
An Empirical Study of Latency in an Emerging Class of Edge Computing
Applications for Wearable Cognitive Assistance

Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao,
Brandon Amos, Guanhang Wu, Kiryong Ha, Khalid Elgazzar,

Padmanabhan Pillai†, Roberta Klatzky, Daniel Siewiorek, Mahadev Satyanarayanan

Carnegie Mellon University and †Intel Labs

ABSTRACT
An emerging class of interactive wearable cognitive assistance
applications is poised to become one of the key demonstrators
of edge computing infrastructure. In this paper, we design
seven such applications and evaluate their performance in
terms of latency across a range of edge computing configu-
rations, mobile hardware, and wireless networks, including
4G LTE. We also devise a novel multi-algorithm approach
that leverages temporal locality to reduce end-to-end latency
by 60% to 70%, without sacrificing accuracy. Finally, we de-
rive target latencies for our applications, and show that edge
computing is crucial to meeting these targets.

CCS CONCEPTS
• Human-centered computing!Empirical studies in ubiq-
uitous and mobile computing; Ubiquitous and mobile com-
puting systems and tools; • Software and its engineering!
Distributed systems organizing principles; • Networks!
Wireless access points, base stations and infrastructure; Mo-
bile networks; Network measurement; • Computer systems
organization! Real-time system architecture;

KEYWORDS
Cloudlet, Edge Computing, Mobile Computing, Cloud Com-
puting, Smart Glass, Augmented Reality, HoloLens

1 Introduction
One of the earliest motivations of edge computing was to
lower the end-to-end latency of cloud offload. As early as
2009, it was recognized that deploying powerful cloud-like
infrastructure just one wireless hop away from mobile devices
could be transformative [30]. We use the term cloudlet to refer
to an instance of such infrastructure. Many companies are

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5087-7/17/10.
https://doi.org/10.1145/3132211.3134458

now exploring commercial deployments of cloudlets based
on Wi-Fi as well as 4G LTE. The term fog computing has also
been used for computing at the edge of the Internet, and fog
node for the associated hardware infrastructure [5].

In this paper, we examine the end-to-end latency character-
istics of an emerging class of resource-hungry applications
whose processing demands could not be met without edge
computing. In particular, their resource demands exceed those
of mobile devices even projected well into the future. Off-
loading computation is thus essential. At the same time, end-
to-end latency matters because they are human-in-the-loop
systems that deeply engage user attention. These wearable
cognitive assistance applications stream sensor data from a
wearable device to a cloudlet, perform real-time compute-
intensive processing, and return just-in-time task-specific
guidance to the user [10]. In effect, these applications bring
AI technologies such as computer vision, speech recognition,
natural language processing, and deep learning within the
inner loop of human cognition and interaction. Since 2014,
we have built nearly a dozen such applications, along with a
common underlying platform that supports them.

Our goal in this paper is to obtain an empirical understand-
ing of end-to-end latency in these applications. Where does
the time go? How much would using 4G LTE affect results?
How powerful do cloudlets have to be in order to support
such applications? Are specialized hardware such as GPUs
essential in a cloudlet? Where should we focus effort in order
to improve the user-perceived performance of the system?
How hard do we need to work in lowering end-to-end latency?
Can we leverage additional processing resources to improve
latency rather than just throughput? These are examples of
the kinds of questions that we answer in this study. Since
this is the very first empirical study of its kind, it can only
provide us with an initial set of answers to such questions.
However, even preliminary answers to important questions
are valuable in a new and emerging area in order to provide
guidance for system designers and software developers. As
more applications emerge over time, built by many research
groups and possibly commercial entities, a broader and more
comprehensive empirical study can be conducted to revisit
these questions. We therefore view this paper as providing
the first insights, rather than the last word, in this important
domain of the future.

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA Chen et al

App
Name

Example Input
Video Frame

Description Symbolic
Representation

Example
Guidance

Pool
Helps a novice pool player aim correctly. Gives continuous
visual feedback (left arrow, right arrow, or thumbs up) as
the user turns his cue stick. Correct shot angle is calculated
based on fractional aiming system [1]. Color, line, contour,
and shape detection are used. The symbolic representation
describes the positions of the balls, target pocket, and the top
and bottom of cue stick.

<Pocket, ob-
ject ball, cue
ball, cue top,
cue bottom>

Ping-
pong

Tells novice to hit ball to the left or right, depending on
which is more likely to beat opponent. Uses color, line and
optical-flow based motion detection to detect ball, table, and
opponent. The symbolic representation is a 3-tuple: in rally
or not, opponent position, ball position. Whispers “left” or
“right” or offers spatial audio guidance using [34].
Video URL: https://youtu.be/_lp32sowyUA

<InRally, ball
position, oppo-
nent position>

Whispers
“Left!”

Work-
out

Guides correct user form in exercise actions like sit-ups and
push-ups, and counts out repetitions. Uses Volumetric Tem-
plate Matching [17] on a 10-15 frame video segment to clas-
sify the exercise. Uses smart phone on the floor for third-
person viewpoint.

<Action,
count>

Says “8 ”

Face
Jogs your memory on a familiar face whose name you cannot
recall. Detects and extracts a tightly-cropped image of each
face, and then applies a state-of-art face recognizer using
deep residual network [11]. Whispers the name of a person.
Can be used in combination with Expression [2] to offer
conversational hints.

ASCII text of
name

Whispers
“Barack
Obama”

Lego
Guides a user in assembling 2D Lego models. Each video
frame is analyzed in three steps: (i) finding the board using
its distinctive color and black dot pattern; (ii) locating the
Lego bricks on the board using edge and color detection; (iii)
assigning brick color using weighted majority voting within
each block. Color normalization is needed. The symbolic
representation is a matrix representing color for each brick.
Video URL: https://youtu.be/7L9U-n29abg

[[0, 2, 1, 1],
[0, 2, 1, 6],
[2, 2, 2, 2]]

Says “Put
a 1x3 green
piece on top”

Draw
Helps a user to sketch better. Builds on third-party app [14]
that was originally designed to take input sketches from pen-
tablets and to output feedback on a desktop screen. Our imple-
mentation preserves the back-end logic. A new Glass-based
front-end allows a user to use any drawing surface and instru-
ment. Displays the error alignment in sketch on Glass.
Video URL: https://youtu.be/nuQpPtVJC6o

Sand-
wich

Helps a cooking novice prepare sandwiches according to a
recipe. Since real food is perishable, we use a food toy with
plastic ingredients. Object detection follows the state-of-art
faster-RCNN deep neural net approach [29]. Implementation
is on top of Caffe [15] and Dlib [18]. Transfer learning [24]
helped us save time in labeling data and in training.
Video URL: https://youtu.be/USakPP45WvM

Object:
“E.g. Lettuce
on top of ham
and bread” Says “Put a

piece of bread
on the lettuce”

Figure 1: Prototype Wearable Cognitive Assistance Applications Studied in This Paper

Empirical Study of Latency in Edge Computing SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

2 Application Attributes and Implementation
As wearable cognitive assistance is just an emerging concept,
there are not many existing applications in this space, let
alone open-source ones that cover a broad range of usage
scenarios. As a result, we found it necessary to develop our
own broad set of cognitive assistance applications covering
a variety of assistive tasks. Out of the nearly dozen apps we
have built, we picked a subset of seven that are representative,
as summarized in Figure 1. YouTube video demos of some
applications are available at http://goo.gl/02m0nL.

2.1 Application Diversity and Similarity
Our applications span a wide variety of guidance tasks. All
use computer vision (CV), but with substantially different
algorithms, ranging from color and edge detection, face de-
tection and recognition, to object recognition based on deep
neural networks (DNNs). Some, such as Lego and Sandwich,
provide step-by-step guidance to completing a task. They de-
termine whether the user has correctly completed the current
step of the task, and then provide guidance for the next step,
or indicate corrective actions to be taken. In this regard, they
resemble GPS-navigation, where step-by-step instructions
are provided, and corrective actions are suggested if the user
makes a mistake or deviates from the plan.

Other applications are even more tightly interactive. For
example, Ping-pong provides guidance on whether the user
should hit left or right based on the opponent position and ball
trajectory during a rally. Pool provides continuous guidance as
the player aims the cue stick. For both, the feedback needs to
be immediate, and thus requires very low end-to-end latency
for the entire cognitive assistance processing stack.

In spite of these differences, there are significant common-
alities between our applications. First, they are all based on
visual understanding of scenes, and rely on video data acqui-
sition from a mobile device. For all of our applications except
Workout, this is a first-person view from a wearable device.

Additionally, all of these applications utilize a similar 2-
phase operational structure. In the first phase, the sensor in-
puts are analyzed to extract a symbolic representation of task
progress (fourth column in Figure 1). This is an idealized rep-
resentation of the input sensor values relative to the task, and
excludes all irrelevant detail. This phase has to be tolerant of
considerable real-world variability, including variable lighting
levels, changing camera positions, task-unrelated background
clutter, and so on. One can view the extraction of a symbolic
representation as a task-specific “analog-to-digital” conver-
sion: the enormous state space of sensor values is simplified to
a much smaller task-specific state space. In the second phase,
the symbolic representation is further analyzed by custom
application logic to generate appropriate guidance.

PubSub

Wearable device
Control VM

Sensor streams

Context
Inference

Cloudlet

User Guidance VM

Cognitive VMs

Sensor flows

Cognitive flows

VM boundary

Wireless
first hop

…

OCR

Object
detection

Face
detection

Figure 2: Gabriel Architecture

2.2 Gabriel Platform
Due to the structural similarities mentioned above, we are able
to implement all seven applications on top of Gabriel [10],
an open-source offloading framework that can be run in the
cloud or on a cloudlet (Figure 2). In this architecture, a mobile
device does basic preprocessing of sensor data (e.g. compres-
sion and encoding), and then streams this over a wireless
network to the back-end which is organized as a collection
of virtual machines (VMs). A single control VM is respon-
sible for all interactions with the mobile device. Multiple
VM-encapsulated cognitive engines concurrently process the
incoming sensor data. The application-specific computer vi-
sion algorithms (i.e., the phase 1 processing) in our applica-
tions are implemented within cognitive VMs. Gabriel uses a
publish-subscribe (PubSub) mechanism to decode and distrib-
ute the sensor streams to the cognitive VMs. A single User
Guidance VM integrates cognitive VM outputs and performs
higher-level cognitive processing (i.e., the phase 2 processing
steps). From time to time, this triggers output for user assis-
tance. We have experimentally confirmed that the VM-based
Gabriel framework adds negligible delay to the response times
of interactive applications. Lighter weight encapsulation such
as Docker containers is also possible in our implementation,
but does not change our results significantly.

The Gabriel front-end, which runs on the mobile device,
captures 640x360 image frames at 15fps. Depending on the
network conditions and the processing speed of the cognitive
VMs, only a subset of the frames are streamed to the cloud or
cloudlet in MJPEG format. The front-end is also responsible
for presenting guidance to the user. The guidance messages
are in JSON format that usually consist of a few hundreds
of bytes. These are images that are displayed or verbal cues
generated using text-to-speech on the device. Since all of
the application-specific components lie within the Gabriel
back-end, it is straightforward to run Gabriel applications on
a diverse set of devices by simply porting the Gabriel front-
end. We have successfully run our applications using Android
phones, Google Glass, Microsoft HoloLens, Vuzix Glass, and
ODG R7 device.

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA Chen et al

CPU RAM
Cloudlet Intel® Core™ i7-3770 15GB

3.4GHz, 4 cores, 8 threads

Cloud Intel® Xeon® E5-2680v2 15GB
2.8GHz, 8 VCPUs

Phone Krait 450, 2.7 GHz, 4 cores 3GB

Google Glass TI OMAP4430, 1.2 GHz, 2 cores 2GB

Microsoft Intel® Atom™ x5-Z8100 2GB
HoloLens 1.04 GHz, 4 cores

Vuzix M100 TI OMAP4460, 1.2 GHz, 2 cores 1GB

ODG R7 Krait 450, 2.7 GHz, 4 cores 3GB

Figure 3: Hardware Used in Experiments
In summary, our suite of applications covers a broad, repre-
sentative range of the emerging class of interactive cognitive
assistance applications. As our applications support multi-
ple client devices, and both cloud and cloudlet back-ends,
they can help us examine how various aspects of the system
affect performance. In particular, we answer the following
questions:
• How much does edge computing affect end-to-end laten-

cies of these applications?
• How does edge computing based on cellular/LTE com-

pare with that based on WiFi?
• Does the choice of end-user device affect performance?
• How much can hardware accelerators and extra CPU

cores in the back-end help?
• Short of devising revolutionary new algorithms, what

can we do to improve cloud/cloudlet processing time?
• How hard do we need to work at reducing latency?

In the rest of this paper, we obtain answers to these questions
in the context of our applications.

3 Latency Measurements
We evaluate the performance of our suite of wearable cog-
nitive assistance applications in terms of end-to-end latency,
including processing and network time, for different configu-
rations of the system. We compare offloading the application
back-ends to different sites, including the public cloud, a local
cloudlet over WiFi, and a cloudlet on a cellular LTE network.
We also investigate how mobile hardware affects networking
and client computation time. By timestamping critical points
of an application, we obtain a detailed time breakdown for it,
revealing system bottlenecks and optimization opportunities.

3.1 Experimental Setup
The specifications of the hardware used in our experiments are
shown in Figure 3. We have set up a desktop-class machine

running OpenStack [23] to represent a cloudlet. For appli-
cations (e.g. Sandwich) that use GPU, we use an NVIDIA
GeForce GTX 1060 GPU (6GB RAM).

To study the relative benefits of edge computing compared
to using a centralized cloud, we use C3.2xlarge VM instances
in Amazon EC2 as cloud servers. These are the fastest avail-
able in terms of CPU clock speed in January, 2017.

We use Nexus 6 phones as stand-ins for high-end wearable
hardware in most of our experiments. We also experiment
with Google Glass, Microsoft HoloLens, Vuzix M100 Glass,
and ODG R7 Glass to demonstrate how client hardware af-
fects latency. They connect to the server over a dedicated
WiFi access point using 802.11n with 5GHz support when-
ever possible. If a device (such as Google Glass) does not
support 802.11n WiFi over 5GHz, we use the best WiFi sup-
ported by it (e.g. 802.11b/g on 2.4 GHz for Google Glass).
All of the devices except HoloLens run a variant of Android,
while HoloLens runs Windows 10. The Gabriel front end
has been implemented on both OSes, and performs identical
processing steps on all devices.

Each experiment typically runs for five minutes. For re-
producibility, the mobile device sends pre-captured frames
instead of live frames, but keeps its camera on. For consistent
results, we use ice packs to cool the mobile device to avoid
CPU clock rate fluctuation due to thermal throttling [10].

3.2 Baseline Measurements
We first evaluate how well our applications perform in a
baseline edge-computing configuration. Here, the back-end
services are run on a WiFi-connected cloudlet machine, and
we use a phone as the client device. This serves as our control
scenario to which we will compare other system setups that
vary particular system parameters.

Figure 4 shows the cumulative distribution functions (CDFs)
of response times of each of our applications under various
system setups. The total end-to-end latency is measured on the
wearable device from when the frame is captured to when the
corresponding guidance / response is received. This does not
include the time to present the guidance (e.g. text-to-speech,
image display) to the user. The solid black lines correspond
to our baseline settings. These curves are almost always the
leftmost in each plot, indicating this configuration results in
the best latencies among the different system settings. We
will investigate other configurations later in this section.

The shape of the CDF lines also demonstrate variation
in application response times. Some of this is a result of
network jitter, but most is due to processing time variation
for different video frames. Between the different applications,
the latencies can vary significantly, e.g., Sandwich is almost
100x slower than Pool. In general, except for Sandwich, all
of our applications achieve latencies on the order of a few
hundreds of milliseconds.

Empirical Study of Latency in Edge Computing SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

0 50 100 150 200 250 300 350 400
milliseconds

0.0
0.2
0.4
0.6
0.8
1.0

(a) Pool

0 50 100 150 200 250 300 350 400
milliseconds

0.0
0.2
0.4
0.6
0.8
1.0

(b) Ping-pong

0 50 100 150 200 250 300 350 400
milliseconds

0.0
0.2
0.4
0.6
0.8
1.0

(c) Work-out

0 200 400 600 800 1000
milliseconds

0.0
0.2
0.4
0.6
0.8
1.0

(d) Face

0 200 400 600 800 1000
milliseconds

0.0
0.2
0.4
0.6
0.8
1.0

(e) Lego

0 200 400 600 800 1000
milliseconds

0.0
0.2
0.4
0.6
0.8
1.0

(f) Drawing

WiFi cloudlet + Phone
Typical cloud + Phone
LTE cloudlet + Phone
WiFi cloudlet + Google Glass

0 2000 4000 6000 8000
milliseconds

0.0
0.2
0.4
0.6
0.8
1.0

(g) Sandwich

Figure 4: CDF of Application End-to-end Latency

3.3 Cloudlet vs. Cloud
We next ask the question, how are latencies affected if edge
computing infrastructure is not available, and the application
back-ends are forced to run in a distant cloud data center? We
repeat our experiments, using an Amazon AWS server to host
the application back-ends. We use an instance in AWS-West
to represent a typical public cloud server, as the round trip
time (RTT) from our test site to AWS-West correspond well
to reported global means of 74 ms [20].

The solid blue lines in Figure 4 indicate latencies when
offloading to the cloud. In general, offloading to cloudlets
is clearly a win for our benchmark suite. Looking more
closely, cloud offload almost always incurs an additional 100
to 200 ms latency compared to using a cloudlet. For Pool,
the 90th percentile latency of cloud offloading is more than
2x that of cloudlet offloading, and will likely make a big

difference in user experience. On the other hand, the differ-
ence in offloading sites makes negligible impact to Sandwich,
as the total compute time dwarfs these differences.

How much of the performance difference is due to the net-
work versus other differences between the cloud and cloudlet?
To investigate this, we update the processing pipeline to log
timestamps, and provide a breakdown of where time is spent
in each application (shown in Figure 5). Starting from bottom
to top, the breakdown components are: (1) compressing a cap-
tured frame on the mobile device; (2) transmitting the image
to the server; (3) extracting the symbolic representation on the
server; (4) generating guidance on the server; and (5) trans-
mitting guidance back to the mobile device. The bar height
(number on top of each bar) represents the average end-to-end
latency of the application. In order to correctly measure the
network transmission time, we synchronize time between the

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA Chen et al

5000
6000 5512 5639

Cl
ou
dle
W
Cl
ou
d

Cl
ou
dle
W
Cl
ou
d

Cl
ou
dle
W
Cl
ou
d

Cl
ou
dle
W
Cl
ou
d

Cl
ou
dle
W
Cl
ou
d

Cl
ou
dle
W
Cl
ou
d

Cl
ou
dle
W
Cl
ou
d

3ool 3Lng-Song WorkouW)DFe Lego DrDwLng 6DndwLFh

0
100
200
300
400
500
600
700
800

7L
P
e(
P
s)

70

167
92

176
120

208

333

572

411

605

504

718

5000
6000

Net:
TrDnsmit
FeeGbDFN

6erver:
GenerDte
GuiGDnFe

6erver:
6ymbRliF
5eSresentDtiRn

Net:
TrDnsmit
FrDme

DeviFe:
CRmSress
FrDmes

Figure 5: Mean Latency Breakdown - Cloudlet vs. Cloud for Phone over WiFi

Gabriel server and the client by exchanging timestamps at the
beginning of each experiment.

The time breakdowns in Figure 5 show some interest-
ing insights. First of all, for the baseline cloudlet case (left
bars for each application), relatively little time is spent on
network transmission. This is the advantage that edge comput-
ing promises – cloud-like resources with low latency and high
bandwidth, resulting in low network overheads. In contrast,
with cloud, the network overheads are high, and a significant
fraction of the time is spent on transmission for most applica-
tions. Up to 40% more time is spent on network transmissions
in the cloud case. Note that all of the client devices employ
aggressive power management of the radio link. The network-
ing times include overheads of transitioning out of low-power
states, so some of the numbers (e.g. transmit feedback) may
be larger than expected.

Secondly, the time spent on server compute time remains
almost unchanged between cloudlet and cloud cases. For most
applications, almost all compute time is devoted to extract-
ing the symbolic representation, while generation of user
guidance is computationally trivial, and is not visible in the
plots. The one exception is Draw, which has relatively modest
computational requirements for extracting state, but runs a
complex, third-party application to generate guidance.

Finally, Sandwich remains the big outlier, with far higher
response times than the other applications. Its time break-
down is dominated by the symbolic representation extraction
step, which averages over five seconds for both the cloud and
cloudlet implementations, due to the use of a computationally
expensive deep neural network. All other components are rel-
atively insignificant, although close inspection of the plots do
show that network transmission increases in the cloud case.

Overall, our measurements show a very distinct, end-to-end
response time advantage when using edge compute resources
rather than the public cloud across our suite of applications.

3.4 4G LTE vs. WiFi for First Hop
The initial research efforts on edge computing focused on
cloudlets connected to local WiFi networks. This connectiv-
ity provides excellent bandwidth and low latency to mobile
devices on the local WiFi network. However, this is not the
only way to deploy edge infrastructure. In particular, as part
of a larger push toward network function virtualization (NFV)
and software defined networking (SDN), the telecommuni-
cations industry is pursuing plans to install general-purpose
compute infrastructure within cellular networks [8], enabling
LTE-connected edge computing services. How much does
LTE as the first wireless hop affect application latency?

To answer this question, we need access to LTE-connected
cloudlets. As LTE-based cloudlets are not yet commercially
deployed, we built a prototype system in our lab. With as-
sistance from Vodafone Research, we have set up a small,
low-power (10 mW) 4G LTE network in our lab, under an
experimental FCC license. A cloudlet server connects to this
network’s eNodeB (base station) through a Nokia RACS gate-
way, that is programmed to allow traffic intended for the
cloudlet to be pulled out through a local Ethernet port without
traversing the cellular packet core. This local break-out capa-
bility is expected to be a key feature of future deployments of
cellular edge-computing infrastructure.

We measure the response times of our suite of applications
using the cloudlet connected to the eNodeB to host the appli-
cation back-ends, and using the phone connected to the lab
LTE as the client device. As far as we are aware, we are the
first to evaluate the performance of LTE-connected cloudlets
with complete mobile applications.

The solid green lines in Figure 4 show the CDFs of system
response times using the LTE-connected cloudlet configu-
ration. These lines are consistently to the right of the lines
corresponding to WiFi-connected cloudlets, with about 30

Empirical Study of Latency in Edge Computing SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

WL)L L7(WL)L L7(
3ool Lego

0

100

200

300

400

500

600

7L
P
e(
P
s)

70
98

411

517
5000
6000

Net:
TrDnsmit
FeeGbDFN

6erver:
GenerDte
GuiGDnFe

6erver:
6ymbRliF
5eSresentDtiRn

Net:
TrDnsmit
FrDme

DeviFe:
CRmSress
FrDmes

Figure 6: Latency Breakdown - WiFi vs. LTE Cloudlets

milliseconds difference. Excluding Sandwich, the relative
difference of the 90th percentile latency ranges from 6.8%
(Draw) to 33.8% (Pool). These differences are consistent
with expectations, as 4G LTE has longer network latency (as
measured by ping), and lower bandwidth compared to WiFi.

We also plot the time breakdown comparing WiFi and
LTE scenarios in Figure 6. Due to space limitations, we only
show results for two applications: Pool, which is the most
interactive one, and Lego, which is one of the slower ones.
The figure confirms that most of time difference is due to
increase in network transmission times in LTE.

Overall, although LTE cloudlets are at a disadvantage when
compared to WiFi cloudlets, they do provide reasonable ap-
plication performance. In particular, Figure 4 shows that the
latencies are better with LTE cloudlets than with cloud-based
execution for all of the applications studied. Thus, we believe
that LTE cloudlets are a viable edge computing strategy and
can provide significant benefits over the default of cloud off-
loading. Furthermore, if 5G lives up to expectations of greatly
reduced radio network latencies, and the promises of greater
bandwidth, the performance with cloudlets in the cellular
network will improve even more.

3.5 Mobile Hardware
Since most processing is offloaded to the Gabriel back-end,
one expects the choice of mobile device to have little impact
on end-to-end latency. To confirm this intuition, we repeat
the latency measurements of our applications running on a
WiFi cloudlet, but replace the phone with Google Glass as
the client device. The results are shown by the dashed black
lines in Figure 4. Surprisingly, using Glass has a profound
effect on the latencies, increasing them across the board for all
applications. For Pool, the 90th percentile latency increases

3 G H 9 2 3 G H 9 2
3ooO LHgo

0

100

200

300

400

500

600

7L
P
H(
P
V)

70
113

68

145

83

411

537

429
475

435

5000
6000

Net:
TrDnsmit
FeeGbDFN

6erver:
GenerDte
GuiGDnFe

6erver:
6ymbRliF
5eSresentDtiRn

Net:
TrDnsmit
FrDme

DeviFe:
CRmSress
FrDmes

P: Nexus 6 Phone G: Google Glass
H: Microsoft HoloLens V: Vuzix M100 O: ODG R7

Figure 7: Latency Breakdown - Client Hardware

by 80% compared to the results with the Nexus 6 phone.
Furthermore, there is greater variability in the response times,
as indicated by the shallower slope of the CDFs.

To further investigate this surprising result, we capture
the time breakdowns for our applications with four different
client devices: the Nexus 6 phone, Google Glass, Microsoft
HoloLens, Vuzix M100 Glass, and ODG R7 Glass. The mea-
sured time breakdowns are shown in Figure 7. As in Sec-
tion 3.4, we only show results for two applications. For Pool,
we see that the average response time (total bar height) varies
significantly across client devices. A part of this difference
is due to differences in processing (compression) speed on
the client device. In particular, the Vuzix device takes signif-
icantly longer than the others on the compression step. The
bulk of the observed differences across mobile devices can be
attributed to different network transfer speeds. For example,
Google Glass only has 2.4 GHz 802.11b/g technology, but the
Nexus 6 phone uses 5 GHz 802.11n to fully leverage the WiFi
bandwidth to minimize transfer delay. For Pool, where the
network transfer delay is significant, the total response time
is reduced by nearly 40% by switching from Google Glass
to the Nexus 6 phone. The Vuzix device has networking that
falls between Glass and the phone, while the HoloLens and
the ODG device appear to be more capable wearable devices,
generally matching the phone in all attributes.

Similar differences in compression and network transmis-
sion occur for Lego. However, since the server computation
takes much longer here and is not affected by the choice of
client hardware, the change in the overall system response
time is relatively less significant than for Pool.

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA Chen et al

App 1 core 2 core 4 core 8 core
Lego 415.0 412.5 420.3 411.0
Sandwich 12579.5 7237.8 6657.6 5312.3

Figure 8: Mean Latency (ms), Varying Number of Cores

4 Reducing Server Compute Time
In the previous section, we investigated how system config-
uration can significantly influence the response times of the
applications, primarily due to differences in network trans-
mission and processing times on client hardware. The one
aspect that remains stubbornly unchanged is the time required
for processing at the server.

In this section, we look at systematic approaches to reduce
the latency due to server processing. We first look at simply
applying more CPU cores, and then see if hardware accel-
erators can help. Finally, we propose a novel technique of
applying multiple algorithms in parallel with a predictor to
obtain results faster with little impact on accuracy.

4.1 Leveraging More Cores
One advantage to an elastic, cloud-like infrastructure is that
provisioning additional resources to a problem is a relatively
simple undertaking. In particular, it is easy to allocate more
cores to running the application back-ends. Although it is
generally easy to use such additional resources to improve
the throughput of a system (e.g., one can simply run multiple
instances of a service and handle multiple front end clients si-
multaneously), using additional resources to improve latency
is usually a much harder task. This is because the applications
may not be structured to benefit from additional cores, due to
inefficient implementation or due to fundamental constraints
of the algorithms being used. It may be possible to rewrite an
existing application to better exploit internal parallelism using
multiple cores, but this may require fundamentally different
algorithms to allow greater parallelism.

Can extra cores help improve the latencies achieved by
our suite of applications? Here we evaluate two of the ap-
plications with large server processing components to see
how their performance varies with number of virtual CPUs
provided. The results are summarized in Figure 8. The Lego
implementation is largely single threaded, but performs some
operations that are internally parallelized in the OpenCV
library. Therefore, as expected, the system response time re-
mains almost unchanged as the number of cores is varied. The
Sandwich application, on the other hand, is based on a neural
network implementation, which can be executed by several
well-parallelized linear algebra libraries. Therefore, it is able
to run faster as the number of cores increases. However, even
here, we see diminishing returns – most of the gains in latency
are obtained when the number of cores is increased from one

0 4000 8000
milliseconds

0.0

0.2

0.4

0.6

0.8

1.0
GPU no GPU

(a) Sandwich

0 200 400 600 800
milliseconds

0.0

0.2

0.4

0.6

0.8

1.0
GPU no GPU

(b) Face

Figure 9: CDF of Latency with and without Server-side
Hardware Acceleration (GPU)

to two. This is likely due to the fact that on these specific com-
putations, the implementation of the linear algebra libraries
used were not able to efficiently leverage the full parallelism
provided by the system. Therefore, further increasing the core
count only modestly affects latency. Even with eight cores,
latency is unacceptable at about five seconds.

4.2 Leveraging Hardware Accelerators
To study the benefit of using specialized hardware, we experi-
ment with a modern GPU as a proxy for hardware accelerators
that may be available in edge computing environments of the
future. We study the effect of enabling and disabling access to
the GPU using Sandwich and Face, both of which use GPU-
optimized neural network libraries. As Figure 9(a) shows,
Sandwich benefits significantly. This is because it uses a very
deep neural network, and almost all of the processing is in
the accelerated code paths that leverage the GPU. On the
other hand, Face gets very little benefit (Figure 9(b)), as the
accelerated computations form a much smaller share of the
overall computation.

As these results show, there is a large potential benefit to
exposing server-side hardware accelerators to applications.
However, the benefits are application-dependent, so these
need to be weighed against the very real costs of this ap-
proach. Beyond the monetary costs of additional hardware
(e.g., high-end GPU, or FPGA), management of a cloudlet
becomes more complicated, as sharing such resources in a
virtualized multi-tenant system is still a largely unsolved prob-
lem. Furthermore, applications may be tied to very particular
hardware accelerators, and may or may not work well with
other hardware. These compatibility issues threaten to frag-
ment the space and limit the vision of ubiquitously available
infrastructure to run any application. Finally, the relative ben-
efits of hardware acceleration is constantly evolving as new
algorithms are developed. For example, a recent work [28]
uses approximation techniques to process deep neural net-
works at interactive speeds without hardware acceleration and
very little loss in accuracy.

Empirical Study of Latency in Edge Computing SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

t t+15 t+30
Time (s)

wrong

right

Figure 10: Temporal Locality of Algorithm Correctness
with Example Object Detection Algorithm

4.3 Using Multiple Black-box Algorithms
As we have seen, simply adding cores or a hardware acceler-
ator may not help improve latencies for our applications. In
general, simply throwing additional resources at the problem
has limited benefits. So what options are left for improving ap-
plication latency? If one could devise a new algorithm that can
solve the perception problem more efficiently, then this could
reduce latency. However, hoping for such a breakthrough is
not reasonable strategy. On the other hand, if one could live
with a loss of accuracy, there are often relatively cheap al-
ternative algorithms that are fast, but less accurate. Can we
use the cheap algorithm to improve the performance of the
system, but without suffering accuracy loss?

4.3.1 Speed-accuracy tradeoff in CV algorithms. In
the computer vision community, accuracy is the chief fig-
ure of merit. “Better” algorithms usually are equated with
more accuracy, regardless of the computational requirements.
Thus, over the years, newer, often more complex and com-
putationally intensive techniques have been devised to solve
particular problems at ever-increasing levels of accuracy as
measured through standardized data sets. The state-of-the-art
at any given time is often quite slow due to computational
complexity.

As a result, there are often many different algorithms to
solve any common computer vision task. The state-of-the-
art method from a few years ago is typically less accurate
than today’s best, but is also often less complex and faster to
execute on today’s hardware. For example, in an object clas-
sification task, a HOG+SVM approach is one of the simplest
and fastest algorithms, but only gives modest accuracy. In the
meantime, the most recent deep neural network (DNN) based
approaches can give much higher accuracy, but are also much
more computationally expensive. Thus, there exists a natural
tradeoff between accuracy and speed that one can leverage
when selecting an algorithm to use.

4.3.2 Black-box Multi-algorithm approach. In this sec-
tion, we propose a novel approach for combining different
algorithms to result in both high accuracy and low average
latency by utilizing additional hardware. The essential idea is
to run different algorithms concurrently, using the slower (but

Symbolic
Representation

PubSub
Wearable device

Control VM
Sensor streams

Context
Inference

Cloudlet Symbolic Representation
Extractors

Sensor flows

Cognitive flows

VM boundary

Wireless
connection

…

Symbolic Representation
Extractor (e.g. CNN-deep)

Symbolic Representation
Extractor (e.g. CNN-fast)

Symbolic Representation
Extractor (e.g. HOG-SVM)

Guidance
Generator

Result
Filter

Guidance VM

Figure 11: Adapted Gabriel Architecture for Multi-
algorithm Approach to Reduce Latency

more accurate) ones to dynamically evaluate the real-time
accuracy of the faster (but less accurate) ones. If a fast algo-
rithm has been accurate for a period of time, the next result
it generates will be trusted and used. If not, the system will
wait for the more accurate algorithm to finish.

Why might this strategy work? The key insight behind this
idea is that the mistakes an algorithm makes are not simply
random events. Rather, they are correlated to the environment
or the scene to which the algorithm is applied. For example,
the lighting conditions, image exposure level, background
clutter, and camera angle can all affect the accuracy of an al-
gorithm. More accurate algorithms are typically more robust
to changes and work well over a larger range of conditions
than less accurate ones. However, because accuracy is tied to
the physical scene characteristics, computer vision algorithms
exhibit temporal locality of accuracy over sequences of video
frames, as the scene conditions rarely change instantaneously.
Thus, when conditions are such that the algorithm is generat-
ing accurate results, we can expect it to continue generating
good results in the near term. Figure 10 demonstrates this
temporal locality in an example DNN-based algorithm for
object detection. Over a sequence of frames, we plot when
the algorithm generates results matching known ground truth.
Though often wrong, the algorithm tends to produce long
runs of outputs that are all right or all wrong. This shows that
temporal locality is a real phenomenon that we can exploit.

Figure 11 shows how this approach can be implemented in
the Gabriel architecture. Symbolic extractors using different
algorithms are run as independent instances in different Cog-
nitive VMs. All of their results are sent to the User Guidance
VM, where a result filter decides which result can be trusted.
If a result is deemed accurate, it will be used for guidance
generation. Otherwise, the result is simply ignored. Note that
this architecture potentially allows for a black box approach,
and can be applied even if the source code of algorithms are
not available.

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA Chen et al

Algorithm 1 Multi-algorithm Approach
1: procedure PROCESS(result, algo, frame_id)
2: if TRUST(algo, result) then
3: Feed result to guidance generator
4: else
5: Mark result as useless
6: if algo = best_algo then
7: UPDATE_CONFIDENCE(result, frame_id)
8: else
9: result_history.add(frame_id, (algo, result))

10:
11: function TRUST(algo, result)
12: if confidence[algo] � THRESHOLD then
13: return True
14: else
15: return False
16:
17: procedure UPDATE_CONFIDENCE(best_result, frame_id))
18: detected_results result_history.get(frame_id)
19: for (algo, result) in detected_results do
20: if best_result = result then
21: confidence[algo] confidence[algo] + 1
22: else
23: confidence[algo] 0

The operation of the result filter is described by Algo-
rithm 1. Two important data structures are maintained: the
result_histor� array tracks recent symbolic representation
results from all algorithms, and the conf idence array counts
how many times each algorithm has been consecutively cor-
rect. The process procedure is called whenever a new re-
sult is generated by any of the Cognitive VMs. It uses the
trust function to decide whether the result can be used,
based on the algorithm’s recent performance. In this simple
implementation, the trust function simply compares the
associated confidence entry to a fixed threshold to decide
when it should be trusted. If the result is from the best algo-
rithm we have, we treat its result as the truth, and use it to
update confidence scores of the other algorithms through the
update_confidence procedure. Note that the accuracy
can only be checked at speed of the most accurate algorithm.
For example, if there are two algorithms, running at 30 and 1
FPS, then results may be produced every 33 ms when the fast
one is trusted, but the confidence can be updated only once a
second. If an algorithm produces a result that does not match
the best one, then the corresponding confidence is set to zero.

In practice, we extend the basic Algorithm 1 to further im-
prove accuracy. In particular, we keep a separate confidence
score for each category that may be reported by a detection
algorithm. This is helpful when an algorithm has different
precision for different categories. In addition, we treat “noth-
ing detected” as a special case, and only trust this result from
the best algorithm. This tweak helps reduce false negatives

due to fast algorithms that are tuned to have high precision
but low recall.

We demonstrate our multi-algorithm approach on three of
our applications. Face, as described earlier, uses a HOG-based
face detector with a DNN for accurate face recognition. We
create a faster, less accurate version that uses Fisherface fea-
tures [4] for recognition. A third version, in addition, uses
Haar-cascade face detector [37]. For Lego, the original algo-
rithm spends much computation compensating for lighting
variations and blurriness. The faster Lego-simple algorithm
removes much of this complexity, but may fail to detect the
Lego shape when lighting isn’t ideal. Finally, we implemented
three different Sandwich detection algorithms using different
DNN architectures for object recognition. DNN1 is based on
the VGG16 model [33], and can be considered state-of-the-art
in terms of accuracy. DNN2 uses the ZF model [38], while
DNN3 implements the VGG_CNN_F model [9].

Figure 12 shows the accuracy and latency for each of these
techniques as well as our multi-algorithm approach. Clearly,
our multi-algorithm approach can produce results with very
low latency, but with little if any sacrifice in accuracy. Across
the board, our new approach is consistently much faster than
the most accurate algorithm, yet still provides significant
accuracy gains over the second best algorithm. The multi-
algorithm Lego even results in slightly higher accuracy than
the best algorithm. This is due to the few, rare cases in which
the faster algorithm is trusted and matches the ground truth,
but the slower algorithm makes a mistake. Figure 13 shows
the time breakdown for the multi-algorithm approach. Not
surprisingly, most of the gains are due to faster symbolic
representation extraction at the server. However, result trans-
mission is also improved. This is because with the faster
approach, the system operates at a higher frame rate, so de-
vice radios do not enter deep, low-power states. Thus, latency
overheads of power-state transitions of the wireless network
interfaces are avoided. Overall, our multi-algorithm approach
demonstrates that by exploiting temporal locality, we can com-
bine algorithms to get the best of both accuracy and speed.
Furthermore, our technique shows a way to use additional
processing resources to improve latency, not just throughput,
of a processing task, without deep change to its algorithms.

5 When is Latency Good Enough?
So far, we have studied application latencies with different
system settings, and have explored different approaches to
reduce server compute time. In this section, we ask the ques-
tion: are the achieved latencies good enough? To answer this
question, we attempt to derive a set of target latencies for
our applications. We note that this is not a precise bound, as
the latencies are subject to the vagaries of human perception.
Thus, our values should be treated as guidelines rather than
strict limits, since human cognition exhibits high variability

Empirical Study of Latency in Edge Computing SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

Algorithms Precision Recall Latency
(%) (%) (ms)

DNN+HOG 99.8 96.1 333.4
Fisher+HOG 81.0 79.0 180.7
Fisher+Haar 69.4 67.5 84.6
Multi-algo 92.5 93.0 109.8

(a) Face

Algorithms Accuracy Latency
(%) (ms)

Lego-robust 94.2 411.0
Lego-simple 78.3 97.3
Multi-algo 95.9 134.6

(b) Lego

Algorithms Precision Recall Latency
(%) (%) (ms)

DNN1 96.2 97.3 307.3
DNN2 90.1 89.5 103.0
DNN3 86.1 87.1 88.9
Multi-algo 95.4 96.7 92.5

(c) Sandwich

Figure 12: Multi-algorithm Accuracy and Mean Latency

5000
6000 5512

2 0 2 0 2 G 0
)aFe Lego 6anGwLFh

0

100

200

300

400

500

7L
m
e(
m
s)

333

110

411

135

307

92

5000
6000

Net:
TrDnsmit
FeeGbDFN

6erver:
GenerDte
GuiGDnFe

6erver:
6ymbRliF
5eSresentDtiRn

Net:
TrDnsmit
FrDme

DeviFe:
CRmSress
FrDmes

O: Original Algorithm G: Original Algorithm (w/ GPU)
M: Our Multi-algorithm Approach

Figure 13: Multi-algorithm Latency Breakdown

due to individual differences, state of the user [25], and en-
vironmental conditions [36]. With this in mind, we derive a
range of latencies for each application, with a tight and loose
latency bound, to cover some of these variables.

The tight bound represents an ideal target, below which the
user is insensitive to improvements, as measured, for example,
by impact on performance or ratings of satisfaction. Above
the loose bound, the user becomes aware of slowness, and
user experience and performance is significantly impacted.
Latency improvements between the two limits may be useful
in reducing user fatigue, but this has not yet been validated.

5.1 Relevant Bounds in Previous Studies
Some applications have been extensively studied by previous
literature, thus we use their results directly. For example,
critical timing for face recognition has been published in the
past. For a normal human, it takes about 370 ms to recognize
a face as familiar [27], or about 1000 ms for full identity
recognition[16]. If our Face application aims at providing
responses at par with average human performance, it should
have a target latency range of 370-1000 ms.

Opponent hitting
the ball

time

User has to
hit the ball

Total budget: roughly 700 ms, according to recorded video

Swing: 250 msMotion
initiation:

100 ms

Understanding
guidance:

125-200 ms

Room for
system processing:

150-225 ms

Figure 14: Deriving Latency Bounds for Ping-pong

Pool tries to provide feedback to help a user iteratively tune
the cue stick position. To provide the illusion of continuous
feedback, the system should react fast enough that the user
perceives this as instantaneous. Miller et al. [22] indicate that
users can tolerate up to 100 ms response time and still feel
that a system is reacting instantaneously. He also suggested a
variation range of about 10% (±5%) to characterize human
sensitivity for such short duration of time. Hence, an upper
bound of 100±5 ms can be applied to Pool.

5.2 Deriving Bounds From Physical Motion
In other applications, users interact with physical systems, so
the latency bounds can be derived directly from first principles
of physics. Ping-pong has clear latency bound defined by
the speed of the ball. From video analysis of two novice
players, the average time between an opponent hitting the
ball and the user having to hit the ball is roughly 700 ms.
Within this time budget, the system must complete processing,
deliver guidance, and leave enough time for the user to react
(Figure 14). Ho and Spence [12] show that understanding a
“left” or “right” audible cue requires 200 ms. Alternatively,
a brief tone played to the left or right ear can be understood
within 125 ms of onset [31]. In either case, we need to allow
100 ms for motion initiation by the user [19]. Our ping-pong
video also suggests about 250 ms for a novice player to swing,
slightly longer than the swing time of professional players [6].
This leaves 150-225 ms of the inter-hit window for system
processing, depending on the audible cue.

In a similar manner, we derive the latency bound of Work-
out. Analysis of a video of a user doing sit-ups shows that
the user rests for around 300 to 500 ms on average between
the point when the completed action can be recognized and

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA Chen et al

Total number 13
Gender Male (8), Female (5)
Google Glass proficiency Experienced (4), Novice (9)

Figure 15: Demographic Statistics of User Study

0 1 2 3 4 5
Injected latency (s)

1

2

3

4

5

U
se

U S
at

is
Ia

ct
io

n

User satisfaction: 5=satisfied, 1=faster response desired

Figure 16: User Tolerance of System Latency

when the count information needs to be delivered (starting
the next sit-up). This full 300-500 ms can be spent on system
processing, but longer delays will make it likely the user will
initiate a sit-up without the benefit of feedback.

5.3 Bounds for Step-by-step Tasks
Unfortunately, there are no well-defined latency bounds for
Lego, Drawing, and Sandwich, which provide step-by-step
instructions. Previous studies have suggested a two-second
limit [22] in human-computer interaction tasks, but this was
for a traditional model of interaction where a user explicitly
starts an action (e.g., clicks a mouse). In contrast, for cogni-
tive assistance applications, the user interacts with the world,
and the system infers when a step is completed. Without an
explicit point of reference, delay will likely be perceived very
differently in this model. Thus, we felt it necessary to perform
our own user study to investigate latency tolerance for step-
by-step cognitive assistance tasks. We recruited 13 college
students (demographics summarized in Figure 15) to try our
Lego application using Google Glass. We asked users who
were not accustomed to Glass to try some basic Glass appli-
cations before the experiments. We conducted the following
two experiments.

5.3.1 Experiment 1. We first try to understand how user
satisfaction changes as latency increases. We asked each user
to complete four Lego-assembly tasks, each of which con-
sisted of 7 to 9 steps. We use a "Wizard-of-Oz" approach,
where a human expert takes the place of the computer vision
system to determine when a step is complete, so that imperfect
accuracy of the application does not affect results. Feedback

is delivered to the user after an injected latency of 0, 1, 1.5,
2, 3, 4, or 5 seconds for each task. The injected system la-
tency for each participant during each trial was randomized,
accounting for biasing in results that the order of experiments
might cause. Note that the total latency experienced by the
users exceeds this injected latency – we measure an additional
700 ms of latency that includes network transmission, render-
ing of output, and reaction time of the expert. Each participant
was also asked to complete a “warm-up” trial before the four
main trials to get used to the application.

After each task, the user filled out a questionnaire and had
to specifically answer the question: Do you think the system
provides instructions in time? The answers were provided
on a 1-to-5 scale, with 1 meaning the response is too slow,
and 5 meaning the response is just in time. Figure 16 shows
the users’ satisfaction scores for the pace of the instructions.
When no latency was injected, the score was the highest, 4.8
on average. The score remains stable at around 4 with up
to 2 seconds of injected delay. Beyond 2 seconds, the users
were less satisfied and the score dropped below 3. These
results indicate that application responses within a 2.7 seconds
bound (adjusting for the additional delay in the procedure)
will provide a satisfying experience to the user.

5.3.2 Experiment 2. In a second experiment, we per-
formed a more open-ended test to determine how soon users
prefer to receive feedback. Here, the users were instructed to
signal using a special hand gesture when they were done with
a step and ready for feedback. A human instructor would then
present guidance both verbally and visually using printed pic-
tures. From recordings of these interactions, we measured the
interval between when a user actually completed a step and
when he started to signal for the next instruction to be around
700 ms on average. Allowing for motor initiation time of
100 ms [19], this suggests an ideal response time of 600 ms.

Based on these studies, we set a loose bound of 2.7 s and
a tight bound of 600 ms for the three step-by-step instructed
applications (Lego, Draw, and Sandwich).

5.4 Meeting Application Latency Bounds
How close are our applications to meeting our derived bounds?
Figure 17 summarizes the latency bound ranges derived for
each application. For a variety of configurations, we measure
and present the 90th percentile latencies achieved by the ap-
plications. The colors show when both (green), only loose
(orange), or neither (red) bounds are met.

Using a WiFi-connected cloudlet has the advantage in meet-
ing latency bounds. Six of the seven applications could meet
the loose bounds, and five of them meet the tight bounds as
well. Sandwich could also meet the tight bound when GPU
is enabled. Offloading through LTE offers similar results, but
Pool just misses its latency bounds.

Empirical Study of Latency in Edge Computing SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

Pool Work-out Ping-pong Face Lego Draw Sandwich
Bound Range (tight-loose) 95-105 300-500 150-230 370-1000 600-2700
WiFi Cloudlet w/ Phone 80 131 102 410 455 546 5708 (w/ GPU: 308)
WiFi Cloud w/ Phone 173 216 192 615 619 767 5640
LTE Cloudlet w/ Phone 107 154 123 498 578 583 5677
WiFi Cloudlet w/ Glass 144 146 164 435 618 725 5754
Using Multi-algo Approach 181 352 w/ GPU: 100
(WiFi Cloudlet w/ Phone)

Figure 17: 90th Percentile System Latency vs. Latency Bounds (in milliseconds)

Using the cloud as offloading site will dramatically de-
crease user experience. Now, Ping-pong, Draw, and Lego fail
to meet the tight bounds, and Pool substantially fails to meet
even the loose bound. Using Google Glass as the client device
decreases user experience to a similar degree.

Finally, using our technique of combining multiple algo-
rithms described in Section 4.3 results in a better chance of
meeting the latency bounds. Face is now able to meet the tight
bound, while Lego and Sandwich now have a larger margin
from the tight bounds.

6 Related Work
There have been many efforts to offer cognitive assistance
through a wearable device. For example, Chroma [35] uses
Google Glass to provide color adjustments for the color blind.
CrossNavi [32] uses smart phone to guide blind people to
cross the road. Most of these applications don’t depend on
computation-heavy algorithms, and can be processed entirely
on a wearable device. For those applications providing ad-
vanced features using resources outside of the wearable de-
vice, a crisp response has not been a strict requirement. For
example, both commercial applications like Siri or research
prototypes like Opportunity Knocks [26] and SenseCam [13]
could tolerate seconds of latency. In contrast, our cognitive
assistance applications augment daily life in an interactive,
timely manner, and cover a wider range of scenarios that
have higher computation demands. We have shown that edge
computing is crucial in supporting such applications.

The idea of running multiple algorithms concurrently to
achieve better performance has been explored in different
contexts. For example, in machine learning, the ensemble
learning approach combines multiple algorithms and use
methods such as voting to produce a more accurate algo-
rithm [7]. Similarly, McFarling [21] introduced a meta algo-
rithm to combine multiple predictors for better branch pre-
diction. Our work also resembles the class of multiple expert
meta algorithms [3] which dynamically evaluates the perfor-
mance of different expert, and selects one to use at a future
time. However, most existing work focus on accuracy but not

speed, and none of them have explored temporal locality of
accuracy, which is the basis of our approach.

7 Conclusion
Wearable cognitive assistance may emerge as a killer applica-
tion domain for edge computing. Such applications require
computation offloading due to complex vision and audio pro-
cessing, but are highly interactive, so need low latency access
to processing resources. In this work, we implement and de-
scribe seven such applications, and carry out an empirical
study to analyze their latency performance. We show that
using a WiFi-connected cloudlet gives the ideal latency per-
formance, because of the low network RTT and high band-
width it offers. By comparing the measurement results with a
set of latency bounds that we derive, we show that cloudlets
can help meet user expectation for most applications. Further-
more, LTE cloudlets can also offer fast responses significantly
better than using public cloud. More surprisingly, while most
of the applications offload back-end processing to the cloudlet
or cloud, the choice of client device also greatly impacts end-
to-end latency, due to differences in networking technology.

A large portion of the end-to-end latency can be attributed
to server compute time. We show that using additional CPU
cores and specialized hardware accelerators could benefit a
subset of applications. To further speed up computation, we
have proposed a black-box multi-algorithm approach that
exploits temporal locality of accuracy. By running multiple
algorithms in parallel and adaptively selecting which ones to
trust, we demonstrate significant speed-ups for three applica-
tions with little impact on accuracy.

Acknowledgements
This research was supported by the National Science Foundation (NSF)
under grant number CNS-1518865. Additional support was provided by
Intel, Google, Vodafone, Deutsche Telekom, Verizon, Crown Castle, NTT,
and the Conklin Kistler family fund. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the view(s) of their employers or the above-mentioned
funding sources.

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA Chen et al

REFERENCES
[1] Fractional-ball aiming. http://billiards.colostate.edu/threads/aiming.

html#fractional. Accessed on November 27, 2015.
[2] A. I. Anam, S. Alam, and M. Yeasin. Expression: A dyadic conver-

sation aid using google glass for people with visual impairments. In
Proceedings of the 2014 ACM International Joint Conference on Perva-
sive and Ubiquitous Computing: Adjunct Publication, pages 211–214.
ACM, 2014.

[3] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory of Computing,
8(1):121–164, 2012.

[4] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs.
fisherfaces: Recognition using class specific linear projection. IEEE
Transactions on pattern analysis and machine intelligence, 19(7):711–
720, 1997.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog Computing and Its
Role in the Internet of Things. In Proceedings of the First Edition of
the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland,
2012.

[6] R. J. Bootsma and P. C. Van Wieringen. Timing an attacking forehand
drive in table tennis. Journal of experimental psychology: Human
perception and performance, 16(1):21, 1990.

[7] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140,
1996.

[8] G. Brown. Converging Telecom & IT in the LTE RAN. White Paper,
Heavy Reading, February 2013.

[9] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of
the devil in the details: Delving deep into convolutional nets. arXiv
preprint arXiv:1405.3531, 2014.

[10] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan.
Towards wearable cognitive assistance. In Proceedings of the 12th
annual international conference on Mobile systems, applications, and
services, pages 68–81. ACM, 2014.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016.

[12] C. Ho and C. Spence. Verbal interface design: Do verbal directional
cues automatically orient visual spatial attention? Computers in Human
Behavior, 22(4):733–748, 2006.

[13] S. Hodges, E. Berry, and K. Wood. SenseCam: A wearable camera
that stimulates and rehabilitates autobiographical memory. Memory,
19(7):685–696, 2011.

[14] E. Iarussi, A. Bousseau, and T. Tsandilas. The drawing assistant:
Automated drawing guidance and feedback from photographs. In ACM
Symposium on User Interface Software and Technology (UIST), 2013.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[16] M. Kampf, I. Nachson, and H. Babkoff. A serial test of the laterality of
familiar face recognition. Brain and Cognition, 50(1):35–50, 2002.

[17] Y. Ke, R. Sukthankar, and M. Hebert. Event detection in crowded
videos. In Computer Vision, 2007. ICCV 2007. IEEE 11th International
Conference on, pages 1–8, 2007.

[18] D. E. King. Dlib-ml: A machine learning toolkit. Journal of Machine
Learning Research, 10:1755–1758, 2009.

[19] R. L. Klatzky, P. Gershon, V. Shivaprabhu, R. Lee, B. Wu, G. Stetten, ,
and R. H. Swendsen. A model of motor performance during surface
penetration: from physics to voluntary control. Experimental brain
research, 230(2):251–260, 2013.

[20] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp: comparing
public cloud providers. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pages 1–14. ACM, 2010.

[21] S. McFarling. Combining branch predictors. Technical report, Techni-
cal Report TN-36, Digital Western Research Laboratory, 1993.

[22] R. B. Miller. Response time in man-computer conversational trans-
actions. December 9-11, 1968, fall joint computer conference, part I,
ACM, pages 267–277, December 1968.

[23] OpenStack. http://www.openstack.org/, February 2015.
[24] S. J. Pan and Q. Yang. A Survey on Transfer Learning. IEEE Transac-

tions on Knowledge and Data Engineering, 22(10):1345–1359, October
2010.

[25] R. Parasuraman and D. R. Davies. Decision theory analysis of response
latencies in vigilance. Journal of Experimental Psychology: Human
Perception and Performance, 2(4):578, 1976.

[26] D. J. Patterson, L. Liao, K. Gajos, M. Collier, N. Livic, K. Olson,
S. Wang, D. Fox, and H. Kautz. Opportunity knocks: A system to
provide cognitive assistance with transportation services. In UbiComp
2004: Ubiquitous Computing, pages 433–450. Springer, 2004.

[27] M. Ramon, S. Caharel, and B. Rossion. The speed of recognition of
personally familiar faces. Perception, 40(4):437–449, 2011.

[28] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net:
Imagenet classification using binary convolutional neural networks.
arXiv preprint arXiv:1603.05279, 2016.

[29] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[30] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case for
VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Comput-
ing, 8(4), October-December 2009.

[31] M. Schmitt, A. Postma, and E. De Haan. Interactions between exoge-
nous auditory and visual spatial attention. The Quarterly Journal of
Experimental Psychology: Section A, 53(1):105–130, 2000.

[32] L. Shangguan, Z. Yang, Z. Zhou, X. Zheng, C. Wu, and Y. Liu. Cross-
navi: enabling real-time crossroad navigation for the blind with com-
modity phones. In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, pages 787–798.
ACM, 2014.

[33] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[34] T. J. Tang and W. H. Li. An assistive eyewear prototype that interac-
tively converts 3d object locations into spatial audio. In Proceedings
of the 2014 ACM International Symposium on Wearable Computers,
pages 119–126. ACM, 2014.

[35] E. Tanuwidjaja, D. Huynh, K. Koa, C. Nguyen, C. Shao, P. Torbett,
C. Emmenegger, and N. Weibel. Chroma: a wearable augmented-reality
solution for color blindness. In Proceedings of the 2014 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Computing,
pages 799–810. ACM, 2014.

[36] M. J. Tarr, D. Kersten, and H. H. Bülthoff. Why the visual recognition
system might encode the effects of illumination. Vision research,
38(15):2259–2275, 1998.

[37] P. Viola and M. Jones. Rapid object detection using a boosted cas-
cade of simple features. In Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on, volume 1, pages I–I. IEEE, 2001.

[38] M. D. Zeiler and R. Fergus. Visualizing and understanding convolu-
tional networks. In European conference on computer vision, pages
818–833. Springer, 2014.

