Review
Venkatasudheerkumar Mupparaju
UBITName: vmuppara(37318317)

This paper “GPFS: A Shared-Disk File System for Large Computing Cluster” describes the overall
architecture of GPFS (General Parallel File System) which is IBM's parallel shared-disk file system for
cluster computers, paper describes its approach to achieving parallelism and data consistency in cluster
environment, it details some of the features that contribute to its performance and scalability, describes
the design for fault-tolerance and presents data on its performance.

GPEFS achieves its extreme scalability through its shared-disk architecture. SAN provides
Shared Disks, but SAN itself does not provide a Shared File System. If you have several computers that
have access to a Shared Disk and try to use that disk with a regular File System, the disk logical
structure will be damaged very quickly. Disk Space Allocation inconsistency and File Data
inconsistency makes it impossible to use Shared Disks with regular File Systems as Shared File
Systems. Cluster File Systems are designed to solve the problems outlined above. GPFS is one such
parallel File System for cluster computers that provides as closely as possible the behavior of a general-
purpose POSIX file system running on a single machine.

Cluster File System allows scaling I/O throughput beyond what a single node can achieve. For
exploiting this capability requires reading and writing in parallel from all nodes in the cluster which can
be enabled through Data striping across disks and using some buffer pool for storing data. To read a
large file from a single-threaded application GPFS prefetches data into its buffer pool (Prefetch),
issuing I/O requests in parallel, to as many disks as necessary to achieve the bandwidth of which the
switching fabric is capable. Similarly, dirty data buffers that are no longer being accessed are written to
disk in parallel (Write-behind).

Striping is ensured by allocation maps. Striping works best when disks have equal size and
performance, otherwise there is a trade-off between throughput and space utilization.

GPFS uses extensible hashing to organize directory entries within a directory.

In a large File System it is not feasible to run a file system check (fsck) to verify/restore File
System consistency, so GPFS records all meta-data updates that affect file system consistency in a
shared disk, which later can be used by any other node to do recovery on behalf of failed node.

Also preserving File System consistency and POSIX semantics requires synchronizing acess to
data and metadata from multiple nodes, this process limits the parallelism. There are two approaches to
achieving the necessary synchronization: distributed locking or centralized lock management. Lock
granularity also impacts performance of parallelism achieved.

GPFS supports fully parallel access both to file data and meta-data. It performs its
administrative functions in parallel as well. GPFS employs a variety of techniques to manage these
different kinds of data: (i) byte- range locking for updates to user data, (ii) dynamically elected
"metanodes" for centralized management of file metadata, (ii1) distributed locking with centralized
hints for disk space allocation, and (iv) a central coordinator for managing configuration changes.

GPFS Distributed Lock Manager: It uses a centralized global lock manager running on one of the nodes
in the cluster, in conjunction with local lock managers in each File System node. Lock tokens play a
role in maintaining cache consistency between nodes. A token allows a node to cache data it has read
from disk, because the data cannot be modified elsewhere without revoking the token first.

1. byte- range locking for updates to user data (Parallel Data Access): During the Byte-range token
negotiation process, nodes predicts the desired range they want to write which includes likely
future access and get lock on that portion. In the absence of concurrent write sharing, byte-
range locking in GPFS behaves just like whole-file locking and is just as efficient, because a

1l

1i1.

single token exchange is sufficient to access the whole file. An experiment was performed to
determine the effectiveness of Byte-range token protocol. In the experiment a single-file was
partitioned into 'n' large, contiguous sections, one per node and each node was reading or
writing (in place updates) sequentially to one of the sections. The write thorugh-put showed
similar scalability as nodes and disks are increased which shows the effectiveness of byte-range
token protocol. But when sharing becomes finer grain (each node writing to multiple, smaller
regions), the token state and corresponding message traffic will grow (GPFS uses byte-range
token to synchronize data block allocation and therefore rounds byte range tokens to block
boundaries), in such case GPFS allows switching to data shipping mode (centralized
management). File blocks are assigned to nodes in a round-robin fashion. GPFS forwards read
and write operations originating from other nodes to the node responsible for a particular data
block. Fine-grain sharing is more efficient than distributed locking, because it requires fewer
messages than a token exchange, it also avoids the overhead of flushing dirty data to disk (I/O
activity) when revoking a token. Experiment was conducted to see the performance of data
shipping and Byte-range token, it showed data-shipping supports finer-grain access. In the
experiment throughput was measured while updating fixed size records. For updates with
record size smaller than one block BR token requires twice as much I/O because of the required
read-modify-write (data flushing to disk because of token conflicts). It is evident that drop in
throughput of BR locking was infact due to additional I/O activity and not an overload to
server. The throughput curve for data shipping shows that it also incurred the read-modify-write
penalty plus some additional overhead for sending data between nodes, but it out-performed BR
in finer-grain.

dynamically elected "metanodes" for centralized management of file metadata (Synchronizing
Access to File Meta data): Write operations to inode in GPFS uses a shared write lock allowing
concurrent writers on multiple nodes. Shared write lock only conflicts with operations that
require exact file size and/or mtime (modification time). One of the nodes accessing the file is
designated as the metanode for the file; only the metanode reads or writes the inode from or to
disk. Each writer updates local copy and forwards its inode updates to the metanode
periodically or when the shared write token is revoked (read() or stat() call by other node). Byte
range token mechanism ensures that only one node will allocate storage for any particular data
block. Therefore I/O to the inode and indirect blocks on disks is synchronized using a
centralized approach. This allows multiple nodes to write to the same file without lock conflicts
on metadata updates and without requiring messages to the metanode on every write operation.
distributed locking with centralized hints for disk space allocation (Allocation Maps): For
proper striping a write operation must allocate space for a particular data block on a particular
disk, but given the large block size used by GPFS it is not as important where on the disk the
data block is written. The disks are divided into regions and the total number of regions is
determined at file system creation time based on the expected number of nodes in the cluster.
Allocation manager which is responsible for maintaining free space statistics initializes by
reading the allocation map when the file system is mounted. The statistics is loosely kept up to
date via periodic messages in which each node reports the net amount of disk space allocated or
freed during the last period. Nodes ask the allocation manager for a region to try whenever a
node runs out of disk space in the region it is currently using. To the extent possible allocation
manager prevents lock conflicts between nodes by directing different nodes to different regions.
Allocation manager periodically distributes hints about which regions are in use by which nodes
to facilitate shipping deallocation requests when deleting a file. The experiment conducted
shows the effectiveness of allocation manager hints and metanode algorithms in the
experinment write throughput for in place updates to an existing file against creation of new file
scaled nearly linearly in the number of nodes, due to the extra work required to allocate disk

storage, throughput file creation (allocation manager hints) was slightly lower then for in place
updates (metanode algorithms).

Token Manager Scaling: It seems that token manager might become a bottle neck in large cluster or
that the size of the token state might exceed the token managers memory capacity. The distribution of
token state (hash of the file inode number, byte range token for each data block) among several nodes
in the cluster might fix the problem. The most likely reason for high load on token manager is lock
conflicts. The cost of the disk I/O caused by token conflicts dominates the cost of token manager
messages. The effective way to reduce token manager load and improve overall performance is to
avoid lock conflicts. GPFS uses number of optimizations like when revoking a token it collects replies
from the nodes and forwards as a single message to token manager (I.e acquiring token never requires
more than 2 messages to the token manager). It also supports token prefetch and token request
batching, which allow acquiring multiple tokens in a single message to the token manager. And when a
file is deleted on a node, the node does not immediately relinquish token associated with that file (The
next file created can reuse). The experiment conducted shows that token manager is not a bottle neck
and effectiveness of the token optimization. Measurements of the CPU load on the token server
indicated that it is capable of supporting between 4000 and 5000 token requests per second, so the peak
request rate in the experiment consumed only small fraction of token server capacity. Which indicates
token server is not the bottle neck.

Fault-Tolerance: 3 kinds of failures are possible Node Failures, Communication failures, Disk failures

GPFS detects a failed node by sending periodic heartbeat messages. When a node fails, GPFS
must restore metadata, release tokens, appoint replacements for special roles (metanode,allocation
manager)

As recovery logs are stored on shared disks, any other surviving node can perform log recovery
on behalf of the failed node. After log recovery, token manager releases tokens held by failed node.
Also other nodes can acquire metanode tokens held by the failed node. If either token manager or
allocation manager fails, another node will take the responsibility and reconstructs the state by
querying all the surviving nodes.

A communication failure such as a bad network adapter can cause a network partition. GPFS
invokes primitives available in the disk subsystem to stop accepting I/O requests from the other nodes
in the minority group.

GPFS supports replication , implemented in the file system. GPFS allocates space for two
copies of each data/metadata block. If some part of the disk becomes unreadable (bad blocks), metadata
replication in the file system ensures that only a few data blocks will be affected, rather than rendering
a whole set of files inaccessible.

Discussions: In the absence of concurrent write sharing, byte-range locking in GPFS behaves just like
whole-file locking and is just as efficient (performance wise), because a single token exchange is
sufficient to access the whole file.

Metadata is stored in shared disk so that in the case of node failure any node can perform operations on
behalf of failed node.

Who ever first acquires lock on inode will act as Meta node. In case of that node failure new node will
be elected. Everything is distributed in GPFS and no single point of failure.

GPFS Version-1(2002) supports upto 4PB.

In the case of communication failure GPFS fences nodes that are no longer members of the group from
accessing the shared-disk.

GPFS supports RAID. It also supports data replication(total data).

Smaller size disks have better performance than larger disks, goal is to provide speed and not disk

space.
There was decrease in the use of GPFS in top supercomputers as the cost associated with it is higher

than other parallel File systems and it only supports IBM hardware.

