A Presentation on

Black-Box Problem Diagnosis in Parallel File System

Authors: Michael P. Kasick, Jiaqi Tan, Rajeev Gandhi, Priya Narasimhan

Presented by: Rishi Baldawa

Key Idea

Focus is on automatically diagnosing different performance problems in Parallel File Systems by identifying, gathering and analyzing OS-level black-box performance metrics on every node in the cluster to identify the node(s) at fault and develop a root cause analysis procedure for the faults.

Problem Diagnosis Techniques

- White Box testing incurs significant runtime overhead, requires code-level instrumentation and expert knowledge while Black Box Testing just needs identification of anomalies.
- SLO(Service Level Objective) violations
 Hard to specify precise SLOs for HPCs
- Statistical/Machine Learning Algorithms

 Fault Free Training Data
- PVFS and Lustre were probably chosen for as they are some of the most commonly used DFS.

Background

- Target performance issues for HPC
- Black Box Tests are performed on two types of HPCs
 - PVFS 2.8.0
 - Lustre 1.6.6 (Linux + Cluster)
- Black Box performance analyzed at every node
- Low Overhead
- Low Data Requirement
- SLOs Avoided

Lustre

- Currently under Oracle
- developed as a research project in 1999 by Peter Braam
- As of October 2010, 15 of the Top 30 super computers use it (including the 1st and the 2nd fastest super computers)
- Single metadata server, one management server (may be co-located with metadata server) and multiple object storage servers
- Implemented entirely in kernel space.
- User space client lib (liblustre) is also available
- Configurable striping across one or more object storage targets (stripe_count, stripe_size)
- Open

Related Work

- Peer-Comparison
- Metric Selection
- Message-Based Problem Diagnosis

Problem Statement

- 1. Can we diagnose the faulty server in the face of a performance problem in a Parallel File System, and (Fault Tolerance)
- 2. If so, can we determine which resource is causing the problem? (Root-Cause Detection)

Goals

- Application transparency
- Minimal false alarms of anomalies
- Minimal instrumentation overhead
- Specific problem coverage [5]
 - Anomalous Behavior
 - Network Problems
 - Performance Faults
 - Non Fail-Stop Performance problems in Storage and Network.

[5] P. H. Carns, S. J. Lang, K. N. Harms, and R. Ross. Private communication, Dec. 2008.

Non-Goals / Future Work

- Code-Level Debugging
- Dissimilar Requests Patterns
- Diagnosis of Non-peers
- General Design Flaws
- Secondary Manifestation Realizations
- Design / Metric Flaw
- Heterogeneous Systems (Linux, PVFS/Lustre Independent)

Parallel DFS Problems

- Hogs and Loss/Busy Faults
 - Disk Hogs
 - Disk Busy
 - Network Hogs
 - Packet Loss
- Workloads
 - -DD (ddr and ddw)
 - Iozone (iozoner and iozonew)
 - **–** Postmark (v 1.51)
- Packet Injections

10 experiments conducted for each workloads and fault injections using different fault combination

Metrics

Metric [s/n]*	Significance
tps[s]	Number of I/O (read and write) requests made
	to the disk per second.
rd_sec[s]	Number of sectors read from disk per second.
wr_sec[s]	Number of sectors written to disk per second.
avgrq-sz[s]	Average size (in sectors) of disk I/O requests.
avgqu-sz [s]	Average number of queued disk I/O requests;
	generally a low integer $(0-2)$ when the disk is
	under-utilized; increases to ≈ 100 as disk uti-
	lization saturates.
await[s]	Average time (in milliseconds) that a request
	waits to complete; includes queuing delay and
	service time.
svctm[s]	Average service time (in milliseconds) of I/O
	requests; is the pure disk-servicing time; does
	not include any queuing delay.
<pre>%util[s]</pre>	Percentage of CPU time in which I/O requests
	are made to the disk.
rxpck [n]	Packets received per second.
txpck[n]	Packets transmitted per second.
rxbyt[n]	Bytes received per second.
txbyt[n]	Bytes transmitted per second.
cwnd [n]	Number of segments (per socket) allowed to be
	sent outstanding without acknowledgment.

*Denotes storage (s) or network (n) related metric.

Parallel DFS Behavior/Observations

- In a homogeneous (i.e., identical hardware) cluster, I/O servers track each other closely in throughput and latency, under fault-free conditions.
- When a fault occurs on at least one of the I/O servers, the other (fault-free) I/O servers experience an identical drop in throughput.
- When a performance fault occurs on at least one of the I/O servers, the other (fault-free) I/O servers are unaffected in their per-request service times.

Parallel DFS Behavior/Observations

- For disk/network-hog faults, storage/networkthroughput increases at the faulty server and decreases at the non-faulty servers.
- For disk-busy (packet-loss) faults, storage (network) throughput decreases on all servers.
- For disk-busy and disk-hog faults, storage-latency increases on the faulty server and decreases at the non-faulty servers.
- For network-hog and packet-loss faults, the TCP congestion-control window decreases significantly and asymmetrically on the faulty server.

Diagnosis

- Finding the faulty server
 - Histogram Based Approach
 - KL Divergence
 - Time Series Based Approach
 - Cwnd
 - Threshold Selection
- Root Cause Analysis
 - Storage Throughput
 - Storage Latency
 - Network Throughput
 - Network Congestion

Non-Faulty Server (ios1)

Non-Faulty Server (ios2)

Results

Fault	ITP	IFP	DTP	DFP
None (control)	0.0%	0.0%	0.0%	0.0%
disk-hog	100.0%	0.0%	100.0%	0.0%
disk-busy	90.0%	2.0%	90.0%	2.0%
write-network-hog	92.0%	0.0%	84.0%	8.0%
read-network-hog	100.0%	0.0%	100.0%	0.0%
receive-pktloss	42.0%	0.0%	42.0%	0.0%
send-pktloss	40.0%	0.0%	40.0%	0.0%
Aggregate	77.3%	0.3%	76.0%	1.4%

Results of PVFS diagnosis for the 10/10 cluster.

Fault	ITP	IFP	DTP	DFP
None (control)	0.0%	2.0%	0.0%	2.0%
disk-hog	100.0%	0.0%	100.0%	0.0%
disk-busy	100.0%	0.0%	100.0%	0.0%
write-network-hog	42.0%	2.0%	0.0%	44.0%
read-network-hog	0.0%	2.0%	0.0%	2.0%
receive-pktloss	54.0%	6.0%	54.0%	6.0%
send-pktloss	40.0%	2.0%	<mark>40.0%</mark>	2.0%
Aggregate	56.0%	2.0%	49.0%	8.0%

Results of PVFS diagnosis for the 6/12 cluster.

Fault	ITP	IFP	DTP	DFP
None (control)	0.0%	0.0%	0.0%	0.0%
disk-hog	82.0%	0.0%	82.0%	0.0%
disk-busy	88.0%	2.0%	68.0%	22.0%
write-network-hog	98.0%	2.0%	96.0%	4.0%
read-network-hog	98.0%	2.0%	94.0%	6.0%
receive-pktloss	38.0%	4.0%	36.0%	6.0%
send-pktloss	40.0%	0.0%	38.0%	2.0%
Aggregate	74.0%	1.4%	69.0%	5.7%

Results of Lustre diagnosis for the 10/10 cluster.

Fault	ITP	IFP	DTP	DFP
None (control)	0.0%	6.0%	0.0%	6.0%
disk-hog	100.0%	0.0%	100.0%	0.0%
disk-busy	76.0%	8.0%	38.0%	46.0%
write-network-hog	86.0%	14.0%	86.0%	14.0%
read-network-hog	92.0%	8.0%	92.0%	8.0%
receive-pktloss	40.0%	2.0%	40.0%	2.0%
send-pktloss	38.0%	8.0%	38.0%	8.0%
aggregate	72.0%	6.6%	65.7%	12.0%

Results of Lustre diagnosis for the 6/12 cluster.

ITP is the percentage of experiments where all faulty servers are correctly indicted as faulty, **IFP** is the percentage where at least one non-faulty server is misindicted as faulty. **DTP** is the percentage of experiments where all faults are successfully diagnosed to their root causes, **DFP** is the percentage where at least one fault is misdiagnosed to wrong root cause.

Experiences

- Heterogeneous Hardware
- Multiple Clients
- Buried ACKs
- Delayed ACKs
- Cross-Resource Fault
 Influences
- Metadata Request Heterogeneity
- Network Metric Diagnosis Ambiguity

Figure : Single (top) and multiple (bottom) client cwnds for ddw workloads with *receive-pktloss* faults.

Conclusion

 Black Box Testing strategies based on empirical insights have be used for recognizing faults and the resources that create them in PVFS and Lustre Parallel File Systems

Thank You

Questions?