelity
corresponds to the baseline case where no distillation is performed; the other
fidelities correspond to image distillation to JPEG quality levels of 99 and 95.
Data points show measured energy values for two image sizes: 720 KB and
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Fig. 20. Variation in Web energy use. The three lines show how Web browser energy usage changes
with image size for three fidelities; the data points are measured energy usage for two specific image
sizes.

3.5 MB. For large images, the highest fidelity uses more energy since it trans-
mits the most data over the wireless network. However, for small images, the
lower fidelities use more energy because image distillation introduces a sig-
nificant latency which results in the client waiting longer for the image to
arrive. Thus, it is impossible to specify a static ordering of these three fidelities
such that energy decreases with fidelity across all image sizes. The incremental
policy would incorrectly switch from baseline to JPEG-99 when small images
are being displayed and a reduction in power usage is needed—this transition
would actually increase power demand.

The history-based policy introduces a layer of indirection in the form of a
global feedback parameter, c, that represents how critical energy conserva-
tion is at the current moment. The value of this parameter ranges from 0 to 1
and represents the relative power reduction that each application should pro-
vide through fidelity reduction. For example, when c is 0.1, each application
is requested to decrease its energy usage to no more than 90% of its baseline
(maximum) energy consumption. When an application calls begin fidelity op,
Odyssey consults its energy model and selects the best fidelity that yields at
least a 10% reduction in energy usage. In the event that no supported fidelity
provides the desired energy reduction, Odyssey selects the fidelity that maxi-
mizes energy conservation.

4.6.4 Using Energy History to Improve Agility. The history-based policy
is more agile than the incremental policy because it can directly jump to an
appropriate fidelity level when adaptation is needed. The incremental policy
must traverse each intermediate fidelity and pause after each adaptation to
assess how much power demand has changed. When a large number of fidelities
are specified, the incremental policy can potentially be too sluggish in reacting
to changes in power demand.

How does the history-based policy select an appropriate fidelity level? First,
it calculates the needed change in power usage. During normal operation, pre-
dicted energy demand remains within a zone of hysteresis with a value no
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greater than the energy supply and no lower than the 95% of the current sup-
ply minus 1% of the initial energy supply. When the current power demand,
Pcurrent, strays outside this zone, adaptation is needed.

The ideal power demand is precisely in the middle of the zone of hysteresis.
If S is the current energy supply, t the time remaining to the goal, and Si the
initial energy supply, the ideal power demand, Pideal, is:

Pideal = (S + (0.95 S − 0.01 Si))/2t. (3)

Odyssey calculates the needed change in power as Pideal − Pcurrent. Next, it
predicts the ideal value of c, cideal, that will produce a future power drain of Pideal.
Finally, it sets the value of c directly to cideal. When applications subsequently
call begin fidelity op, Odyssey will choose fidelity levels that yield the desired
amount of energy conservation.

Unfortunately, Odyssey cannot calculate cideal directly. The feedback param-
eter, c, represents only the requested change in each application’s individual
power usage. Some applications may not have sufficiently low fidelities to pro-
vide the requested power reduction. Additionally, energy-aware applications
account for only a portion of total system power usage; background power con-
sumption such as the screen backlight and the activities of applications that
are not energy-aware account for the rest. Thus, an x% reduction in c does not
guarantee that there will be an x% reduction in system power usage; often the
resulting change is much less.

Odyssey uses its history of application energy usage to estimate the relation-
ship between c and system power usage. It maintains a list of recently executed
operations that includes associated input parameters and fidelity decisions. For
a given value of c, it calculates the fidelity that it would have chosen for each
logged operation. It then uses application-specific energy models to predict how
much dynamic energy each operation would have used at the selected fidelity.
Dynamic energy is the energy needed to perform an operation above and be-
yond what would have been needed to execute the kernel idle procedure for the
same time period.

Odyssey then constructs a hypothetical waveform that captures its predic-
tion of how the mobile computer’s power usage would have changed over time
for the specified value of c. The waveform reflects the background power usage
of the machine and the predicted dynamic energy usage of each operation per-
formed in the past. Finally, Odyssey calculates power demand by applying the
exponential smoothing function shown in Equation (2) to the waveform.

Figure 21(a) shows a hypothetical example that helps illustrate this process.
Here, Odyssey is predicting power demand for c = 0.1. There are four recently
executed operations. Odyssey predicts what their energy usage would have been
if c had been 0.1. For example, it predicts that operation 1 would have used
3 W. Odyssey then generates the waveform that represents predicted power
usage over time. Total power usage at any given time is the sum of background
power usage and the predicted dynamic power usage of each currently executing
operation. In this figure, the total power usage waveform is given by the area
under all shaded regions. Using Equation (2), Odyssey would calculate power
demand to be approximately 3.81 W in this example.
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Fig. 21. Example of history replay.

Figure 21(b) shows the same calculation for c = 0.2. Odyssey selects lower
fidelity levels for each operation. Consequently, the dynamic energy usage of
each operation is lower than in Figure 21(a). For c = 0.2, Odyssey would predict
power demand to be about 3.18 W.

Odyssey performs a binary search to determine cideal. That is, it calculates
the new value of c that would place power demand squarely in the middle
of the zone of hysteresis. It then changes the current value of the feedback
parameter to cideal and resets its estimate of the current power demand. Note
that this prediction need not always be correct; the feedback in the system will
eventually adjust for any errors.

4.7 Validation

4.7.1 Benefit of Goal-Directed Adaptation. To explore the benefit of goal-
directed adaptation, we executed the two energy-aware applications described
in Section 3.7: a composite application involving speech recognition, map view-
ing, and Web access, run concurrently with a background video application. To
obtain a continuous workload, the composite application executes every 25 s.
Thus, the amount of work (number of recognitions, image views, and map views)
is constant over time.

The video application supports four fidelities: full-quality, Premiere-B,
Premiere-C, and the combination of Premiere-C and reduction of the display
window. The speech recognition component of the composite application sup-
ports full and reduced quality recognition on the local machine. The map com-
ponent has four fidelities: full-quality, minor road filtering, secondary road fil-
tering, and the combination of secondary road filtering and cropping. The Web
component supports the five fidelities shown in Figure 15. Odyssey uses the
incremental adaptation policy; we assign speech the lowest priority, with video,
map, and Web having successively higher priorities.

Client applications execute on the IBM 560X and communicate with servers
using a 900-MHz, 2-Mb/s wireless network. To isolate the performance of goal-
directed adaptation, Odyssey uses a modulated energy supply.

At the beginning of each experiment, we provided Odyssey with an initial
energy value and a time goal. We then executed the applications, allowing
them to adapt under Odyssey’s direction until the time goal was reached or the
residual energy dropped to zero. The former outcome represents a successful
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Fig. 22. Change in energy supply and demand. Odyssey meets user-specified goals for battery
durations of 20 and 26 min while running the composite and video applications described in
Section 3.7.

completion of the experiment, while the latter represents a failure. We noted
the total number of adaptations of each application. We also noted the residual
energy at the end of the experiment—a large value suggests that Odyssey may
have been too conservative in its adaptation and that average fidelity could
have been higher.

All experiments used a 12,000-J modulated energy supply. This lasts
19:27 min when applications operate at highest fidelity, and 27:06 min at lowest
fidelity. The difference between the two values represents a 39.3% extension in
battery life. We deliberately chose a small initial energy value so that we could
perform a large number of experiments in a reasonable amount of time. The
value of 12,000 J is only about 14% of the nominal energy in the IBM 560X
battery. Extrapolating to full nominal energy, the workload would run for 2:18
hours at highest fidelity, and 3:13 hours at lowest fidelity.

Figures 22 and 23 show detailed results from two typical experiments: one
with a 20-min goal, and the other with a 26-min goal. Figure 22 shows how
the supply of energy and Odyssey’s estimate of future demand change over
time. In both trials, Odyssey meets the specified goal for battery duration.
In addition, once the time goal is reached, residual energy is quite low. The
graph also confirms that estimated demand tracks supply closely. The most
visible difference between the two trials is the slope of the supply and de-
mand lines. After an initial adaptation period of approximately three minutes,
Odyssey adjusts power usage in the 26-min trial in order to extend battery
lifetime.

The four graphs of Figure 23 show how the fidelity of each application varies.
For the 20-min goal, the high-priority Web and map applications remain at full
fidelity throughout the experiment; the video degrades slightly; and speech runs
mostly at low fidelity. For the 26-min goal, the highest-priority Web application
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Fig. 23. Change in application fidelity. The four graphs show how each application adapts when
20- and 26-min goals for battery durations are specified.

runs mostly at the highest-fidelity, while the other three applications run mostly
at their lowest fidelities. For both goals, application behavior is more stable at
the beginning and exhibits greater agility as energy drains.

Figure 24 summarizes the results of five trials for each time goal of 20,
22, 24, and 26 min. These results confirm that Odyssey is doing a good job
of energy adaptation. The desired goal was met in every trial. In all cases,
residual energy was very low: the largest average residue is still only 1.2% of
the initial energy value. The average number of adaptations by applications is
generally low, but there are some cases where it is high. This is an artifact of
the small initial energy value, since the system is designed to exhibit greater
agility when energy is scarce.

All values used in this experiment are feasible battery lifetimes. If a value
greater than 27:06 is selected, Odyssey would clearly fail to meet the goal for
battery lifetime. In this situation, Odyssey should notify the user as soon as pos-
sible using the interface in Figure 19. Using the incremental policy, Odyssey
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Goal Goal Residue Number of Adaptations
(s) Met Energy (J) Time (s) Speech Video Map Web

1200 100% 145.2 (25.3) 15.3 (1.9) 10.8 (1.6) 11.0 (4.0) 0.4 (0.9) 0.0 (0.0)
1320 100% 107.5 (61.5) 12.9 (7.2) 2.8 (0.4) 28.2 (5.2) 1.6 (2.6) 0.0 (0.0)
1440 100% 101.2 (22.3) 13.0 (4.5) 5.0 (7.9) 22.6 (9.8) 9.6 (3.8) 1.2 (1.8)
1560 100% 60.2 (28.7) 8.7 (5.9) 1.0 (0.0) 6.0 (2.8) 15.4 (4.6) 7.6 (5.9)

Fig. 24. Summary of goal-directed adaptation. The second column shows the percentage of trials
in which the energy supply lasts for at least the specified duration. The next two columns show the
average residual energy at the end of the experiment. The remaining columns show the average
number of adaptations performed by each application. Each entry represents the mean of five trials
with standard deviations given in parentheses.

Half-Life Goal Met Residue (J) Adaptations
0.01 100% 204.6 (17.7) 93.6 (3.7)
0.05 100% 124.1 (38.0) 33.2 (4.0)
0.10 100% 129.2 (21.6) 14.6 (5.4)
0.15 80% 97.6 (22.2) 6.8 (2.9)

Fig. 25. Sensitivity to half-life. The first column is the half-life value used for smoothing. The
second column shows the percentage of trials in which the energy supply lasts for at least the spec-
ified duration. The next column shows the residual energy at the end of the experiment. The final
column shows the number of adaptations performed. Each entry is the mean of five trials with
standard deviation given in parentheses.

would trigger successive adaptations until all applications operate at their
minimum fidelity—it would then notify the user when the goal still proved
infeasible. Using the history-based policy, Odyssey would notify the user as
soon as it realized that no set of adaptations would be sufficient to produce the
needed change in power usage. This issue is explored further in Section 4.7.4.

4.7.2 Sensitivity to Half-Life. We next examined how changing the half-
life parameter used to calculate the gain, ®, affects system performance. In
each experiment, we displayed a half-hour video clip and specified that the
modulated 13,000-J energy supply should last for the entire video.

Figure 25 summarizes the results of five trials each for several half-life val-
ues. A half-life of 1% is clearly too unstable—the system produces the largest
residue with this value, and the video player adapts excessively. For larger val-
ues, the system is more stable. However, with a 15% half-life, the system is
insufficiently agile, failing to meet the goal in one of the five trials. We have
also encountered similar results in less detailed analysis of the speech, map,
and Web applications. This led us to use a 10% half-life.

4.7.3 Dynamic Workloads. The short duration of the previous experiments
allowed us to explore the behavior of Odyssey for many parameter combina-
tions. Having established the feasibility of goal-directed adaptation, we then
ran a small number of longer duration experiments with more dynamic work-
loads to confirm its benefits in more realistic scenarios.

We used a simple stochastic model to construct an irregular, dynamic work-
load. During any given minute, each of four applications (video, speech, map,
and Web) may independently be active or idle. An active application executes
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Trial Goal Residual Number of Adaptations
Met Energy (J) Speech Video Map Web

1 Yes 345 1 5 5 1
2 Yes 381 1 10 7 11
3 Yes 2486 8 13 5 0
4 Yes 554 2 10 6 8
5 Yes 464 5 6 14 0

Fig. 26. Longer-duration results. The second column shows whether the energy supply lasts for
at least the specified duration. The next column shows the residual energy at the end of the exper-
iment. The remaining columns show the number of adaptations performed.

a fixed workload for one minute; that is, the video application shows a 1-min
video. After each minute, there is a 10% chance of switching states; that is, an
active application stays active, and an idle one stays idle, with probability 0.9.

We began each experiment with an energy supply of 90,000 J, roughly match-
ing a fully-charged ThinkPad 560X battery. We specified an initial time duration
of 2:45 h, but extended this goal by 30-min at the end of the first hour. This
change reflects the possibility that a user may modify the estimate of how long
the battery needs to last.

Figure 26 presents the results of five trials of this experiment, each generated
with a different random number seed. In every case, Odyssey succeeded in
meeting its time goal. Four of the five trials ended with a residual energy that
was less than 1% of the initial supply. Only in one trial (trial 3) was the residue
noticeably higher (2.8%), implying that Odyssey was too conservative in its
adaptation.

In spite of the bursty workload, Figure 26 shows fewer adaptations than
Figure 24, which had a steady workload. This is due to two interactions be-
tween the hysteresis strategy and the longer-duration goal. First, the zone of
hysteresis is larger since it is proportional to the energy supply. Second, smooth-
ing is more aggressive when the goal is distant. Combined, these factors cause
Odyssey to ignore minor fluctuations in power usage except toward the end of
each trial.

4.7.4 Benefit of History-Based Policy. We validated the benefit of the
history-based policy with a scenario that models the actions of a user browsing
digital photographs from an album stored on a remote Web server. The user
loads five images/min—each image is 720 KB in size. We first executed the sce-
nario using the incremental policy; we then executed it using the history-based
policy.

The Web application performs one type of operation: fetching an image from
the server. JPEG quality is the sole dimension of fidelity; it is specified as
a discrete dimension ranging from 5 to 100. This experiment is designed to
bring out the flaws in the incremental adaptation policy. There are 96 discrete
fidelity levels, each of which produces only a small change in power usage.
Thus, the incremental policy must make many adaptations to produce even a
small change in application power usage. Fidelity 100 corresponds to loading
an undistilled image—the remaining fidelities correspond to distilling an image
to the equivalent JPEG quality level before fetching it from the remote server.
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Fig. 27. Incremental policy.

Although image size is an input parameter for the operation, all images are
roughly the same size.

We first obtained a detailed history of energy usage by performing 4000
image loads. This data revealed that fidelities 97–99 use more energy than the
baseline fidelity of 100 for the target image size—this is because distillation
overhead outweighs savings due to reduction in bytes transmitted over the
network. Since fidelities 97–99 are inferior to fidelity 100 in both quality and
energy conservation, they should never be chosen by a correct adaptation policy.

We next executed five trials for each adaptation policy. We used a modu-
lated 90,000-J energy supply, roughly equivalent to the amount of energy in
the ThinkPad’s battery. We specified an initial time goal of 2.5 h. After 1 h of
execution, we specified that the battery should last an additional 15 min.

Figure 27 shows results from one typical trial using the incremental policy.
The solid line in Figure 27(a) shows how energy supply changes over time. The
dashed line shows the rate of drain that would be achieved by an ideal adaptive
policy. The ideal policy uses knowledge of future activity to choose the highest
constant fidelity that meets the specified goal for battery duration. However, it
does not anticipate changes in the specified goal for battery duration—hence,
there is a change in fidelity at the 1-h mark.

In the trial, the rate of drain for the incremental policy tracks the ideal fairly
closely for the first hour, although energy is used at a slightly higher rate during
this time period. Once the user requests an additional 15 min of battery life,
the two lines diverge more noticeably. Odyssey uses too much energy after the
adjustment and is never able to recover fully. The energy supply expires almost
3 min too early.

Figure 27(b) gives more insight into why Odyssey misses the time goal. After
the user changes the goal at 3600 s, Web fidelity decreases exponentially. Ini-
tially, changes in fidelity are relatively infrequent because the goal is distant.
As the goal nears, Odyssey is more agile and fidelity changes are more frequent.
Web fidelity remains higher than ideal for a significant portion of time: from
3600 to 6435 s, causing the laptop to expend too much energy. Even though
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Fig. 28. History-based policy.

Adaptation Goal Expiration Number of
Policy Met? Time (s) Adaptations

Incremental 0% +79.7 (9.7) 56.8 (11.2)
History-Based 100% -146.6 (11.2) 7.8 (1.3)

Fig. 29. Benefit of energy history.

Odyssey tries to compensate by lowering fidelity for the remainder of the trial,
it is unable to conserve enough energy to meet the specified goal for battery
duration.

It is also interesting to note that the incremental adaptive policy chooses Web
fidelities 97–99 during the time period lasting from 1845 to 3113 s. Without
application history, it cannot know that these fidelities are clearly inferior to
fidelity 100. This accounts for the slight overconsumption of energy during the
first hour of the trial.

Figure 28 shows results from one typical trial using the history-based policy.
The rate of drain of the energy supply tracks the ideal quite closely. Odyssey
maintains a slight surplus throughout the trial and meets the goal for battery
duration. Once the goal is reached, residual energy is only 1.0% of the initial
energy supply.

For the first hour, Odyssey chooses fidelities that are close to ideal. It also
avoids the clearly inferior fidelities from 97 to 99. When the user respecifies
the goal, Odyssey immediately decreases fidelity. The initially chosen value
is slightly less than ideal, reflecting Odyssey’s conservative bias. However,
Odyssey soon detects the discrepancy and readjusts the fidelity. In contrast
to the previous scenario, Odyssey is much more agile in converging upon an
acceptable fidelity level.

Figure 29 summarizes the results of five trials for each policy. The history-
based policy always meets the time goal. When the incremental policy is used,
the energy supply expires too early. Further, the average number of adapta-
tions is much smaller with the history-based policy because Odyssey converges
much more quickly upon acceptable fidelities. Of course, the incremental policy
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would work fine in this scenario if the Web application carefully chose the type
and number of fidelities it supported. In contrast, one of the main benefits of
the history-based policy is that it is self-tuning—it requires little application
support in order to yield acceptable results.

Given these results, our current approach is to use the history-based policy
whenever Odyssey has sufficient data to construct an energy model. This means
that an application initially uses the incremental policy while Odyssey monitors
and persistently logs its energy usage as described in Section 4.6.1. It may take
some time before sufficient data is logged to allow construction of an energy
model; for example, the history-based experiments in this section assume 4000
previous image loads. However, once the log is sufficient, the application will
always be able to use the history-based policy in the future. Currently, the deci-
sion of when to switch to the history-based policy is made manually—however,
we hope to develop methods that automatically decide when to switch based
upon the amount of data that has been logged.

4.7.5 Overhead. The power overhead imposed by goal-directed adaptation
is the sum of the overhead of measuring power usage and the overhead of using
these measurements to predict energy demand. The measurement overhead is
quite low. Most Smart Battery solutions can provide power measurements at
the frequency Odyssey requires using less than 10 mW [Dallas Semiconductor
Corp. 1999; USAR Systems, Inc. 1999]. Odyssey’s prediction overhead is only
4 mW. Therefore, the total power overhead is less than 14 mW, or less than
0.25% of the background power consumption of the IBM 560X.

The use of application history incurs additional overhead when Odyssey de-
termines a new value for the feedback parameter c. During the five trials,
Odyssey took an average of 0.83 s and 6.7 J to calculate a new value for c.
However, since this calculation is asynchronous and infrequent, an average of
eight times per 3.25-h trial in our experiments, its effect is minimal. The total
energy is approximately 53 J, or 0.06% of the system energy usage shown in
Figure 28.

5. RELATED WORK

PowerScope was the first tool that used profiling to measure energy usage.
One alternative strategy [Bellosa 2000; Cignetti et al. 2000; Lorch 1995; Zeng
et al. 2002] is to develop an energy model that quantifies power usage of spe-
cific system states. When an application executes, one estimates energy use by
measuring time spent in each state and counting the number of state transi-
tions. A drawback of this approach is that it is nontrivial to develop an energy
model that accounts for all significant sources of power usage. Further, it is dif-
ficult to imagine expending this approach to capture the effects of proprietary,
hardware-based power management—one example is Lucent 802.11 wireless
network cards. A significant advantage of energy accounting is that it can sepa-
rate out the energy consumption of asynchronous activities such as disk spin-up
that PowerScope assigns to the currently executing process.

Another alternative for energy measurement is low-level power-analysis us-
ing instruction-level [Tiwari et al. 1994; Lee et al. 1997] or hardware [Brooks
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et al. 2000; Vijaykrishnan et al. 2000] models. Because of their detailed nature,
these models can provide accurate power estimates for small kernels of code.
However, it is not clear that they can scale to large multithreaded applications
such as Web browsers toward which PowerScope is targeted. CASTLE [Joseph
and Martonosi 2001] uses a hybrid approach that combines a model of the
microarchitecture with runtime analysis of processor performance counters to
estimate CPU power consumption.

This work is also the first to demonstrate the energy benefits of application
adaptation and the first to show that the operating system can effectively man-
age battery resources using feedback and application history. More recently,
Ellis’ EcoSystem [Zeng et al. 2002] project also explored operating system bat-
tery management. EcoSystem uses a hybrid measurement approach—it em-
beds an energy model in the operating system and accounts for inaccuracies
with direct battery measurement similar to that used in Odyssey. EcoSystem
meets target battery lifetimes by descheduling applications to leverage non-
ideal battery characteristics; that is, EcoSystem degrades performance rather
than fidelity. EcoSystem can also provide isolation for energy resources by en-
forcing user-specified energy budgets for each application. In contrast, Odyssey
uses a cooperative model: it allows each application to specify the range of
adaptation it supports and does not enforce fidelity decisions. Neugebauer and
McAuley [2001] describe how energy-awareness might be integrated into the
Nemesis OS with an economic model for energy allocation. Yuan’s GRACE-1
[Yuan et al. 2003] investigates how to tie together application adaptation and
voltage scaling in a coordinated framework.

Chase’s Muse system [Chase et al. 2001] reduces hosting center energy needs
by managing server resources. Muse employs an economic model in which cus-
tomers bid for service. When the marginal benefit of increased revenue exceeds
the dynamic cost of energy usage, Muse powers up additional servers. While
Muse’s goal, maximizing service center profit, is very different from our goal of
meeting desired battery lifetimes, both systems share the general approach of
trading reduction of service for energy conservation.

At a broader scope, the large body of existing work in processor [Flautner
et al. 2001; Lorch and Smith 2001; Weiser et al. 1994], storage [Douglis et al.
1995; Lu and De Micheli 1999], and network power management [Kravets and
Krishnan 1998; Kravets et al. 1999] complements our work in energy-aware
adaptation. As the results in Section 3 show, the benefits of energy-aware
adaptation increase as hardware power management improves. Similarly, we
expect ongoing work in compiler-based energy optimizations [Simunic et al.
1999; Tiwari et al. 1996] to prove synergistic with energy-aware adaptation.

6. CONCLUSION

Relentless pressure to make mobile computers lighter and more compact places
severe restrictions on battery capacity. At the same time, mobile software con-
tinues to grow in complexity, hence increasing energy demand. Reconciling
these opposing concerns by exploiting remote infrastructure is possible, but
uses energy for wireless communication.
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Energy-aware adaptation introduces flexibility into this overconstrained so-
lution space. Rather than making static tradeoffs in hardware and software
design, we defer these tradeoffs. At runtime, more accurate knowledge of en-
ergy supply and demand allows better decisions that resolve the tension be-
tween energy conservation and usability. Our results confirm that this approach
yields substantial energy savings and can be effectively combined with existing
hardware-centric approaches.
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