2-D Transformations

Translation

Moves an object by a given amount

$$
\begin{gathered}
x^{\prime}=x+t_{x} \\
y^{\prime}=y+t_{y} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]+\left[\begin{array}{l}
\mathrm{t}_{\mathrm{x}} \\
\mathrm{t}_{\mathrm{y}}
\end{array}\right]}
\end{gathered}
$$

Graphically indicate the values of t_{x} and t_{y} for this example

Another Example:
Line L from $(4,2)$ to $(9,6)$

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{x}}=1 \\
& \mathrm{t}_{\mathrm{y}}=5
\end{aligned}
$$

Line $\mathrm{L}^{\prime}=(\mathrm{O})$ to (,)

Scaling

Enlarge / reduce an object by a given amount relative to the origin
x and y scale factors may be different

Translate B to be centered on origin

$$
\mathrm{t}_{\mathrm{x}}=\quad, \mathrm{t}_{\mathrm{y}}=
$$

Scale

$$
s_{x}=\quad, s_{y}=
$$

Translate back

$$
t_{x}=\quad, t_{y}=
$$

Using Scaling to Reflect
By setting scale factors to +/- 1, can reflect
Original shape \square

Is this the same as rotation by pi?

Rotation

$$
\begin{aligned}
& \mathrm{x}^{\prime}=\mathrm{x} \cos \llbracket-\mathrm{y} \sin \mathbb{I} \\
& \mathrm{y}^{\prime}=\mathrm{x} \sin \llbracket+\mathrm{y} \cos \mathbb{I} \\
& {\left[\begin{array}{c}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \llbracket & -\sin \llbracket \\
\sin \llbracket & \cos \llbracket
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]} \\
& \mathrm{x}=\mathrm{P}_{\mathrm{x}}=\mathrm{R} \cos \S \\
& \mathrm{y}=\mathrm{P}_{\mathrm{y}}=\mathrm{R} \sin \S \\
& \mathrm{x}^{\prime}=\mathrm{Q}_{\mathrm{x}}=\mathrm{R} \cos (\S+\mathbb{I}) \\
& \mathrm{y}^{\prime}=\mathrm{Q}_{\mathrm{y}}=\mathrm{R} \sin (\S+\mathbb{}()
\end{aligned}
$$

But $\cos (\S+\llbracket)=\cos \S \cos \llbracket-\sin \S \sin \llbracket$ $\sin (\S+\Psi)=\sin \S \cos \llbracket+\cos \S \sin \llbracket$

So $\quad x^{\prime}=R \cos \S \cos \llbracket-R \sin \S \sin \llbracket$ $=\mathrm{x} \cos \pi-\mathrm{y} \sin \pi$

$$
\begin{aligned}
\mathrm{y}^{\prime} & =\mathrm{R} \sin \S \cos \llbracket+\mathrm{R} \cos \S \sin \llbracket \\
& =\mathrm{x} \sin \llbracket+\mathrm{y} \cos \llbracket
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \mathbb{I} & \sin \mathbb{I} \\
-\sin \mathbb{I} & \cos \mathbb{I}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& \text { Rotation is relative } \\
& \text { to the origin }
\end{aligned}
$$

Triangle abc
Scaled by $\mathrm{s}_{\mathrm{X}}=\mathrm{s}_{\mathrm{y}}=2$
Rotated by $\mathrm{II}=-\mathrm{pi} / 2$
Translate by $\mathrm{t}_{\mathrm{x}}=1, \mathrm{t}_{\mathrm{y}}=0$
$\left[\begin{array}{l}\mathrm{x}^{\prime} \\ \mathrm{y}^{\prime}\end{array}\right]=\left[\begin{array}{ll}\mathrm{s}_{\mathrm{x}} & 0 \\ 0 & \mathrm{~s}_{\mathrm{y}}\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]$
$\left[\begin{array}{l}x^{\prime \prime} \\ y^{\prime \prime}\end{array}\right]=\left[\begin{array}{cc}\cos \mathbb{I} & -\sin \mathbb{T} \\ \sin \mathbb{I} & \cos \mathbb{I}\end{array}\right]\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$
-2
-3
-4
-5
$\left[\begin{array}{l}x^{\prime \prime} \\ y^{\prime \prime}\end{array}\right]=\left[\begin{array}{cc}\cos \mathbb{I} & -\sin \mathbb{I} \\ \sin \mathbb{I} & \cos \mathbb{I}\end{array}\right]\left[\begin{array}{ll}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]$

$$
\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \pi & -\sin \pi \\
\sin \mathbb{T} & \cos \pi
\end{array}\right]\left[\begin{array}{ll}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Could multiple the matrixes before applying transform to points Why is this more efficient?
$\left[\begin{array}{l}x^{\prime \prime} \\ y^{\prime \prime}\end{array}\right]=\left[\begin{array}{cc}s_{x} \cos \mathbb{I} & -s_{y} \sin \mathbb{I} \\ s_{x} \sin \Phi & s_{y} \cos \mathbb{I}\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]$
Would like to do this for translation too
$\left[\begin{array}{l}x^{\prime \prime \prime} \\ y^{\prime \prime \prime}\end{array}\right]=\left[\begin{array}{l}x^{\prime \prime} \\ y^{\prime \prime}\end{array}\right]+\left[\begin{array}{l}t_{x} \\ t_{y}\end{array}\right]$
$\left[\begin{array}{l}x^{\prime \prime \prime} \\ y^{\prime \prime \prime}\end{array}\right]=\left[\begin{array}{cc}s_{x} \cos \Phi & -s_{y} \sin \mathbb{T} \\ s_{x} \sin \mathbb{I} & s_{y} \cos \mathbb{T}\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]+\left[\begin{array}{l}\mathrm{t}_{\mathrm{x}} \\ \mathrm{t}_{\mathrm{y}}\end{array}\right]$
Have a problem
Solution: Homogeneous Coordinates
Notice that scaling and rotation expressed as matrix multiplications
Not so for translation
Want to have all be matrix multiplication
(since matrix multiplication is associative: $(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{B} \mathrm{C})$)
Use homogeneous coordinates
(x, y) becomes ($\mathrm{x}, \mathrm{y}, 1$)
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=M\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\mathrm{M}\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]
$$

Translation

$$
\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]
$$

Scaling

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{X}} & 0 & 0 \\
0 & s_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]
$$

Rotation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \| & -\sin \Psi & 0 \\
\sin \| & \cos \| & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]
$$

Shear

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & \mathrm{~g} & 0 \\
\mathrm{~h} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]}
\end{aligned}
$$

Rigid Body Transformations
Preserve lines, angles and lengths
A line transforms to a line
Two lines forming angle II transform to two lines with angle II
A line of length A transforms to a line of length A
Which transformations are rigid body transformations?

Affine Transformations
Preserve lines and parallelism of lines, but not lengths and angles
A line transforms to a line
Two parallel lines transform to two parallel lines
Which transformations are affine?
Which type of transformations would you use to display an object in motion?

Does it depend on the type of object?

The Window to Viewport Transformation
Define objects in World Coordinate System (WC)

Define window (world coordinate window - not X window) in WC
Define viewport in screen coordinates (or normalized device coordinates)
Transform from WC to SC such that window maps to viewport
Lets first just look at transformation due to change in origin Want to map $(0,0)$ in WC to $(0,7)$ in SC
$(2,2)$
$(2,5)$
For p in WC and p^{\prime} in SC

$$
\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & \mathrm{ymax} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]
$$

After that transformation

Now need to make viewport and transformed window the same size

$$
\begin{array}{ll}
\mathrm{s}_{\mathrm{X}}=1 & \\
\mathrm{~s}_{\mathrm{y}}=5 / 2 & \\
& \mathrm{xl}=1, \mathrm{x}^{\prime} \mathrm{l}=1
\end{array} \quad \mathrm{xr}=5, \mathrm{x}^{\prime} \mathrm{r}=5 .
$$

Now need to translate to correct position

$$
t_{\mathrm{X}}=0
$$

$$
\left.\left.\begin{array}{l}
\mathrm{t}_{\mathrm{y}=-6.5}^{\mathrm{x}^{\prime}} \\
\mathrm{y}^{\prime} \\
1
\end{array}\right]=\begin{array}{|ccc}
1 & 0 & 0 \\
0 & -1 & \mathrm{ymax} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right] .
$$

Compose the matrices

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
\mathrm{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & \mathrm{ymax} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{x}^{\prime \prime \prime} \\
\mathrm{y}^{\prime \prime \prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime \prime} \\
1
\end{array}\right]} \\
& \begin{array}{l}
{\left[\begin{array}{l}
x^{\prime} \prime \prime \\
\mathrm{y}^{\prime \prime \prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & s_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & \mathrm{ymax} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]} \\
{\left[\begin{array}{l}
\mathrm{x}^{\prime} \prime \prime \\
\mathrm{y}^{\prime \prime \prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1-
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & \mathrm{ymax} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]} \\
{\left[\begin{array}{l}
\mathrm{x}^{\prime \prime \prime} \\
\mathrm{y}^{\prime \prime \prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & -s_{y} & \mathrm{t}_{\mathrm{y}}-\mathrm{s}_{\mathrm{y}} \mathrm{ymax} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]}
\end{array}
\end{aligned}
$$

So this is the transformation to go from WC to SC
Called the Viewing Transformation

Can compose Viewing Transformation with Modeling Transformations
Say store model of an object in Object Coordinates (OC)
Create an instance of the object and scale, rotate and translate it (Modeling transformation)

$$
\mathrm{P}^{\prime}=\mathrm{M} \mathrm{P}
$$

Then Clip object with window

$$
\mathrm{P}^{\prime \prime}=\mathrm{C}\left(\mathrm{P}^{\prime}\right)
$$

Then apply viewing transformation

$$
\mathrm{P}^{\prime \prime \prime}=\mathrm{V} \text { P" }
$$

What is the problem in terms of efficiency?
So when to clip?

MT	C	VT	Can't compose matrices
MT	VT	C	Must transform all points, not just viewable points
C	MT	VT	Must compute backtransformations on the clip box (but just once)

Tradeoff, with choice determined by application and how doing clipping

Matrix multiplication is associative
Which combinations of transforms are commutative?
Eg. $\mathrm{T}_{1} \mathrm{~T}_{2}=\mathrm{T}_{2} \mathrm{~T}_{1}$

True for two rotations? (How tell?)
for two scalings?
for two shears?
$\left[\begin{array}{ccc}1 & \mathrm{~g}_{1} & 0 \\ \mathrm{~h}_{1} & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & \mathrm{~g}_{2} & 0 \\ \mathrm{~h}_{2} & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=?\left[\begin{array}{ccc}1 & \mathrm{~g}_{2} & 0 \\ \mathrm{~h}_{2} & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & \mathrm{~g}_{1} & 0 \\ \mathrm{~h}_{1} & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{ccc}\mathrm{g}_{1} \mathrm{~h}_{2}+1 & \mathrm{~g}_{2}+\mathrm{g}_{1} & 0 \\ \mathrm{~h}_{1}+\mathrm{h}_{2} & \mathrm{~g}_{2} \mathrm{~h}_{1}+1 & 0 \\ 0 & 0 & 4\end{array}\right]-\left[\begin{array}{ccc}\mathrm{g}_{2} \mathrm{~h}_{1}+1 & \mathrm{~g}_{2}+\mathrm{g}_{1} & 0 \\ \mathrm{~h}_{2}+\mathrm{h}_{1} & \mathrm{~g}_{1} \mathrm{~h}_{2}+1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Symmetric scaling with rotation is commutative
Translation and rotation?

