Projections of 3-D Scenes onto a 2-D Plane

We draw a cube: how do we come up with the projection?

We photograph a scene: how does the light reflected from the scene via the lens form the projection? (see figure)

Image
Pinhole
Scene
Camera

Ideal Camera: Pinhole Camera
Where does point P in the scene project to in the image?

PRP

PA
VP
VPN
PRP projection reference point (center of projection)
DOP direction of projection

Perspective Projections
finite PRP

DOP

PRP

What does projection look like? $<$ vanishing point

How get more than one vanishing point?
It's a function of the relation between the principle axes and the viewing plane.

Number of vanishing points = number of principle axes cut by viewing plane

How get two-point perspective?
Usually cut x and z axes

Where place view plane?
(see figure for projection)

Three-point perspective
Cut all three principle axes
Not used much, as doesn't increase realism

Relation between SLR cameras and perspective projections
How does photographer determine which projection?
How to get one-point perspective image of class? two-point? three-point?

We view (our visual systems) with perspective projections distant objects smaller perspective foreshortening

Parallel Projections

Which parallel projection does this depict?
Plan, front elevation, side elevation

Axiomatic Projections

DOP not aligned with a principle axis

Isometric Projection

DOP makes equal angles with each principle axis

What would DOP be here?
What would the projection look like?

Oblique Projections
DOP is not parallel to VPN

Cavalier Projection
DOP forms 45 degree angle with VP
Does this fully specify DOP?
All lines perpendicular to the VP are projected with no change in length

Cabinet Projections

DOP makes an angle of $\operatorname{arccot}(1 / 2)$ with VP
Lines perpendicular to the VP are projected at half length

angle $\sim=63.4$ degrees
(see figure)

Specification of an Arbitrary 3-D View

Need not only projection, but also the view volume (see figure)

Must specify window on the VP
Must specify front and back (hither and yon) planes
Commonly use a rectangular window
What window shape used by SLR camera?
What shape view volume?
What window shape used by eye?
What shape view volume?

Assume rectangular window
What do we need to specify for rectangular window?

First form viewing reference coordinate (VRC) system
Assign some point in the plane to be its origin Call it the viewing reference point (VRP)
VPN and origin specify the n axis
VUP (view-up vector) defines v axis, as the projection of VUP onto VP (projection in VPN-VUP plane)
u axis is perpendicular to v and n axes
Now can specify window
v and u axes are the principle axes of the window define window by $\left(u_{\text {max }}, v_{\text {max }}\right)$ and $\left(u_{\text {min }}, v_{\text {min }}\right)$

How get a rotated window?
Note center of window (CW) not necessarily at VRP

How to specify the view volume?
For perspective projection use window, PRP, and hither and yon planes

PRP

For parallel projection, use window and hither and yon planes
(see figure)

