Storage-aware Smartphone Energy Savings

David T. Nguyen*, Gang Zhou*, Xin Qi*, Ge Peng*, Jianing Zhao*, Tommy Nguyen', Duy Le*
*College of William and Mary, Williamsburg, VA 23185, USA
{dnguyen, gzhou, xqi, gpeng, jzhao} @cs.wm.edu
fRensselaer Polytechnic Institute, Troy, NY 12180, USA
nguyetl 1 @rpi.edu
fEMC Isilon, Seattle, WA 98104, USA
duy.le@emc.com

ABSTRACT

In this paper, to our best knowledge, we are first to pro-
vide an experimental study on how storage techniques affect
power levels in smartphones and introduce energy-efficient
approaches to reduce energy consumption. We evaluate
power degradation at several layers of block I/O, focusing
on the block layer and device driver. At each level, we in-
vestigate the amount of energy that can be saved, and use that
to design and implement a prototype with optimal energy sav-
ings named SmartStorage. The system tracks the run-time I/O
pattern of a smartphone that is then matched with the closest
pattern from the benchmark table. After having obtained the
optimal parameters, it dynamically configures storage param-
eters to reduce energy consumption. We evaluate our proto-
type by using the 20 most popular Android applications, and
our energy-efficient approaches achieve from 23% to 52% of
energy savings compared to using the current techniques.

Author Keywords
Dynamic storage configuration; I/O optimization;
Smartphone energy-efficient system.

ACM Classification Keywords
C.5.3 Computer System Implementation: Microcomputers;
C.4 Performance of Systems: Design studies

General Terms
Design; Experimentation; Measurement; Performance.

INTRODUCTION

Continual advancements in the technology of smartphones
have become an important, if not essential, aspect of our daily
life. This is unsurprising since a single mobile device has
the ability to call and text family members, check status up-
dates on social media sites, access news and information on
the Internet, and play a variety of games for entertainment.
However, a common complaint among smartphone owners is
the poor battery life. To many such users, being required to
charge the smartphone after a single day of moderate usage is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

UbiComp’13, September 8—12, 2013, Zurich, Switzerland.

Copyright (© 2013 ACM 978-1-4503-1770-2/13/09...$15.00.
http://dx.doi.org/10.1145/2493432.2493505

unacceptable. In a 2011 market study conducted by Change-
Wave [1] concerning smartphone dislikes, 38% of the respon-
dents listed that battery life was their biggest complaint, with
other common criticisms such as poor 4G capacity and inad-
equate screen size lagging far behind. The result of such a
study demonstrates the necessity for solutions which address
the issue of energy consumption in smartphone devices.

In this paper, we investigate the direct impact of smartphone
storage techniques on total energy consumption and we an-
swer two key research questions: How does storage affect
smartphone power efficiency? and How can we optimize
smartphone storage in order to save more energy? By an-
swering the first question, we find which and how each stor-
age component contributes to the total energy consumption.
Different storage techniques have different effects on appli-
cation performance that results in varying power levels. That
leads to our second research question that helps us find ways
on optimizing storage approaches in order to save more en-
ergy. Answers to these research questions will help engineers
come up with more sophisticated storage designs better tai-
lored to modern smartphones and more efficient savings, af-
fecting as many as 1.038 billion smartphone users around the
globe (as of September 2012 [12]).

In order to answer the first research question, we evaluate
smartphone power efficiency at various layers of the I/O path,
such as the block layer and device driver. We provide ev-
idence which highlights that the energy consumption of a
smartphone can differ depending on storage techniques em-
ployed. Different scheduling algorithms on the block layer or
different queue lengths on the device driver impact the total
energy consumption differently. We find for 8 benchmarks
the combinations of scheduling algorithms and queue lengths
with optimal energy savings. In order to address the second
research question, we design our SmartStorage system and
implement it on the Android platform. SmartStorage tracks
smartphone’s I/O pattern in run-time and matches with the
benchmark with closest I/O pattern. After having matched
with a benchmark, the system dynamically configures an op-
timal storage configuration to achieve lower energy consump-
tion.

We found a few works in the research community closely re-
lating to ours. The work of Kim et al. [20] presents an anal-
ysis of storage performance on Android smartphones and ex-
ternal flash storage devices. Their discovery of a strong cor-
relation between storage and application performance degra-
dation serves as motivation for our work. Carroll et al. [16]

measure the breakdown of energy consumption by the main
hardware components in the device. Their direct measure-
ments of each component’s current and voltage are used to
calculate power. This is done on a smartphone used for sci-
entific purposes only, and many experiments cannot be repli-
cated on commercially available smartphones. We take a dif-
ferent approach based on the precise analysis of the I/O ac-
tivities between the application layer and the flash storage.
Pathak et al. [22] introduce an application profiling approach
in which they propose a system mapping energy activities to
program entities based on estimates of routines’ running time.
The work, however, is done only on the application level. Our
work is also motivated by cross-layer I/O analysis studied by
the authors in [24, 25], which has not been done in smart-
phones. At this stage, there has been no direct study of the
correlation between storage techniques and energy consump-
tion within smartphone devices. We believe our work can
help other researchers realize the importance of storage and
perhaps trigger more exciting solutions to the smartphone en-
ergy consumption problem.

In summary, our contributions within this paper are the fol-
lowing:

e First, we provide an experimental study on how storage
techniques impact energy consumption on smartphones.

e Second, we design and implement the SmartStorage sys-
tem that tracks I/O pattern of smartphones in run-time and
dynamically configures storage parameters with optimal
energy savings.

e Third, we evaluate our solution with an Android-based
smartphone on the 20 top free applications from Android
market and show that our system can save from 23% to
52% of energy. This is achieved with 2.5% energy over-
head from running SmartStorage and a difference of 3% in
terms of application delay.

BACKGROUND AND MOTIVATION

In this section, we introduce background and motivation of
our work. Next, we explain the measurement and methodol-
ogy. Afterwards, we proceed with the measurement on the
cache, the block layer, and the device driver. Finally, we give
summary of our measurement results.

1/0 Path Components

In this work we take a look at energy efficiency of various
storage techniques applied at several main components such
as the cache, the block layer, and the device driver. In partic-
ular, our focus is to investigate the impact of different storage
configurations on power level in smartphones. We illustrate
the main kernel components affected by a block device oper-
ation on the I/O path in Figure 1. The figure is adapted from
the literature [14].

Cache

The disk cache is a software mechanism allowing the system
to keep in RAM some data normally stored on the disk. Fur-
ther accesses to that same data can be granted without access-
ing the disk [14]. There are 2 classical caching policies, write-
back and write-through. Write-back is the default approach

Write-through|
v:

s,
Cache Write-back

YAFFS2,
File System ext2,

Scheduling ext3, ext4
BFQ.CFQ, Block Layer
Deadline, NOOP

Queue Depths:
128, 64, 32
16,8, 4

Device Driver

Figure 1. Kernel Components on the I/O Path.

used in smartphones which in practice means that the devices
signal I/O completion to the operating system before data has
hit the flash disk. In contrast, a write-though cache performs
all write operations in parallel, with data written to the cache
and the disk simultaneously. There are two mechanisms to
control caching behavior of the storage devices, forced cache
flush and force unit access. In the Android kernel, write-
through is enforced by setting the true value to REQ_FLUSH
and REQ_FUA parameters. If we want the phone to use one
of the caching policies, after updating the parameters for the
corresponding method in the kernel source code, the kernel
needs to be rebuilt and re-flashed into the phone.

File system

There are several file system types used by smartphone ven-
dors, each flash partition can be formatted in a different file
system type before being properly mounted to given names-
paces such as /data, /system, or /cache. Most frequently used
file systems are YAFFS2, ext2, ext3, and ext4. YAFFS2 is
used, for instance, in HTC Hero or Google Nexus One. Ext4
is employed in the most recent Android smartphones such
as Google Nexus 4 or Samsung Galaxy S4. We can get in-
formation regarding the file systems in use by calling mount
command on a rooted phone.

Block Layer

Block layer is another component on the I/O path. At this
level, the main work is scheduling I/O requests from above
and sending them down to the device driver. The Linux ker-
nels on Android smartphones offer 4 scheduling algorithms:
BFQ, CFQ, Deadline, and Noop. In BFQ (Budget Fair Queu-
ing), each process is assigned a fraction of disk (budget) mea-
sured in number of sectors and the disk is granted to a process
until the budget expires. CFQ (Complete Fair Queuing) at-
tempts to distribute available I/O bandwidth equally among
all I/O requests. The requests are placed into per-process
queues where each of the queues gets a time slice allocated.
Deadline algorithm attempts to guarantee a start time for a
process. The queues are sorted by expiration time of pro-
cesses. Noop inserts incoming I/Os into a FIFO fashion queue
and implements request merging. In some Android phones,
the default fixed scheduling algorithm is BFQ (Google Nexus
One), others use CFQ (Samsung Galaxy Nexus, Samsung
Nexus S).

Device Driver

The device driver gets requests from the block layer, and pro-
cesses them before sending back a notification to the block
layer. On the device driver, we are interested in a parameter
called queue depth that is defined as the number of pending

I/0 requests for storage. The queue depth is fixed to differ-
ent values depending on vendors, usually 128 (e.g., Samsung
Galaxy Nexus or Google Nexus One).

Flash

The last level to be reached by the I/Os is the storage subsys-
tem that contains an internal NAND flash memory, an exter-
nal SD card and a limited amount of RAM. The subsystem
contains a number of partitions depending on vendors. The
partitions can be found in the /dev/block directory.

Motivation

In this section, the first research question How does storage
affect smartphone energy efficiency? is addressed by dis-
cussing preliminary measurements. We list the chosen bench-
marks for our experiments and measure smartphone power
level with default I/O path parameters. Afterwards, power
level affected by each layer is investigated, starting with the
block layer and moving further to the device driver layer.
Caching policies are discussed at the end due to lower overall
impact. All results are averaged over ten measurements with
corresponding confidence intervals.

Benchmark Properties
AnTuTu [3] storage, memory, CPU, GPU
CF-Bench [6] storage, memory, CPU, Java

GLBenchmark [7] GPU
BrowserMark [5] browser, JavaScript, HTML
AndroBench [2] storage, SQLite
Quadrant [9] storage, memory, CPU, GPU
Smartbench [10] storage, memory, CPU, GPU
Vellamo [11] storage, memory, CPU, GPU, browser

Table 1. Benchmarks.

Benchmarks

We run 8 popular benchmarks on the Google Nexus One
phone with Android platform under different storage configu-
rations and measure power consumption levels with the Mon-
soon Power Monitor [8] (details given in Performance Eval-
uation). Each benchmark tests different phone subsystems
and has its specific I/O pattern. The aim is to cover as many
I/0O pattern types as possible. The 8 chosen benchmarks with
their properties are listed in Table 1. We do not use a syn-
thetic benchmark that simulates I/O patterns, since we aim to
use application benchmarks that reflect real Android applica-
tion behavior.

Block Layer Level

The default file system, scheduling algorithm, queue depth,
and caching policy for the Google Nexus One is YAFFS2,
BFQ, 128, and write-back, respectively. Each benchmark is
executed on the phone for each scheduling algorithm and the
power level is measured. The parameters are fixed to the de-
fault values, including the queue depth 128 and write-back
caching policy. The results are illustrated in Figure 2. The
first observation says that for the same benchmark, different
scheduling algorithms result in different power levels. For
instance, the AnTuTu (1st benchmark) average power con-
sumption level is 792mW with CFQ, 720mW with Deadline,
792mW with Noop, and 1080mW with the default BFQ. This
is an expected outcome due to different I/O request reorder-
ing and merging of each scheduling algorithm [24]. Another

Bl ANTuTu
IECF-Bench
I GLBench

[l BrowserM

Power (mW)

1200 ‘ ‘
1000 g
800
600
400
200
0 [vellamo

BFQ CFQ Deadline Noop
Figure 2. Power for Default Configurations. The measurements are ob-
tained while keeping default queue depth (128) and write-back caching

policy.
140 . . —F .
120 m 1
§100
=
"E’ 80 ElANTUTu
@ ICF-Bench
E 60 Il GLBench
o 40 [l BrowserM
[AndroB
[C]Quadrant
20 [CIsmartB
o [Ivellamo

BFQ/4 CFQ/4 Deadline/4 Noop/4
Figure 3. Power for Queue Depth 4. The measurements are obtained
while keeping default write-back caching policy. The results are com-
pared to the power levels with default configurations in Figure 2 that are
baseline values.

observation is that none of the scheduling algorithms is op-
timal for all benchmarks. However, it is possible to find the
optimal scheduling algorithm(s) for each benchmark and save
relatively a lot of energy. For example, AnTuTu benchmark
has the optimal power consumption with the Deadline algo-
rithm, and more than 33% of energy on average can be saved
compared to the default configuration with BFQ.

Device Driver Level

To investigate impact of the device driver level on energy con-
sumption, we run the benchmarks with different queue depths
and compare how different queue depths affect power lev-
els. On Google Nexus One phone, the default queue depth
is 128. The power consumption of this default queue depth
is already illustrated in the previous Figure 2. Therefore, we
investigate the power levels of the depth 4 in this section and
compare with previous measurements. This way we can see
the potential of how much more power efficient the system
will be if we change the queue depth. Figure 3 shows the
power levels for the depth 4 normalized to the consumptions
with depth 128. Looking at AnTuTu, with BFQ and queue
depth 4 (BFQ/4) the average power consumption is 720mW
which corresponds to 66.7% of the default BFQ/128 con-
sumption. That means by changing the queue depth to 4, the
phone can save on average 33.3% energy. However, there are
some exceptions such as in the case of Smartbench and Vel-
lamo (last two benchmarks) that with smaller queue depth do
not perform well and consume on average more power than
expected. These two benchmarks are not storage intensive
(Table 2), hence, the smaller queue causes higher overhead
and as result, the higher consumption is observed.

Cache
This section attempts to find out how power level differs when
using write-back and write-through caching approaches. The

Benchmark Reads Completed/s | Writes Completed/s RP Optimal Configuration | Power Savings | Running Time(s)

AnTuTu 1108 1395 0.79 Deadline/4 40% 224.76

CF-Bench 104 1298 0.08 CFQ/4 27.27% 148.18
GLBenchmark 253 51 4.96 Deadline/4 27.27% 254.21

BrowserMark 185 115 1.61 CFQ/4 28.57% 278.14

AndroBench 2260 104 21.73 Noop/128 31.58% 45.1

Quadrant 301 400 0.75 BFQ/4 42.86% 129.11

Smartbench 26 2 13 BFQ/128 0 217.35

Vellamo 9 1 9 BFQ/128 0 49.82

Table 2. Benchmark I/O Patterns. The 2nd column includes the rate of Reads completed per second. The 3rd column includes the rate of Writes

completed per second. The 4th column includes Rate Proportion (RP), where RP = Number of Reads Completed per second / Number of Writes Completed
per second. The 5th column includes a combination of a scheduling algorithm and queue depth with optimal power consumption. The 6th column
includes power savings of the optimal configuration compared to the default BFQ/128 configuration. The last column is time to complete a benchmark.

phone’s consumption with the default caching policy (write-
back) can be again determined from Figure 2. Hence, here
for each benchmark we measure the power levels with write-
through cache (scheduling and queue depth fixed). For easier
reading, this is normalized to the power levels with the default
write-back cache. Figure 4 shows that write-through caching
consumes on average slightly less power. The difference is
approximately 10%. This is due to limited queuing buffer
space at the disk [24]. If write-back policy is in use, under
heavy load the effective queues reach to the maximum allow-
able value, which is in our case 128. If the buffer queue is
full, the device driver delays additional I/O requests. Conse-
quently, that causes the system to slow down and consume
more energy. For applications that require more reliability
and consistency, write-through cache can be of help. The
price for this small improvement in average power consump-
tion requires rebuilding the Android kernel. For this reason,
we decide not to include cache layer modifications into our
design to provide better scalability and simpler deployment
to ordinary users.

Bl ANTUTY
Il CF-Bench
Il GLBench
[BrowserM
[AndroB
[ClQuadrant
[ISmartB
[Jvellamo
Deadl/WriteT Noop/WriteT

Power (in %)

B
(=]

20

O BFQ/WriteT
Figure 4. Power for Write-through Cache. The measurements are ob-
tained while keeping default queue depth (128). The results are com-
pared to the power levels with default configurations in Figure 2 that are
baseline values.

CFQ/WriteT

Optimal Consumption

In order to find optimal power consumption for all bench-
marks with above knowledge, we run for each benchmark
all 8 possible combinations of scheduling algorithms (BFQ,
CFQ, Deadline, Noop) with queue depths (128, 4) researched.
Table 2 shows the final combinations with optimal power
consumptions for each benchmark. We can see that Quad-
rant consumes least power with the combination of BFQ/4,
in which case it consumes 754mW and therefore, we save al-
most 43% compared to the default configuration (BFQ/128).

As with many other optimizations, this significant improve-
ment in power saving has its trade-off that causes perfor-

mance degradation. In particular, we observe worsen per-
formance of the CPU, GPU, RAM, and I/O. This degrada-
tion has to be minimal for users to fully appreciate our pro-
posed solution in the following section. For illustration, the
performance scores of AnTuTu benchmark is listed in Table
3 for the default parameters (BFQ/128) and the parameters
with optimal power consumption (Deadline/4). The higher
benchmark scores, the better performance of a subsystem.
For instance, the CPU performance score decreases from 958
to 946 after changing the default parameters to the optimal
ones. Similarly, there is a slight GPU performance decrement
from 880 to 865. This is expected due to the trade-off from
the different I/O ordering and queue depth. However, the av-
erage performance degradation is only less than 2%.

Configuration CPU | GPU | RAM | I/O
Default (BFQ/128) 958 880 317 270
Optimal (Deadline/4) 946 865 317 268

Table 3. AnTuTu Benchmark Performance Scores.

SMARTSTORAGE DESIGN

In order to address the second research question on how to
optimize storage to save energy in smartphones, we present
SmartStorage. Further in this section, an architecture is intro-
duced and implementation details are discussed.

From previous sections, for each benchmark there exists a
combination of a scheduling algorithm and queue depth that
is most power efficient. This information can be reused. First,
we investigate the I/O pattern of each benchmark. Next, we
obtain a run-time I/O pattern from the phone and match it to a
benchmark with the most similar I/O pattern. Finally, an op-
timal combination of a scheduling algorithm and queue depth
is configured. We discuss details in the following subsections.

System Architecture

The architecture is illustrated in Figure 5. It is divided into
kernel space and user space. Kernel space consists of two
main modules: SmartStorage Core and Benchmark I/O Pat-
terns. User space includes the graphics user interface (GUI)
and Tools for Advanced Users. Following, we elaborate each
module and its functionalities.

Kernel Space

SmartStorage Core. This module has three main function-
alities. First, it obtains phone’s run-time I/O pattern. Next, it
gets a combination of a scheduling algorithm and queue depth

c .
2 Android
e
Tools for
'g) [Sl] Ldvanced Users]
8 T
2 ;
********** Netlink Socket~ — — — — — =y — — -
A
ol
F SmartStorage Core Storage
2 T
H
o
o

10 Matching
Dynamic Storage
Configuration

Figure 5. SmartStorage Architecture.

10 Patterns

2]
o©
S
o
S
3
B
g
=

with optimal power efficiency. Finally, it configures this com-
bination in the block layer scheduler and the device driver of
corresponding flash partitions.

The phone’s run-time I/O pattern is obtained via blktrace [4,
15]. Blktrace is a block layer I/O tracing utility that provides
information about request queue operations coming into stor-
age subsystem. Blktrace is normally available in Linux dis-
tributions but it needs to be enabled in the Android system.
Typically, the blktrace output includes a process ID, type of
an I/O such as Read or Write, its time stamp, sequence num-
ber, etc. After gathering I/Os for a predefined time period,
it calculates the run-time I/O pattern that is later used for
matching with benchmark I/O patterns. The I/O pattern con-
sists of rates of each I/O type per second. Note that such a
pattern characterizes the I/Os of the whole phone, including
those originating from background services. Therefore, this
approach is not application-dependent.

Matching is done in the second phase after acquiring the
phone’s run-time I/O pattern. The phone’s pattern is matched
to a benchmark with the most similar I/O pattern. Since each
benchmark has a combination of a scheduling algorithm and
queue depth with optimal consumption, that combination is
returned as a result of this phase. With power efficiency in
mind, we want a computationally inexpensive matching ap-
proach that is at the same time precise. Having all types of
I/Os coming to storage, simple intuition says that what mat-
ters most at the end are the total number of completed reads
and number of completed writes in a given interval. Further-
more, it is necessary to take into consideration differences
between characteristics of read and write I/Os. Some parti-
tions will serve reads better than writes or vice versa. Some
partitions will be read-only, other allow both read and write.
Motivated by this, we decide to expand the simple intuition,
and do the matching based on the proportions of rates of com-
pleted reads and completed writes.

For clarity, let us define RCRate as number of reads com-
pleted per second. and WCRate as number of writes com-
pleted per second. Further, let us define Rate Proportion (RP)
as RP = RCRate / WCRate. If the Rate Proportion (RP) of
the phone’s I/O pattern is close to the RP of a benchmark, a
match is found. We find that this simple matching method is
precise. More will be discussed in the Performance Evalua-
tion section. Finally, the optimal scheduling algorithm is set
in the block layer scheduler and the optimal queue depth is
set in the device driver. This is done on all partitions.

> SmartStorage.
CURRENT STATUS

Scheduling in use: CFQ
Queue length in use: 4
System in use for: 5 minutes

Energy saved so far: 30.3J

». SmartStorageTools.

SCHEDULING ALGORITHM
BFQ DEADLINE
v cra + NoopP
QUEUE LENGTH

V128 va

10 RECALCULATION PERIOD

© Imin Smin

2min 10min

ADD BENCHMARK}

Figure 6. Screen shots of the GUI and Tools for Advanced Users.

Benchmark I/0 Patterns. This includes a table with our
benchmarks and their I/O patterns. See Table 2. Each bench-
mark is paired with a combination of a scheduling algorithm
and queue depth with optimal power consumption obtained
offline. The I/O pattern consists of rates of a specific type of
I/O per second: Number of Reads completed per second and
Number of Writes completed per second.

User Space

SmartStorage works naturally as a background service to save
energy, without any need of interaction with users. It does not
require popping up GUI or the Tools for Advanced Users.
The two additional components are there only for conve-
nience of interested users. The screen shots of the GUI and
Tools for Advanced Users are included in Figure 6. We de-
scribe these two components below.

GUL The graphic user interface provides the current status of
the system. That includes information on which scheduling
algorithm and queue depth are being used. It also informs of
how long the system is being in use and how much energy has
been saved.

Tools for Advanced Users. This part is designed to serve
researchers and advanced users who can possibly contribute
to further project advancements. The tools let users edit after
how long system should recalculate I/O pattern of the phone.
It also allows setting preferred scheduling algorithms and
queue lengths to be considered in dynamic configurations.
With scalability in mind, it is possible to add new benchmarks
to the Benchmark I/O Patterns table in the future. Finally, it
communicates preferences to the SmartStorage Core in ker-
nel space through a netlink socket [23].

Implementation

We implement our system on the HTC Google Nexus One
smartphone with Android 2.3.7 and kernel 2.6.37.6. The im-
plementation has 2 main parts, SmartStorage Core that is in
the kernel space and the GUI that is developed as an applica-
tion. As mentioned earlier, SmartStorage works naturally as a
background service to save energy, without any need of inter-
action from the users. The additional user interface is only for
the convenience of the researchers and interested users. This
section highlights some of the important implementation de-
tails of the SmartStorage Core and the GUI.

SmartStorage Core is implemented as a kernel module. It
interacts with the application layer through a netlink socket.

It sends up information regarding the current status, includ-
ing the combination of a scheduling algorithm and queue
depth in use. That scheduling algorithm is obtained by read-
ing from a block layer scheduler. For instance, following
we obtain the algorithm in use in the /data partition (mt-
dblock5): cat /sys/block/mtdblockS/queue/scheduler. Simi-
larly, the queue depth in use in the /data partition is obtained
from the nr_requests (number of requests) parameter:

cat /sys/block/mtdblock5/queue/nr_requests.

SmartStorage calculates the phone’s I/O pattern periodically
each minute. After having found an optimal combination
of a scheduling algorithm and queue depth via matching the
phone’s I/O pattern to the benchmark I/O pattern table ex-
plained earlier, the system enforces the use of the scheduling
algorithm and queue depth found. For example, to set CFQ
for the /data partition, the scheduler file of the block device is
modified on-the-fly as follows:

echo cfq > /sys/block/mtdblock5/queue/scheduler.
The queue depth of the /data partition can be changed on-
the-fly to 4 by modifying its nr_requests parameter:

echo 4 > /sys/block/mitdblock5/queue/nr_requests.

In order to use blktrace, the support for tracing block I/O ac-
tions is enabled by changing the menuconfig file to support
tracing block I/O actions. Afterwards, the makefiles are mod-
ified to include blktrace.

PERFORMANCE EVALUATION

This section evaluates the SmartStorage solution by a series
of comprehensive experiments and answering the following
questions. The first two questions are related to energy sav-
ings: (1) How does SmartStorage save energy with a typical
use case? We address this by comparing energy usage of
the 20 most popular applications from the Android Market
with and without SmartStorage. (2) What is the overhead of
SmartStorage? We address this by measuring overhead in en-
ergy usage of SmartStorage compared to the case when it is
not in use. The last two questions are related to performance
issues: (3) How precisely does SmartStorage match I/O pat-
terns to storage configurations with optimal energy savings?
Here we show how many applications get matched with the
correct combinations. (4) Does our SmartStorage solution
incur performance penalties? This is determined using the
AndroBench benchmarking tool testing throughput and I/O
performance. In addition, we run ten most popular applica-
tions and evaluate their application delays.

Experiment Setup

In our experiments, we use the SmartStorage implementation
in the HTC Google Nexus One phone. To measure energy
consumption, the Monsoon Power Monitor [8] is utilized. We
run the experiments with the top 20 free applications from the
Android Market as of August 7, 2012. See Table 4. The Mon-
soon Power Monitor is configured by blocking the positive
terminal on the phone’s battery with electrical tape. The volt-
age normally supplied by the battery is supplied by the moni-
tor. It records voltage and current with a sample rate of 5 kHz.
During our experiments, all radio communication is disabled
except for WiFi. The screen is set to stay awake mode with

Top 20 Apps RP SmartStorage Optimal Com-
Combination bination
#1 App 2.6 CFQ/4 CFQ/4
#2 App 0.09 CFQ/4 CFQ/4
#3 App 0.28 CFQ/4 CFQ/4
#4 App 14.7 BFQ/128 BFQ/128
#5 App 12.29 BFQ/4 BFQ/4
#6 App 4 Deadline/4 Deadline/4
#7 App 9.09 BFQ/4 BFQ/128
#8 App 0.79 Deadline/4 Deadline/4
#9 App 0.24 CFQ/4 CFQ/4
#10 App 1.36 CFQ/4 CFQ/4
#11 App 1.27 CFQ/4 CFQ/4
#12 App 0.28 CFQ/4 CFQ/4
#13 App 2.03 CFQ/4 CFQ/4
#14 App 11.2 BFQ/128 BFQ/128
#15 App 0.02 CFQ/4 CFQ/4
#16 App 2.5 CFQ/4 CFQ/4
#17 App 0.26 CFQ/4 CFQ/4
#18 App 0 CFQ/4 CFQ/4
#19 App 0.81 Deadline/4 Deadline/4
#20 App 4.94 Deadline/4 Deadline/4
Table 4. The 20 applications used in evaluation. The top 20

free applications from the Android Market as of August 7, 2012:
#1.Gmail, #2.YouTube, #3.Facebook, #4.Lookout Security, #5.Google
Maps, #6.Twitter, #7.Tiny Flashlight + LED, #8.Yelp, #9.Amazon
MP3, #10.Tango Video Calls, #11.Temple Run, #12.WhatsApp Messen-
ger, #13.Adobe Flash Player, #14.Instagram, #15.Google Play Books,
#16.Pandora Internet Radio, #17.ColorNote Notepad Notes, #18.Ama-
zon Mobile, #19.GO SMS Pro, and #20.Voice Search. The second column
includes Rate Proportion (RP), where RP = Number of Reads Completed
per second / Number of Writes Completed per second. The third column in-
cludes the combination of scheduling algorithm and queue depth determined
by SmartStorage. The last column includes the optimal combination. 19
from 20 applications (95%) are matched with the correct combination by
SmartStorage. Tiny Flashlight + LED (7.) is matched incorrectly.

constant brightness and auto-rotate screen off. When Smart-
Storage is in use, it runs only in the background and its GUI
is off.

Energy Savings

As far as energy saving is concerned, it is our priority to save
as much as possible, and at the same time, the system should
not cause significant overhead. We show our results in this
subsection.

Energy Savings

In order to address how much energy our solution saves in a
typical use case, we run each of the 20 applications mentioned
with SmartStorage in the background and compare with the
case when the application is running with the default schedul-
ing algorithm and queue depth (BFQ/128). A typical use case
varies for applications. For instance, for Gmail, we read 20
emails and write 10 emails; for Amazon Mobile, we search
for 20 products and read information about them; in Pandora,
we listen to a channel for 30 minutes; on YouTube we search
and listen to 5 songs; on Facebook, we read and write posts,
etc. The Android Monkey tool is utilized to allow repeating
the same behavior more times with and without SmartStorage
so as to ensure fairness. The results of the total savings are in
Figure 7. We can observe that the energy savings vary from
23% to 52% and the largest savings are with Pandora appli-
cation (52%). The three applications with no energy values

have the optimal configuration identical to the default param-
eters of the phone.

ST T T T T T T T T T T T
50
45
40
35

Nexus 1 Energy Savings (%)
w
5

Figure 7. Energy Savings on Nexus One. Energy savings with Smart-
Storage compared to the use with default scheduling algorithm and
queue depth (BFQ/128)

As for validation, we also deploy our solution on the LG
Google Nexus 4 smartphone with the latest Android OS 4.2.2
(Jelly Bean), kernel 3.4, and Ext4 file system. The results of
the total savings on the Nexus 4 phone are in Figure 8. Gmail,
YouTube, Facebook, and other applications with the optimal
scheduling algorithm CFQ have slightly less energy savings
on Nexus 4. That is expected, since the Nexus 4 phone has
the default configuration CFQ/128, hence, additional savings
are low.

o
a

w
2

&5

&

w
]

Nexus 4 Energy Savings (%)

cmzEENS
¢
LT
I I
N]
S e
g s s
?V““‘F‘“‘?““‘f‘“ﬁ“‘?‘

&
c$¢
&
S
R0
@6
o

&
KL

A

S
N

Figure 8. Energy Savings on Nexus 4. Energy savings with SmartStorage
compared to the use with default scheduling algorithm and queue depth
(CFQ/128)

Real-time Power Consumption

To show how SmartStorage saves energy in real-time, we con-
duct the following experiment. We utilize the Monkey tool
to use five applications (YouTube, Pandora, Google Maps,
Amazon Mobile, and Facebook) over 20 minutes (app per
four minutes). This is done two times, once with SmartStor-
age enabled, the other time with SmartStorage disabled. Both
times we make sure that the application cache is cleared be-
fore a new run. Monkey is run with the same seed, hence
triggering the same series of events both times. This assures
we get precise results without any delay caused by inconsis-
tent user behavior. We use Monkey to launch YouTube and
watch a video clip, the total time including both loading and
watching is four minutes. After having closed YouTube (clos-
ing time negligible), we load Pandora and listen to a channel,
again the total time is four minutes. Similarly, our Monkey

script continues with Google Maps to find a few spots, loads
Amazon Mobile to search several products, and finally uses
Facebook to check the news feed.

The resulting power levels logged from the monitor are in
Figure 9. Each four-minute segment shows data of an appli-
cation. We can observe that after approximately two minutes
of use of an application, the phone’s power level drops. This
is an expected behavior. Since the I/O pattern recalculation is
done after each minute, and the loading time of an application
takes a while, we should be looking for significant power drop
after approximately two minutes. For YouTube (minute 0-4),
the first spikes load the application, then the power reaches
2000 mW when SmartStorage is disabled. When SmartStor-
age is enabled, the values drop to around 50% after two min-
utes of use. Pandora (minute 4-8) has the power dropping
after a little later than expected because an advertisement
pops up when SmartStorage is enabled. For Google Maps
(minute 8-12), the number of high power spikes significantly
decreases after slightly more than two minutes. When us-
ing Amazon Mobile (minute 12-16), even earlier than 14th
minute, power drops to approximately 50%. Finally, Face-
book (minute 16-20) shows a similar behavior, power level
goes down during the 18th minute. The power levels here,
however, are varying slightly more. We attribute this to the
difficulty to replicate the exact behavior on Facebook that has
more features that can affect the power levels than the other
ones.

The total energy saving in this experiment is 152.3] which
corresponds to 31.5% of the total energy consumption. In
theory, according to the results in Figure 7, if we run each
application separated, we will get 34% saving in total by av-
eraging the savings of all five applications. The difference of
2.5% we account to the recalculation period of one minute
that is not optimal. We discuss possible improvements of this
approach later in Future Work.

Cost

To address the energy overhead, we run the 5 applications
above separatedly with SmartStorage enabled and measure
the energy consumption. These applications are running
again with SmartStorage disabled and the measurement is re-
peated. Finally, the 2 consumptions are subtracted and the
overhead is obtained. The average overhead is 2.6% of en-
ergy consumption for Pandora, and 2.5% for other four ap-
plications. This is negligible considering the fact that with
SmartStorage enabled we can save from 23% to 52% of en-
ergy consumption including the cost mentioned.

Performance

First, we are interested in the I/O pattern matching perfor-
mance. Next, we ensure that SmartStorage incurs small per-
formance penalties. Finally, we provide a discussion on ap-
plication delays.

/O Pattern Matching

The results of I/O matching are presented in Table 4. We
can see the results of the final combinations of a schedul-
ing algorithm and queue depth found by SmartStorage. In 19
cases out of 20, the matching method works correctly, which

3000

2000

1000

T T
——— SmartStorage Disabled - Energy C 482.9J‘

0
0 YouTube runs(0~4m) 4

Pandora runs(4~8m) 8 GoogleMaps runs(8~12m) 12AmazonMobile runs(12~16m)16 Facebook runs(16~20m) 20

3000 T T T T

2000 r

1000

Power (mW)

T T T
‘ ——— SmartStorage Enabled - Energy C 330.6J\

0
0 YouTube runs(0~4m) 4 Pandora runs(4~8m)

8 GoogleMaps runs(8~12m) 12AmazonMobile runs(12~16m)16 Facebook runs(16~20m) 20

Time (minute)

Figure 9. Real-time Power. The figure shows two cases, when SmartStorage is disabled (top), and when SmartStorage is enabled (bottom). We run
in order five applications, YouTube (minute 0-4), Pandora (minute 4-8), Google Maps (minute 8-12), Amazon Mobile (minute 12-16), and Facebook
(minute 16-20). The time includes both loading application and the use itself. Since our algorithm recalculates the I/O pattern periodically every
minute, and the loading time also takes a while, power drops after around two minutes of use of each application as in the figure is expected.

presents 95% accuracy. We note that there are 8 configura-
tions (4 scheduling algorithm choices multiplying 2 queue
length choices), each of which is the potential optimal con-
figuration for some applications. However, the 8 selected
benchmarks only cover 5 of them. Although the current I/O
pattern matching method is precise for the 20 most popular
applications we evaluate, in future we plan to explore a ma-
chine learning based method. More is discussed in the Future
Work.

Performance Penalties

The AndroBench benchmarking tool [2] is utilized to evalu-
ate the performance penalties of SmartStorage, since it heav-
ily loads storage and provides flexible workload settings. The
experiments are run on the Google Nexus One phone with
165MB of free space in the internal storage. We run the
benchmark with four different workloads: a read-dominated,
write-dominated, and a balanced workload of reads and
writes of different working set sizes (large and small). Each
workload is run for the case when SmartStorage is enabled,
and the case when it is disabled. The benchmark throughput
in transactions per second (TPS) is measured, followed by the
number of disk requests completed in each second (IOPS).

The used benchmark specifications are listed in Table 5. For
each workload we set the read file size, write file size, and
number of transactions. We aim to have significant difference
between the read file size and the write file size for Read-
dominated and Write-dominated workloads. In our case, one
size is 16 times larger than the other one. Furthermore,
we differentiate the large workload, i.e., occupying approx-
imately 40% of free space, and the small workload, i.e., oc-
cupying a few percentage of free space. The number of trans-
actions is set to a constant.

Workload Read Size | Write Size | Transactions
Read-dominated | 32MB 2MB 300
Write-dominated | 2MB 32MB 300
Balanced Large 32MB 32MB 300
Balanced Small 2MB 2MB 300

Table 5. Workload Parameters.

—
g.) 300
|_ —_ —— —_ -_— —_ ——-— T
c
E]
g.200 IS Enabled
5 WSS Disabled
3100,
]
2
K=
= o0 -
Read-dom Write-dom Bal-large Bal-small
2500,
20000 =-- = =
Q 1500 [0SS Enabled
O 1000 WSS Disabled
500

GFitea«:l-dcanrite-dom Bal-large Bal-small
Workload

Figure 10. SmartStorage Throughput and I/O Performance.

Each workload is run twice, once with SmartStorage enabled
and once disabled. Figure 10 shows the benchmark through-
put in number of transactions per second for both runs. This
indicates negligible difference between the 2 cases. The
throughput varies from 4% to 6%. The biggest penalties are
for the case of write-dominated workload and balanced large
workload.

The second part of Figure 10 illustrates the disk I/O perfor-
mance for the case with SmartStorage enabled and the case
with SmartStorage disabled. The performance in number of
disk I/Os completed per second is demonstrated for all four
workloads mentioned. Similar to the previous case, the per-
formance penalties vary from 4% to 6%. The biggest penalty
comes with the large workload of balanced reads and writes.
This is another spot where the performance can possibly be
improved. As in the previous case with the number of trans-
actions per second, the large workload seems to be problem-
atic, this can be a key to research how to further optimize the
system performance.

Application Delay

While saving energy is important, having solid performance
with small application delays is equally important. In or-
der to test delays of applications running on the phone with

SmartStorage, we utilize the Android Monkey tool. Using it,
we generate pseudo-random streams of user events such as
clicks, touches, or gestures, as well as a number of system-
level events. We run the experiments with the 10 most pop-
ular Android applications on the Google Nexus One smart-
phone with SmartStorage enabled, and the second time with
SmartStorage disabled. Each application has a predefined set
of user activities triggered through the Monkey tool. We mea-
sure the time delay for both cases, when SmartStorage is en-
abled, and when it is disabled.

Monkey is a command-line tool that can send a stream of
events into the phone’s system in a random yet repeatable
manner. Each series of events we specify with the same seed
value (10) in order to generate the same sequence of events.
We insert a fixed delay between events (1000 ms) and adjust
percentage of different types of events. We fix the number
of events as a constant (500). The events are individually ad-
justed for each application to represent a typical usage, for
instance, in Gmail we read and write an email, add a con-
tact, change a label, etc. We run the experiments with the 10
most popular applications from Table 4, once with SmartStor-
age enabled, the next time with SmartStorage disabled. Each
time we output the time delay in milliseconds and the results
are illustrated in Figure 11. We can see that the difference
is less than 3%, thus we can claim with confidence that the
application delays caused by SmartStorage are negligible.

140000

T T T
Enabled KXXX Disabled 27774

120000

100000

80000

60000

Time Delay (ms)

40000

20000

o LKL K
&
ze 06 P
;%
v %,

Applications

Figure 11. Application Delay.

RELATED WORK

We divide related work into 3 categories: smartphone storage
performance, smartphone power consumption analysis, and
I/O optimization.

Smartphone storage performance. Little work has been
done to examine the storage performance in smartphones.
Kim et al. [19, 20] discover a strong correlation between stor-
age and application performance degradation. Their discov-
ery of the correlation highlights the importance of the storage
performance. We take a deep look into several components of
the I/O path from the application layer to the storage and ex-
ploit energy savings at the block layer and the device driver.
Thus, we consider the above works as complementary to ours.

Smartphone power consumption analysis. Works have
been done to analyze the power consumption of network traf-
fic in smartphones. Gupta et al. [17] measure the WiFi power

consumption by various network activities in smartphones.
Balasubramanian et al. [13] measure the power consumption
characteristics of GSM, WiFi, and 3G. In this paper, we fo-
cus on the power consumption analysis of the storage system
in smartphones. Several works measure the power consump-
tion of different components in the smartphone. Carroll et al.
[16] presents a detailed power consumption analysis of differ-
ent smartphone subsystems. However, the smartphone used
is only for scientific purpose rather than practical usage. In
[21, 18], the authors measure and model the power consump-
tion of several hardware subsystems, including CPU, display,
graphics, GPS, audio, microphone, and WiFi. In contrast, our
work focuses on investigating the impact of the storage sys-
tem on energy efficiency.

I/0 optimization. Riska et al. [24] evaluate the I/O perfor-
mance improvement of optimization at various layers (system
layer, device driver layer, and disk driver layer). Shin et al.
[25] propose two new techniques, request bridging and re-
quest interleaving, to improve the I/O performance of small
writes. However, this group of work focuses only on con-
ventional computer systems that require significantly differ-
ent optimization techniques.

CONCLUSIONS AND FUTURE WORK

In this paper, we presented an experimental study of how stor-
age parameters in the cache, device driver, and block layer
affect the power levels of mobile devices running Android.
In addition, we proposed a system called SmartStorage that
dynamically tunes storage parameters to reduce energy con-
sumption by matching the current I/O pattern to a known pat-
tern that we recorded from the eight benchmarks. Finally,
we validated our dynamic tuning technique by showing that
SmartStorage saved 23% to 52% of the energy consumption
by running SmartStorage in the background with selected ap-
plications from the top 20 most popular apps in the fore-
ground.

In this work, we noticed that the write-back policy consumes
on average 10% more energy than write-through with the
eight selected benchmarks. This could further increase our
energy savings. However, this knowledge was not used in our
implementation because switching from write-back to write-
through or vice-versa would require rebuilding the kernel.
That would be impractical for future deployment. Similarly,
changing the file system and copying data around is counter-
productive but could provide additional energy savings when
considering the overall interaction with the remaining stor-
age components and their parameters. In the future, we will
model the trade-off between energy savings and performance
degradation with write-back and write-through, and analyze
how the file system interacts with the remaining components
to understand and explore additional energy savings. In the
device driver layer, we benchmarked the phone with two dif-
ferent queue depths and found significant differences in en-
ergy consumption. Naturally, more research on combining
queue depths and scheduling algorithms may yield higher
savings.

We proposed the RP metric that proved to be efficient at
matching I/O patterns since what matters most is the num-

ber of writes and reads in a time interval and not the ordering
of them. We plan to research the following machine learning
based method in the future. In the method, each configura-
tion is considered as a target class. We plan to collect I/O
patterns from a large number of applications and label the I/O
pattern of each application as its optimal configuration class.
The optimal configurations of all applications should cover
all 8 choices. With this data, we train either a supervised
classification model or an unsupervised clustering model for
run-time I/O pattern matching. Our pilot solution periodically
measures the storage I/O and then matches the I/O fingerprint
to that of benchmarks for locating the optimal storage pol-
icy to save energy. If this process happens too frequently, the
cost may be unnecessarily high and the system may not be
stable since application performance may be impacted dur-
ing highly frequent storage policy transitions, which we also
plan to evaluate. If such a process happens too sparsely, we
will not save much energy. Hence, we plan to monitor appli-
cation events such as application started and terminated, and
use them to adapt the measurement and matching frequency.

The conventional wisdom is that storage contributes little (ap-
proximately 30%) to the total energy consumption [16]. Our
system with dynamic storage configurations saves from 23%
to 52% of the total energy consumption. We need to empha-
size that these savings are the savings of the whole smart-
phone, not only of the storage subsystem itself. We attribute
this to the performance impact of storage on other phone
components. We suspect that the interesting savings are trig-
gered by the changes in storage, and further propagated into
other components in the phone. This opens a new research
question, and that is, how storage affects the performance of
different smartphone subsystems. Kim et al. [20] already
show how performance of smartphone applications is affected
by storage performance, but do not consider energy perfor-
mance. Therefore, still more research is required and we hope
that our results will motivate a deeper look into this exciting
area.

ACKNOWLEDGEMENT

This work is supported in part by NSF grant CNS-1250180.
We thank William & Mary LENS research lab members and
anonymous reviewers for their valuable comments.

REFERENCES
1. Changewave research.
http://www.changewaveresearch.com, 2011.

2. Androbench benchmark.
http://www.androbench.org/wiki/AndroBench, 2012.

3. Antutu benchmark. http://www.antutu.com, 2012.

4. Block i/o layer tracing: blktrace.
http://linux.die.net/man/8/blktrace, 2012.

5. Browsermark benchmark.
http://browsermark.rightware.com/, 2012.

6. Cf-bench benchmark. http.://bench.chainfire.eu/, 2012.
7. Glbenchmark. http://www.glbenchmark.com/, 2012.

8. Monsoon power monitor. http://www.msoon.com, 2012.

10.

11.

12.

13.

14.

15.
16.

17.

19.

20.

21.

22.

23.

24.

25.

. Quadrant benchmark.

http://www.aurorasoftworks.com/products/quadrant,
2012.

Smartbench benchmark.
http:/fwww. Imobile.com/smartbench-2012-327800.html,
2012.

Vellamo benchmark. http://www.quicinc.com/vellamo/,
2012.

Worldwide smartphone users cross 1 billion mark.
http://www.ibtimes.com, 2012.

Balasubramanian, N., Balasubramanian, A., and
Venkataramani, A. Energy consumption in mobile
phones: a measurement study and implications for
network applications. In Proc. IMC 2009, ACM Press
(2009).

Bovet, D., and Cesati, M. Understanding the Linux
Kernel, Third Edition, 3 ed. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2005.

Brunelle, A. D. blktrace User Guide. USA, 2007.

Carroll, A., and Heiser, G. An analysis of power
consumption in a smartphone. In Proc. ATC 2010,
USENIX Assoc. (2010).

Gupta, A., and Mohapatra, P. Energy consumption and
conservation in wifi based phones: A
measurement-based study. In Proc. SECON 2007, IEEE
(2007).

. Jung, W., Kang, C., Yoon, C., Kim, D., and Cha, H.

Nonintrusive and online power analysis for smartphone
hardware components. Tech. rep., 2012.

Kim, H., Agrawal, N., and Ungureanu, C. Examining
storage performance on mobile devices. In Proc.
MobiHeld 2011, ACM Press (2011).

Kim, H., Agrawal, N., and Ungureanu, C. Revisiting
storage for smartphones. In Proc. FAST 2012, USENIX
Assoc. (2012).

Murmuria, R., Medsger, J., Stavrou, A., and Voas, J.
Mobile application and device power usage
measurements. In Proc. SERE 2012, IEEE (2012).

Pathak, A., Hu, Y. C., and Zhang, M. Where is the
energy spent inside my app?: fine grained energy
accounting on smartphones with eprof. In Proc. EuroSys
2012, ACM Press (2012).

Pyles, A., Qi, X., Zhou, G., Keally, M., and Liu, X.
Sapsm: Smart adaptive 802.11 psm for smartphones. In
Proc. UbiComp 2012, ACM Press (2012).

Riska, A., Larkby-Lahet, J., and Riedel, E. Evaluating
block-level optimization through the io path. In Proc.
ATC 2007, USENIX Assoc. (2007).

Shin, D., Yu, Y., Kim, H., Eom, H., and Yeom, H.
Request bridging and interleaving: Improving the
performance of small synchronous updates under
seek-optimizing disk subsystems. ACM Transactions on
Storage (TOS) (2011).

	Introduction
	Background and Motivation
	I/O Path Components
	Cache
	File system
	Block Layer
	Device Driver
	Flash

	Motivation
	Benchmarks
	Block Layer Level
	Device Driver Level
	Cache
	Optimal Consumption

	SmartStorage Design
	System Architecture
	Kernel Space
	User Space

	Implementation

	Performance Evaluation
	Experiment Setup
	Energy Savings
	Energy Savings
	Real-time Power Consumption
	Cost

	Performance
	I/O Pattern Matching
	Performance Penalties
	Application Delay

	Related Work
	Conclusions and Future Work
	Acknowledgement
	REFERENCES

